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While both non-destructive evaluation (NDE)
and structural health monitoring (SHM) share the
objective of damage detection and identification in
structures, they are distinct in many respects. This
paper will discuss the differences and commonalities
and consider ultrasonic/guided-wave inspection as a
technology at the interface of the two methodologies.
It will discuss how data-based/machine learning
analysis provides a powerful approach to ultrasonic
NDE/SHM in terms of the available algorithms,
and more generally, how different techniques can
accommodate the very substantial quantities of data
that are provided by modern monitoring campaigns.
Several machine learning methods will be illustrated
using case studies of composite structure monitoring
and will consider the challenges of high-dimensional
feature data available from sensing technologies like
autonomous robotic ultrasonic inspection.

This article is part of the theme issue ‘Advanced
electromagnetic non-destructive evaluation and smart
monitoring’.

1. Introduction
At first sight, the current paper may seem like rather an
outlier in a special issue on Advanced Electromagnetic Non-
Destructive Evaluation and Smart Monitoring; however, this
is not the case. The intention here is to focus on matters of
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‘smart monitoring’ with a particular emphasis on the power and efficacy of machine learning in
that context. In addition, a number of points will be made regarding the distinctions between non-
destructive evaluation (NDE) and structural health monitoring (SHM). Although the discussion will
be in the context of ultrasonic inspection methods, the authors believe that it will be of interest
and value in the exploitation of other NDE technologies.

Damage detection and identification technologies tend to be grouped according to application
contexts and domains; this leads to an apparent demarcation between them which is not always
useful. In the case of ultrasonic inspection, the approach crosses boundaries between NDE and
SHM; it is thus useful to discuss the apparent boundaries between technologies to establish if they
are useful, or actually limiting. This matter is important to discuss, because it will hopefully shed
light on whether other techniques commonly accepted to be NDE, could usefully be applied to
SHM problems or elsewhere.

The main aim of this paper will be to show that ultrasonic inspection has benefited from the
use of machine learning or data-based analysis techniques over the last few years. In fact, this
observation is true of SHM generally, where the data-based approach is arguably the dominant
paradigm at this time [1]. The main intention of this paper is to inspire the more widespread
possibilities of using data-based analysis, alongside physics-based techniques, in other areas of
NDE than ultrasound, e.g. in electromagnetic NDE. This paper will provide illustrations spanning
a range of machine learning applications to NDE, from using compressive sensing to handle the
large quantities of data obtained in ultrasonic inspection, to optimizing robotic scan paths for
damage detection, and finally a state-of-the-art application of transfer learning.

2. Ultrasound: structural health monitoring or non-destructive evaluation?
The main engineering disciplines associated with damage detection or identification are arguably
[2]:

— structural health monitoring (SHM).
— non-destructive evaluation (NDE).
— condition monitoring (CM).
— statistical process control (SPC).

In order to examine whether these terms truly distinguish disciplines, it is useful to have an
organizing principle in which to discuss damage identification problems. Such an organizing
principle exists for SHM in the form of Rytter’s hierarchy [3]. The original specification cited four
levels, but it is now generally accepted that a five-level scheme is appropriate [1]:

(i) DETECTION: the method gives a qualitative indication that damage might be present in
the structure.

(ii) LOCALIZATION: the method gives information about the probable position of the
damage.

(iii) CLASSIFICATION: the method gives information about the type of damage.
(iv) ASSESSMENT: the method gives an estimate of the extent of the damage.
(v) PREDICTION: the method offers information about the safety of the structure, e.g.

estimates a residual life.

This structure is a hierarchy in the sense that (in most situations) each level requires that all
lower-level information is available. Few SHM practitioners would argue that Rytter’s scheme
captures all the main concerns in the discipline. However, one can discuss the other damage
identification technologies with respect to this scheme, with some variations.

In NDE, the emphasis is different to SHM. Most methods of NDE will involve some a priori
specification of the area of inspection, examples being: eddy current methods, thermography,
X-ray etc. This means that location is not usually an issue; however, there are exceptions, and
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ultrasonic methods are a good example. Ultrasonic inspection methods are usually classed as
NDE methods, and in the case of A-scan, B-scan etc. which assume a prior location, this is
appropriate. However, methods based on, for example, ultrasonic Lamb-wave scattering, also
have the potential to locate damage, even over reasonable distances. Good examples of the use
of Lamb-wave methods abound in the literature, and there will be no attempt here to provide
a survey; however, a couple of milestones will be indicated. Guided-wave methods generally
have proved very powerful in applications like pipe inspection, where the waves can propagate,
and thus inspect over, large distances [4]. Lamb waves are singled out where the structure of
interest is plate-like, and this has proved very powerful in the inspection of composite laminates
[5]. It is arguable that the prediction level is not critical for NDE as almost all inspection
methods involve taking the structure out of service for more detailed analysis or repair. In fact,
almost all applications will be offline. Some element of ‘prediction’ is accommodated in the
general philosophy of NDE, as code-based inspections ultimately relate the estimated damage
to estimated consequence, based on structural integrity calculations.1 The important parts of the
identification hierarchy for NDE are thus:

(i) DETECTION: the method gives a qualitative indication that damage might be present in
the structure.

(ii) CLASSIFICATION: the method gives information about the type of damage.
(iii) ASSESSMENT: the method gives an estimate of the extent of the damage.

Two other important distinctions between SHM and NDE were highlighted above; the
first relates to the sensing technology. It is generally considered that SHM will be based on
permanently-installed fixed-position sensors, while in NDE, the instruments (eddy-current probe,
thermographic camera etc.) will usually be brought to the structure at the point of concern. The
other distinction is that many SHM specialists consider that SHM should be conducted online, or
at least with relatively high frequency, in an automated fashion, whereas NDE may be conducted
sporadically or only when indicated by another inspection. The conditions which allow an
NDE technology to transition to an SHM technology are that the sensing instruments become
inexpensive enough to install permanently with automated triggering and data acquisition,
and that it is practically possible to permanently install durable sensors and obtain effective
measurements. The question of expense is also tied to the requirements in terms of sensor density;
many of the physical effects exploited in NDE are very local, so that many permanently-installed
units would need to be installed in order to achieve adequate area coverage. An alternate scenario
where local NDE can transition to SHM is where prior knowledge can be used to pinpoint ‘hot-
spots’ where local damage has higher probability, or where ‘structurally significant items’ are
identified.

Ultrasonic inspection has made the transition from an NDE technique to an SHM technique
partly because of the evolution of inexpensive sensors—like piezoelectric patches or wafers—
and the exploitation of guided-waves, which mean that waves can propagate large distances
without attenuation, e.g. Lamb waves in pipelines; this means that sensor densities are reduced
[6]. Other advances in ultrasonic NDE have included the use of phased arrays [7]. A phased array is
simply an ultrasonic transducer containing multiple elements which can be triggered to actuate
in a prescribed sequence. Phased arrays are extremely useful for large-area inspection because
the waves can be steered and focussed without moving the probe. Various designs have been
proposed over the years; portable probes are available for traditional NDE, but recent designs
allow bonding of sensors to the structure, essentially producing an SHM system; an example is
given in [8]. Given a phased array, powerful processing techniques exist for damage imaging;
one such approach is total (or full) matrix capture (FMC) [9]. In FMC, every combination of
actuator/sensor elements is used; from this rich dataset, algorithms like the total focussing method
allow sharp imaging of damage regions [10,11].

1The authors thank one of the anonymous reviewers for this observation.
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Figure 1. A simplifiedmachine learning framework for SHM and NDE.

Another powerful imaging technique which has emerged recently is wavenumber spectroscopy,
which relies on the local estimation of Lamb wave wavenumber on a fine grid [12]. The latter
paper is interesting also in the sense that the ultrasound is generated using a high-power laser,
but sensed using a single fixed transducer; it is thus a type of hybrid of NDE and SHM as the
actuation source is an instrument which must be brought to the sample. Where reciprocity holds,
the same data can be acquired by using a point actuator and sensing using a full-field method like
laser vibrometry [13].

The signal processing methods used in FMC and wavenumber spectroscopy are conventional,
relying on Fourier transformation etc. However, one of the major developments over the last
two decades in ultrasonic NDE and SHM, has been the use of data-based approaches based
on machine learning. A simplified framework for using machine learning in SHM and NDE is
depicted in figure 1 [1]. Data measured from a structure are pre-processed such that damage-
sensitive features are extracted (feature extraction), these become a set of inputs {x}N

i=1 to the
machine learning model. A relationship between inputs {x}N

i=1 and outputs {yi}N
i=1 (e.g. predicted

class labels) is inferred by the machine learner (typically on a set of training input–output pairs),
which generalizes to new input data points [14]. The output predictions from new inputs can
be post-processed in order to make diagnostic decisions, e.g. related to Rytter’s hierarchy. There
are three main problems in machine learning: classification, regression and density estimation,
with examples of all three within the SHM and NDE literature [15–22], respectively (where the
reference list is not intended to be exhaustive). In classification, the challenge is inferring a map
from the input data to a set of categorical labels, e.g. descriptions of discrete damage locations
if performing localization [15]. Regression, by contrast, seeks to infer some functional map from
some set of independent inputs to their dependent outputs, and is used in problems such as
mapping flight parameters to strains on aircraft components [19,20]. Lastly, density estimation
is concerned with identifying the underlying distributions of data, employed in scenarios such
as tool wear monitoring, where the machinist is to be alerted when a change in tool wear has
occurred [22]. These latter techniques are also suited to unsupervised learning, where only input
data are known during learning, typically used in novelty detection problems where the question
is whether a structure has changed from a known healthy condition [23].

The remainder of this paper will be concerned with illustrating the use of machine learning
and showing its potential through three case studies. The first case study demonstrates the
applicability of machine learning in handling the large quantities of data obtained in an inspection
campaign via compressive sensing [24]. The second study presents a Bayesian optimization and
robust outlier procedure that aims to speed up robotic scanning in an autonomous manner,
amending the scan path to efficiently identify damaged regions [23]. Finally, the last case study
shows how very recent advances in transfer learning mean diagnostic information from one
structure can be used in aiding damage identification on a separate structure—enabling robotic
inspection to be performed in a more autonomous manner.

3. Compressive sensing and ultrasonic non-destructive evaluation
A characteristic of ultrasound-based NDE is that the large quantifies of high-frequency data
(typically in the range of one to ten MHz) are obtained from the inspection process. These large
datasets cause acquisition and data-processing challenges, problematic for both physics-based
and machine learning-based analysis. Typically, due to the relatively sparse information content
within a waveform, two key features are extracted from the echoes of ultrasound pulses: their
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attenuation and time-of-flight (TOF) difference, with the latter gaining significant attention in an
NDE context.

Two main approaches exist for estimating TOF: threshold and signal phase-based methods,
that use these techniques to separate the main pulse from the echoes in order to compute the
difference [25], and those using physical insight in order to solve a deconvolution problem
to recover the impulse response function of the material being scanned [26,27]. This latter
approach—a blind deconvolution problem—is equivalent to a sparse coding step in compressive
sensing (under an appropriate dictionary).

Compressive sensing (CS) aims to exploit sparsity, reconstructing a signal from much fewer
samples required by the Shannon-Nyquist theorem. The approach outlined here uses machine
learning, in the form of a relevance vector machine (RVM) [28]—a sparse Bayesian regression
tool—in order to reconstruct a compressed signal.

(a) Compressive sensing as a sparse Bayesian regression problem
Compressive sensing involves three main stages, allowing accurate signal reconstruction from
a low number of measurements. The first part (equation (3.1)), assumes the signal {x}N

i=1 can be
represented by a low number of coefficients {β}M

i=1 and some transform—meaning it is sparse
in that domain—represented by a dictionary D. A key idea in CS is that the dictionary can be
formed from a variety of bases, e.g. a mixture of Fourier, wavelet and polynomial bases. The
second stage of CS is where a random transform Φ (where each element is standard Gaussian or
Bernoulli distributed) is applied to the signal x, preserving the pairwise distances between data
points (via the Johnson–Lindenstrauss Lemma [29]), forming the compressed signal z. Recovering
the original signal x from an over-complete dictionary D forms an ill-posed regression problem, in
equation (3.3) (as most coefficients will be zero), solved using sparse coding or sparse regression
methods, such as an RVM [24].

x = Dβ, (3.1)

z = Φx (3.2)

and ΦDβ = Φx. (3.3)

The compressive sensing problem in equation (3.3) can be formulated as a regression problem
where the output y = Φx, i.e. the randomly transformed signal. This leads to a sparse linear
regression problem, t = ΦDβ + e; t is the target vector, ΦD = X form the set of bases, β are the
weights and e ∼N (0, σ 2) is Gaussian-distributed noise. An RVM induces sparsity through its
Bayesian model structure, particularly the choice of priors on the coefficients β (equations (3.6)
and (3.7)),

p(t | β, σ 2) = (2πσ 2)−
N
2 exp

||t − y||22
2σ 2 , (3.4)

p(σ−2) = G(σ−2 | c, d), (3.5)

p(β | α) =
M∏

i=1

N (βi | 0, α−1) (3.6)

and p(α) =
M∏

i=1

G(αi | a, b) (3.7)

where N (μ, Σ) and G(a, b) indicate Gaussian and Gamma distributions parametrized by a mean
μ, covariance Σ , a shape and b rate parameters. The integral of the Gaussian-Gamma prior
structure on β leads to p(β) being Student’s t distributed; this distribution places most of its
probability mass around the centre with a low number of degrees of freedom, inducing sparsity.
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Figure 2. Comparison of signal reconstructions of ultrasound data using three dictionaries: (a) model-based tone-burst,
(b) k-means clustering and (c) onlinematrix factorization. The uncertainty bounds,σ1 andσ2 refer to the prediction uncertainty
without and with measurement noise, respectively [24].

The predictive equations from the model (using Bayes rule) leads to p(t∗ | t, α, σ 2) (where t∗ are
test data points),

y∗ = X(σ−2ΣXTt), (3.8)

V∗ = σ 2 + XTΣX (3.9)

and Σ =
(

A + 1
σ 2 XTX

)−1
, (3.10)

where A = diag(α) and the hyperparameters α and σ 2 are found using an expectation
maximization (EM) approach in [28].

(b) Compressive sensing on ultrasound data
A demonstration of Bayesian CS (using the RVM formulation) in estimating waveforms from C-
scan data is presented in this section. A robotic head, with a water-coupled ultrasound probe
consisting of 64 transducers, was used to scan a 1.2 m × 3 m composite panel. Each transducer,
which can fire a 5 MHz tone burst, also acts as a receiver, where the spatial resolution of the scan
was adjusted to be 0.8 mm in the direction of probe travel. Importantly, the signals all contain
information at a narrow band centred around 5MHz, with the Nyquist frequency at 25 MHz, such
that the problem is not oversampled (so that the trivial compression solution of decimation is not
possible). An acquisition time of 24.64 µs was used to capture the range of depths in the specimen,
which equates to 1232 samples at a sample rate of 50 MHz. CS results are shown in figure 2, where
different dictionaries have been used; a model-based tone-burst, k-means clustering [30], and
online matrix factorization. Visually, the mean reconstructed signal (indicated by the red line) is
in good agreement with the measured data, with the main difference being the uncertainty in the
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reconstruction. In this example, a k-means dictionary [30] (an unsupervised clustering algorithm)
was found to be the most appropriate, highlighting the usefulness of machine learning both in
reconstruction of the signal and identifying an optimal dictionary. It can be concluded from this
example, that machine learning-based CS can be used to increase both the speed and efficiency of
data processing in ultrasound-based NDE.

4. Machine learning-based autonomous inspection
The use of robotics in NDE has changed the way NDE measurements can be acquired and has
created the opportunity to automate large-scale inspection processes [31,32] (where large-scale
refers to the size of the structure, e.g. a large aerospace composite panel). However, although
data acquisition can be automated, it is increasingly desired that the whole inspection process,
from data collection to decision about the health state of the structure, is made autonomously.
This section looks at the problem of efficiently identifying damage on a specimen by performing
damage detection autonomously using robust outlier analysis, and optimizing the scan path such
that any damage is found efficiently using Bayesian optimization [23].

(a) Autonomous inspection strategy
The proposed inspection strategy seeks to select scanning points in a sequential manner,—rather
than a uniform grid—by posing the problem as one of Bayesian optimization to maximize an
objective function i.e. the ‘novelty index’ of a measured data point. The objective function is
formed from a robust novelty index, as this describes the dissimilarity of a given data point
against the group, while ensuring the measure is not biased by noise or the presence of damage
in the group. This choice of objective function means optimization identifies spatial areas of
interest that are particularly novel, and therefore likely to be damaged. The Bayesian optimization
approach means that the uncertainty across the spatial field is decreased while focussing on
identifying potential damage locations, with the smallest number of measurement points.

The process can be summarized as: (1) obtain data and evaluate features, (2) update robust
mean and covariance estimates (including the latest data point) using fast minimum covariance
determinant (FASTMCD) [33], and calculate novelty indices for the entire set,2 (3) condition
the Gaussian process (GP) model [34] on the new novelty indices, (4) compute the expected
improvement (EI) to find the next scan location.

EI is a utility that seeks to find a balance between exploration and exploitation [35], making it
ideal for exploring the specimen while accurately identifying likely areas of damage. Given the
focus of this paper, and in keeping with brevity, the interested reader is referred to [23] for more
details, specifically on Gaussian Process regression, Bayesian optimization and robust outlier
analysis.

A key advantage of using Bayesian optimization is that the posterior GP output is probabilistic,
y∗ ∼N (m, v), leading to a probabilistic estimate of novelty scores over a two-dimensional spatial
field. Typically, in outlier analysis, an observation is flagged as abnormal if its novelty index
exceeds the damage threshold T. In the Bayesian optimization approach, the probability of
damage (POD) is the probability that the uncertain measurement lies above the threshold p(y∗,i >

T) = Φ((mi − T)/vi), where Φ(·) is a standard Gaussian cumulative density function. The method
can, therefore, be used to construct a spatial POD map of the specimen, given the current scan
locations.

(b) Autonomous inspection of a composite specimen
An example of the strategy is demonstrated on an industrial, carbon fibre reinforced polymer
(CFRP) specimen (part of an aerospace substructure provided by Spirit Aerospace), shown in

2These novelty indices are inclusive outlier detection indices, and are more robust than using Mahalanobis distances, which
can be affected by multiple outlying data points, masking its effects.
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(b)(a)

Figure 3. Illustration of two composite panels. (a) The source specimen used in the transfer learning case study. (b) The
specimen used in the autonomous inspection case study, and is the target specimen in the transfer learning case study. (Online
version in colour.)
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Figure 4. Time-of-flight map for the composite specimen (in normalized units); the target specimen in the transfer learning
case study. (Online version in colour.)

figure 3b. The specimen was known to have two main areas of delamination in the flat section of
the panel, as indicated by the TOF in figure 4. Ultrasonic pulse-echo scans were acquired using
a system based on a six-axis KUKA robot with a 64-element phased-array probe, as described
in [32]. As the inspection strategy depends on a novelty index score, each implementation of
the technique is limited to areas of ‘similar’ properties (otherwise ‘healthy’ areas with different
properties would be flagged as novel given the majority ‘healthy’ area); for this reason only the
flat sections are considered.

The POD, given the final observation, in each region are shown in figure 5, where it can be
seen that the two main areas of damage have been identified. Furthermore, figure 5 also presents
the evolution of POD for each of the eight regions, given the current observation number. It can
be seen that regions 3, 6 and 7 are quickly identified as containing damage, with each requiring
around 150, 400 and 300 observations, respectively. The approach therefore indicates the potential
of machine learning in the automation of robotic, ultrasound-based inspection.
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Figure 5. Autonomous inspection strategy results for composite specimen [23]. (a) POD across the spatial field for the final
observation in each region, (b) PODagainst number of observations for eachdiscrete region (corresponding toa). (Online version
in colour.)

5. Towards fully autonomous ultrasonic non-destructive evaluation: the
potential of transfer learning

Another machine learning technique that could aid the transition to autonomous, ultrasound-
based inspection is transfer learning. This branch of machine learning allows knowledge about
damage state labels to be transferred from one structure to another, meaning datasets can be
classified autonomously without the need for a human to provide labelled examples of different
damage states for each new structure inspected.

As stated previously, machine learning provides multiple avenues for making decisions
about the health state of a structure from data in an autonomous manner, i.e. datasets can be
flagged as ‘novel’ or labelled as corresponding to a particular damage state. One challenge
in using machine learning for autonomous NDE (and also in SHM) is that machine learning
algorithms are typically trained, and therefore valid for, specific individual structures. This issue
means that if a machine learner, trained on one specimen, was applied to another specimen,
changes in the distribution of the datasets would mean that the machine learner would fail to
generalize and predictions would be erroneous. In the context of ultrasound-based NDE, these
changes in the data distributions between different specimens may arise for several reasons,
e.g. the specimens have different nominal thicknesses; the acoustic impedance of the materials
are not the same; damage types may change between specimens; manufacturing differences
lead to different physical properties etc. As a result, to achieve ‘true’ autonomous robotic
inspection in NDE, machine learners must overcome this limitation and generalize across a
population of structures where, for many of the population, labelled data are unavailable as
this requires human intervention (this is a similar goal to the related field of population-based
SHM [36]).

A machine learning-based technique for transferring label knowledge between different
datasets is called transfer learning. This technology seeks to leverage knowledge from a source
dataset and use it in improving inferences on some target dataset. In terms of NDE, this means
that for each new inspection of a new target structure, knowledge can be used from previous
inspections of source structures, where labels have been collected, to aid classification of health
states on the target structure, with the benefit of creating machine learners that generalize across
the complete set of structures. The following case study seeks to demonstrate the potential of
using transfer learning to improve damage detection on an unlabelled target composite panel
based on labelled observations of a source composite panel where the features are derived from
ultrasonic measurements.
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(i) Domain adaptation

Domain adaptation is one branch of transfer learning [37] that seeks to map feature spaces between
source data {Xs, ys} and target data {Xt, yt}, such that label knowledge can be transferred from
source to target datasets; where X ∈ R

N×D is a matrix of feature observations from a feature
space X , and y ∈ R

N×1 is a vector of labels corresponding to each feature observation in a label
space Y . This class of methods assumes that the feature and label spaces between the source
and target datasets are equal; where Xs =Xt means the source and target features have the same
dimensions Ds = Dt, and Ys =Yt means that the same number of classes exist in the source
and target spaces. Given this starting point, the key assumption in domain adaptation is that
the marginal distributions p(X) of the finite feature observations X = {xi}N

i=1 for the source and
target are not equal p(Xs) �= p(Xt) (with the potential to assume that the joint distributions are
also different p(ys, Xs) �= p(yt, Xt) [38]). Consequently, the goal in domain adaptation is to find
a mapping φ(·) on the feature data such that p(φ(Xs)) = p(φ(Xt)) (and p(ys, φ(Xs)) = p(yt, φ(Xt))),
meaning the source and target datasets lie on top of each other and any labelled data from the
source dataset can be used to label (and therefore be transferred to) the target dataset.

(ii) Transfer component analysis

Transfer component analysis (TCA) is one method for performing domain adaptation and
assumes the conditional distributions for the source and target datasets are consistent, i.e.
p(ys, Xs) = p(yt, Xt) but that the marginals are very different p(Xs) �= p(Xt) [39]. The technique
then seeks to learn a nonlinear mapping φ(·) from the feature space to a reproducing Kernel
Hilbert space (RKHS), i.e φ : X →H via a kernel k(xi, xj) = φ(xTi )φ(xj), where the distance
Dist(p(φ(Xs)), p(φ(Xt))) is minimized (and therefore p(ys, φ(Xs)) = p(yt, φ(Xt)). The distance
criterion used in TCA is the (squared) maximum mean discrepancy (MMD) distance, defined
as the difference between two empirical means when the data are transformed via a nonlinear
mapping into an RKHS [40],

Dist(p(φ(Xs)), p(φ(Xt))) =
∥∥∥∥∥∥

1
Ns

Ns∑
i=1

φ(xs,i) − 1
Nt

Nt∑
i=1

φ(xt,i)

∥∥∥∥∥∥
2

H
= tr(KM), (5.1)

where K = φ(X)Tφ(X) ∈ R
(Ns+Nt)×(Ns+Nt) given that X = Xs ∪ Xt ∈ R

(Ns+Nt)×D, D is the dimension
of the feature space, and M is the MMD matrix,

Mi,j =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1

N2
s

, xi, xj ∈ Xs

1

N2
t

, xi, xj ∈ Xt

−1
NsNt

, otherwise.

(5.2)

In order to turn the distance into an optimization problem, the low-rank empirical kernel
embedding K̃ = KWWTK [41] is exploited such that the distance can be rewritten as,

Dist(p(φ(Xs)), p(φ(Xt))) = tr
(

WTKMKW
)

, (5.3)

where W ∈ R
(Ns+Nt)×k are a set of weights to be optimized, that perform a reduction and

transformation on the kernel embedding. By optimizing the weights W, the marginal distributions
for the source and target features are brought together in the transformed space. Regularization in
the form of a squared Frobenius-norm is applied to the optimization problem in order to control
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the complexity of W; in addition, the optimization is further constrained by kernel principle
component analysis in order to avoid the trivial solution W = 0. The objective is formed as,

min
WTKHKW=I

= tr
(

WTKMKW
)

+ μtr
(

WTW
)

, (5.4)

where μ controls the level of regularization, H = I − 1/(Ns + Nt)1 is a centring matrix, I is an
identify matrix and 1 a matrix of ones. The objective can be solved via Lagrangian optimization
as an eigenvalue problem, where W are eigenvectors corresponding to the k-smallest eigenvalues
of,

(KMK + μI)W = KHKWΨ , (5.5)

where Ψ is a diagonal matrix of Lagrange multipliers. Once the optimal W are obtained, the
transformed feature space is then formed by Z = KW ∈ R

(Ns+Nt)×k. A classifier can now be trained
in the transformed space using the labelled source data and applied to the unlabelled target data,
therefore transferring the labels from source to target dataset.

(iii) Transferring non-destructive evaluation damage detection labels between composite specimens

This section presents an application of transfer component analysis in aiding robotically-enabled
ultrasonic inspection of two composite aerospace panels. The task in this case study was to
transfer detection labels from a source specimen with seeded defects, to data from an unlabelled
target specimen that was known to have delamination damage.

The two carbon-fibre-reinforced polymer (CFRP) specimens used in this case study are
presented in figure 3 (both specimens were provided by Spirit Aerospace). Ultrasonic pulse-echo
scans of both panels were acquired using a system based on a six-axis KUKA robot with a 64-
element phased-array probe, described in [32]. The source specimen is representative of a typical
aerospace composite, composed of a flat section with a stringer bonded to it. This panel had
defects seeded into the specimen; thin sheets of poly-tetrafluoroethylene (PTFE) were inserted
at different depths during manufacturing, indicated in the TOF and label maps in figure 6. The
target specimen is part of an industrial aerospace structure, formed from a flat section with three
stringers and stiffened areas around each stringer. Delamination was known to have occurred at
two main locations on the target panel, shown in the TOF and label maps in figures 4 and 7. It
is noted that the label maps in figures 6 and 7 are constructed from the known defect locations
and the areas of damage are slightly larger than those indicated by the TOF maps from the raw
ultrasound pulses.

The objective of this case study is to transfer label information from the labelled source panel,
given that the seeded defects act as a proxy for delamination, and transfer this damage label to
the target panel, where damage labels are assumed unknown. Furthermore, these two specimens
form an interesting case study for the application of TCA, as they have different ultrasound
attenuation factors caused by different ply lay-up sequences, fibre volumetric percentages etc.
and both contain flat sections that have different nominal thicknesses (7 mm and 7.3 mm for the
source and target, respectively) where damage is present in the flat sections of both specimens.
For this reason the flat sections of each specimen are the focus of this study, as specified in the
label maps in figures 6 and 7. Finally, as the goal in this case study is to transfer label knowledge
from the source to target panel, only the informative parts of the source panel are used in training
and testing the algorithm; which is partly due to the fact that training TCA has a computational
complexity of O(k(Ns + Nt)2) [39]. These informative sections from the source panel are chosen as
they contain representative examples of both the damaged and undamaged classes, where these
sections are divided into training (black regions) and testing data (red regions) in figure 6. The
black region in figure 7 relates to unlabelled target data used in inferring the TCA mapping (and
are not used in training the classifier).

The feature spaces in this case study are normalized autocorrelation functions obtained from
the raw ultrasound pulses, depicted in figure 8. In order to make the feature spaces consistent
(i.e. Xs =Xt) the autocorrelation functions are truncated to 300 lags (i.e. D = 300) (corresponding
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Figure 6. Source specimen. (a) Time-of-flight map (in normalized units); (b) ‘True’ label map where the black boxes indicate
areas used in trainingboth the TCAmapping and classifier, and the redboxes represent areas used in testing the classifier. (Online
version in colour.)
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Figure 7. Target specimen. The ‘true’ label map where the black boxes indicate areas used in training the TCA mapping with
the remaining regions being test data. (Online version in colour.)

to a time span of 12 µs), as most of the significant information in the autocorrelation functions
occurs well before 300 lags. The differences in autocorrelation functions shown in figure 8
demonstrate the need for transfer learning. The distributions over the autocorrelation functions
are significantly different for the source and target panels due to their geometric and material
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region) for the source and target TCA transfer components, where undamaged and damaged classes are blue (a,b) and green
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differences. It is therefore expected that a classifier trained on the source panel data will fail to
correctly classify any target panel defects.

Transfer component analysis was implemented on training data from the source and target
panels (the black regions in figures 6 and 7, where the number of training data points for each
panel was Ns = 7692 and Nt = 16381). The feature data were embedded using a linear kernel
and TCA was implemented with a regularization factor μ = 0.1 where 10 transfer components
were selected (k = 10). The inferred transfer components are presented in figure 8, where it can be
seen that the transfer component distributions for the source and target panels are now ‘close’3

together and therefore a classifier trained on the source panel should generalize to the target
panel.

The classifier used in this case study was k-nearest neighbours (kNN), with the number of
neighbours k = 1. Although any classifier could be used, kNN was selected as TCA aims to move
the source and target features ‘close’ together, and therefore it would be expected that the transfer
components for the source and target panels will be close in Euclidean space. Classification
was performed both on the autocorrelation functions (i.e. with no transfer learning), and on
the transfer components from TCA. In both scenarios, the classifier is trained on the labelled
source data (black regions in figure 9) and then tested on the remaining source data (red regions
in figure 9; where Ns,test = 9304) and target test data (figure 10; where Nt,test = 219910); where
the features are autocorrelation functions for the no transfer learning scenario, and transfer
components for TCA. The predicted labels for the source and target specimens are shown in
figures 9 and 10 for the two classifiers, where visually it can be seen that there is comparable
performance on the source specimen and a significant reduction in false positives for the TCA
approach on the target specimen. Classification performance is quantified and compared via
accuracies and macro F1-scores. These two metrics are constructed from the number of true
positives (TP), false positives (FP), true negatives (TN) and false negatives (FN). Accuracy is
defined as,

Accuracy = TP + TN
TP + TN + FP + FN

. (5.6)

The macro F1-score is formed from the precision P and recall R, for each class c ∈Y ,

Pc = TPc

TPc + FPc
(5.7)

3Where ‘close’ can be defined in terms of a distance between distributions, such as the MMD distance used in TCA.
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Figure 9. Source specimen label predictions from the classifier trained on the source training dataset. (a) Predicted
classification labels using no transfer learning; (b) predicted classification labels using TCA transfer components. The black
regions are the training data and the red regions are the testing data. (Online version in colour.)

and

Rc = TPc

TPc + FNc
, (5.8)

where a class F1-score and macro-averaged F1-score are formed from,

F1,c = 2PcRc

Pc + Rc
(5.9)

and

F1 macro = 1
C

∑
c∈Y

F1,c (5.10)

where C is the total number of classes in Y . The advantage of the macro F1-score is that it
equally weights the score for each class regardless of the proportion of data within each class.
This property is particularly beneficial in an NDE context, as the majority of data are from
the undamaged class, where poor classification of the damaged label may be masked in an
accuracy score. For this reason, both accuracy and macro F1-scores are presented in table 1.
The classification results clearly demonstrate the benefits in performing transfer learning in
this context; visually seen from accurate label predictions in figure 10b (TCA), compared to a
large number of false positives (extract green areas) in the upper panel (no transfer learning).
Classification accuracy and the macro F1-score increase by 8% and 28%, respectively, when using
TCA over not, with classification accuracies remaining unchanged on the source specimen using
either approach. These results demonstrate that the inferred mapping is extremely beneficial in
transferring label information from the source to target panel and that transfer learning is useful
in progressing to a fully autonomous NDE process.
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Figure 10. Target specimen label predictions from the classifier trained on the source training dataset. (a) Predicted
classification labels using no transfer learning; (b) predicted classification labels using TCA transfer components. (Online version
in colour.)

Table 1. Classification accuracies and macro F1-scores for the transfer learning case study.

no transfer all data classed

method learning TCA as undamaged

source training accuracy 100.0% 100.0% 94.9%
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

macro F1-score 1.000 1.000 0.487
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

source testing accuracy 98.9% 98.9% 97.4%
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

macro F1-score 0.884 0.887 0.494
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

target testing accuracy 91.7% 99.0% 95.2%
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

macro F1-score 0.737 0.943 0.487
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .



16

royalsocietypublishing.org/journal/rsta
Phil.Trans.R.Soc.A378:20190581

................................................................

It is interesting to note at this stage that transfer learning, particularly when using ultrasound-
based features, may allow knowledge in the form of labels referring to different health states
obtained from an NDE context to be used in SHM applications. This would mean that knowledge
obtained in offline inspection processes could be used to make health diagnoses online, opening
up the potential for more interactions between the NDE and SHM communities.

6. Discussion and conclusion
This paper opens with some discussion as to what it means for a technology to be an NDE method
or an SHM method, in the context of ultrasonic inspection. The conclusion is that the boundary
between methods is somewhat blurred, but largely distinguished by the sensor modality and the
strategy for data acquisition. SHM is accomplished using permanently-installed sensors with data
acquired continuously (or at frequent constant intervals), while NDE requires the use of external
actuation/sensing and is (usually) carried out at the direction of human agency. The consideration
of ultrasound as the physical basis for inspection shows that this distinction is somewhat arbitrary,
with ultrasonic NDE and SHM blurring into each other. The opportunity that this realization
presents, is that technology that is currently considered as restricted to offline/NDE applications,
may well become a useful SHM technology if low-cost local sensing/actuation capability can be
developed; at low-enough cost and high-enough durability that transducers can be permanently
deployed at high enough density.

The main aim of the paper is to illustrate the power of machine learning, in carrying out data-
based diagnosis in support of any physics-based prior analysis. Three case studies are presented.
The first case study shows how compressive sensing (CS) can be used to store waveform data with
reduced demands on computer memory or disk. CS is a lossy compression method, preserving
the main features of interest; the Bayesian implementation presented in this paper has the
advantage of providing confidence intervals for the reconstructed data. For transient waveforms,
CS can provide a much compressed representation if an appropriate dictionary of transient basis
functions is adopted. In the event that damage classifiers can be trained in the compressed
domain, time and storage will be saved because the reconstruction step will not be needed. It
is anticipated that CS technology will be applicable to other modes of wave-based NDE e.g. those
based on acoustic emissions. The second illustration here relates to autonomous path planning
for robotic inspection. A robust algorithm is presented which allows a robot system to adaptively
optimize the inspection path in order to focus on probable areas of damage. Apart from the
inherent intelligence of such a strategy, it offers significant reductions in scan time; furthermore,
the algorithm shown here provides naturally probabilistic results.

The third and final case study discussed here is based on ongoing work, and shows how
transfer learning can be used to allow inferences on structures where no damage state data are
available, using data acquired from a similar but distinct structure. In the application here, NDE
inspection of composite parts—representative of large aerospace structures—is carried out via an
ultrasonic phased-array transducer manipulated by an industrial robotic arm. In accordance with
the earlier discussion, this is clearly an NDE scenario, since the components are moved into an
inspection cell, where automated analysis is executed.

It can be concluded that machine learning provides a powerful means of progress on some
of the problems associated with NDE/SHM. This observation has proved true for ultrasonic
methods and should be considered as an opportunity for approaches based on different physics,
e.g. thermal or electrical. New methods like transfer learning overcome some of the issues of data-
based methods, like the difficulty of acquiring training data that encompass all the damage states
of interest.
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