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The forecasting of sudden, irreversible shifts in natural systems is a challenge
of great importance, whose realization could allow pre-emptive action to be
taken to avoid or mitigate catastrophic transitions, or to help systems adapt
to them. In recent years, there have been many advances in the development
of such early warning signals. However, much of the current toolbox is
based around the tracking of statistical trends and therefore does not aim
to estimate the future time scale of transitions or resilience loss. Metric-
based indicators are also difficult to implement when systems have inherent
oscillations which can dominate the indicator statistics. To resolve these gaps
in the toolbox, we use additional system properties to fit parsimonious
models to dynamics in order to predict transitions. Here, we consider
nearly-one-dimensional systems—higher dimensional systems whose
dynamics can be accurately captured by one-dimensional discrete time
maps. We show how the nearly one-dimensional dynamics can be used to
produce model-based indicators for critical transitions which produce fore-
casts of the resilience and the time of transitions in the system. A
particularly promising feature of this approach is that it allows us to con-
struct early warning signals even for critical transitions of chaotic systems.
We demonstrate this approach on two model systems: of phosphorous
recycling in a shallow lake, and of an overcompensatory fish population.
1. Introduction
When undergoing a slow change in conditions, ecological systems can make
abrupt shifts to different dynamical regimes. Regime shifts can take place in
a wide variety of scenarios, regardless of whether the initial regime is an equi-
librium or shows more or less regular oscillations. They are characterized by
their suddenness, difficulty to anticipate and their irreversibility [1–4].
Animal populations [5] or fisheries can collapse [6], species compositions can
radically alter [7], and lakes can switch from an oligotrophic to a eutrophic
state [8], often with disastrous and long-enduring consequences. Much recent
research has been dedicated to developing the ability to predict regime shifts
[9–11] in order to allow potential negative effects to be alleviated and transitions
to be reversed more quickly, or even avoided altogether. In order to do this,
decision makers ideally need a reliable [12] and timely warning that a regime
shift is coming [13–15], a prediction of when it is expected, and an estimate
of the system resilience and any critical thresholds in the meantime [16–19].
The provision of effective early warning signals for regime shifts is a major
challenge faced by researchers in ecology and many other disciplines.

At present, most of the toolbox for anticipating critical transitions is based
on the tracking of early warning indicators. These are statistical measures

http://crossmark.crossref.org/dialog/?doi=10.1098/rsif.2020.0566&domain=pdf&date_stamp=2020-09-16
mailto:madamson@uni-osnabrueck.de
https://doi.org/10.6084/m9.figshare.c.5107354
https://doi.org/10.6084/m9.figshare.c.5107354
http://orcid.org/
http://orcid.org/0000-0002-8994-2170
http://orcid.org/0000-0002-0717-8026


royalsocietypublishing.org/journal/rsif
J.R.Soc.Interface

17:20200566

2
which may show measurable trends as a system approaches a
regime shift caused by disturbances or stressors, and can
therefore provide warning that resilience may be declining
in a system. For example, some systems close to a regime
shift may exhibit critical slowing down: a slow response to
perturbations [20] which can cause variance and autocorrela-
tion to rise as a system approaches a tipping point [9,21–24],
or trends in other statistical properties [25]. If multiple time
series are available, these indicators can be complemented
or improved by approaches based on multivariate time
series analysis [26–28]. Statistical trends such as these have
been observed in diverse systems in the run up to regime
shifts [5,7,29,30], and there is evidence that they are robust
to the time scale on which data is sampled [31]. However,
because there is no absolute interpretation of such indicators
they do not tell us how resilient a system is, or give actual
forecasts of when the transition will come [24,32–34] unless
an independent control system is also monitored for compari-
son [15]. Furthermore, more complicated critical transitions
such as basin-boundary bifurcations of chaotic attractors
and homo-/heteroclinic bifurcations of limit cycles [35–40]
are poorly indicated by such methods [41,42], both because
of the difficulty in separating noise-driven fluctuations from
those inherent to the dynamics, and because critical slowing
down can only be observed in certain regions of the state
space, which are often only visited for a short time in each
cycle [24,43].

In order to improve the efficacy of early warning signals,
there have been calls to combine generic metric-based indi-
cators with model-based indicators (consisting of the fitting
of parsimonious models with general assumptions [32,44]),
more system-specific models and details, and expert opinion
[45]. But there are also properties which are shared by wide
classes of systems which can be used to obtain more infor-
mation about transitions in such systems without needing
to completely consider system-specific detail. One such prop-
erty is nearly one dimensionality [46,47]. Systems which are
nearly one-dimensional (1D) can be well described by 1D
maps that can be constructed from a single time series,
even though they show complex dynamics and have multiple
state variables. Here, we show that in such cases, we can
anticipate critical transitions by fitting parsimonious models
with time-dependent parameters to the nearly-1D dynamics.
From these models, we can anticipate the resilience of the
system in the future and the time at which regime shifts
may occur. Furthermore, in this way, we can obtain model-
based indicators for non-local bifurcations: when oscillatory
dynamical regimes such as chaotic attractors or limit cycles
collide with the basin boundary of an alternate regime and
are destroyed.

The paper is structured as follows. Firstly, an overview of
the method is presented, which outlines the main idea and
details the techniques used. Then in the next two sections,
‘Application to a saddle-node bifurcation’ and ‘Application
to a boundary crisis’, we expand on the details of the
method by demonstrating its use in two particular cases: a
saddle-node bifurcation in a model of phosphorous concen-
tration in a lake, and a global bifurcation of a chaotic
attractor in a discrete-time model of a harvested population.
In the section ‘Data requirements’, we investigate how the
effectiveness of the method depends on the quantity and
timing of the available data by evaluating the performance
of the method in both cases for calibration windows of
different lengths and start times. Finally, in the Discussion,
the approach is summarized, its assumptions are discussed
and its prospects are considered.

2. Method overview
Many systems in ecology and epidemiology have been found
to be nearly 1D [46–49], including various two- and three-
species food web models [47,50] as well as time series taken
from measles epidemics [46], Lynx fur returns and from the
Nicholson blowfly experiment [47]. Even though such sys-
tems are multidimensional and continuous in time, their
dynamics can be well-represented by a 1D difference
equation, even in cases where they show complex dynamics
such as chaos. This approximation may be obtained in two
ways: firstly, from time series of a single variable using tech-
niques derived from properties of Poincaré maps of the
system (maps obtained by tracking the consecutive points
where the system trajectories pass through a given plane in
the space of state variables) such as the presence of next maxi-
mum or peak-to-peak maps [47,49], where each peak in the
time series of a state variable is approximately given by a cer-
tain function of the previous peak; secondly from phase space
reconstruction techniques such as delay embedding [51],
whereby the dynamics of a system can be obtained from
time-lagged observations of one or more system variables
by making use of the fact that all of the system variables
are linked together by the same mechanism that generates
the dynamics. In its simplest case, the system dynamics can
be approximated from one of its state variables by expressing
the present value of this variable at time t as a function of its
past value at time t− τ. The precise shape of the nearly-1D
map which best approximates the dynamics, and the require-
ments which we need to consider, depend on the type of
attractor of the system: for equilibria, we can fit a simple gen-
eric map such as a quadratic map as in [12]. For chaotic
attractors, the map may need to be more complicated, but
in many cases the folding of the attractor yields a simple
unimodal (hump-shaped) curve in the peak-to-peak map
[47]. Potentially, multiple models can be proposed and the
best fitting model picked using model selection techniques
such as the Akaike information criterion [52], which takes
into account both the likelihood of a given model to fit the
available data and how parsimonious/simple the model is,
as measured by the number of model parameters.

Consider a system with slowly changing external con-
ditions which undergoes a bifurcation-driven regime shift
(also known as a B-tipping point [53]) involving an attractor
colliding with the boundary of the basin of a different attrac-
tor. This is a wide class of bifurcations, including local
bifurcations such as saddle-node bifurcations, but also non-
local bifurcations such as basin-boundary crises of limit
cycles and of chaotic attractors. Because of the continuity of
the construction of the nearly-1D dynamics [54], correspond-
ing bifurcations can also generally be seen there. If we can
track changes in the approximate 1D map by fitting a generic
map with linearly time-dependent parameters, then we can
form a model-based resilience indicator for a regime shift
because we can straightforwardly infer future system states,
thresholds and tipping points from it. Although autocorrela-
tion-based methods are often designated metric-based
indicators, they can also be seen as a particular example of
this class of model-based indicators: autocorrelation-at-lag-1
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Figure 1. Simulated time series of the lake phosphorous concentration with
linear ramping in phosphorous inflow. The system undergoes a saddle-node
bifurcation at t ≈ 2800. The grey region highlights the calibration window
used to fit a 1D map to the delay coordinates.
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Figure 2. Snapshots of the fitted time-delay map from the lake phosphorous
time series with delay τ = 40, taken at times t = 0 (dark blue dashed curve)
and t = 3000 (dark red dashed curve). Time-series data points before the
transition are shown coloured according to the corresponding time t, with
a close-up of these data points shown in the inset. The stable (filled
black circle) and unstable (open black circle) equilibria of the map at
t = 0 are also shown.
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can be obtained by fitting a linear map in the single-delay
coordinates. The main difference is that since the AR(1)
map is linear, it cannot provide any information on
thresholds in the system.

In this paper, we consider two kinds of systems under-
going critical transitions. Firstly, in systems at equilibrium
which are close to undergoing a saddle-node bifurcation (see
the example in figure 1), and whose dynamics in the presence
of noise can be represented by a 1Dmap through delay embed-
ding, a quadratic map can be fitted to the 1D delay coordinates
as in figure 2. The equilibria can be found for such a map at
each time, and used to produce a resilience profile (figure 3)
in which we can see any saddle-node bifurcations taking
place due to the time-dependence of the parameters. The
time at which this is anticipated to happen gives an estimate
of the time at which a regime shift will take place in the orig-
inal system. Secondly, we consider systems exhibiting more
complicated behaviour such as a chaotic attractor (see the
time series in figure 4), which will be reflected in the nearly-
1D dynamics. If the basin of attraction is bounded, the bound-
ary should show up here as an unstable equilibrium, but
tracking changes in the attractor is not so simple because it
covers a range of values, and not a single point (figure 5).
However, in a unimodal map, we can find the minimum
value of an attractor easily by iterating from the maximum
of the map (see electronic supplementary material, appendix
b). Using this technique to produce a resilience profile of the
system, we can check if this minimum value will pass the
unstable equilibrium forming the threshold of the regime, at
which point a regime shift takes place through a boundary
crisis (figure 6).

3. Application to a saddle-node bifurcation: lake
water eutrophication model with ramped
nutrient loading

Todemonstrate hownearly-1Ddynamics can be used to provide
early warning signals for regime shifts, we consider a simplified
model of phosphorous cycling in a lake with a slowly linearly
ramped inflow of phosphorous from surrounding groundwater
(see appendix A) [55].
A typical simulated time series for the phosphorous con-
centration in this stochastic differential equation is shown in
figure 1. Initially, the system is at an equilibrium of low
phosphorous concentration. As ramping of the phosphorous
inflow increases, this equilibrium concentration increases
with very slow acceleration, until the system suddenly
jumps to a eutrophic state via a saddle-node bifurcation at
t≈ 2800. This regime shift is hard to anticipate because of
its sudden nature, but it has been shown by Brock & Carpen-
ter [55] to be accompanied by a clear increase in variance. To
construct an early warning signal for this transition, we con-
sider only the time-series data points between times 0 and
1250 as calibration ‘data’, shown by the grey region in
figure 1. Although no experimental data is considered in
this paper, throughout the applications sections we shall
refer to simulated time series and their ‘data points’ simply
as ‘time series’ and ‘data’ for the sake of brevity.

To obtain a 1D discrete-time map we can use delay
embedding with a single delay variable. This entails plotting
the phosphorous level at each time t with the phosphorous
level at a previous time t− τ. For τ = 40, this is shown by
the coloured points in figure 2 (the results are robust to vari-
ations in the choice of τ). We can then fit a simple map with
linearly time-varying parameters to the delay points (xt−τ, xt)
in the calibration window: for a non-autonomous map f (xt, t;
a), we aim to find the parameter set a which minimizes the
sum of square residuals

P
ŷt2, where ŷt :¼ xt � f(xt�t, t; a).

In this case, a time-dependent quadratic map of the form

xt ¼ (a0 þ a1t)x2t�t þ (b0 þ b1t)xt�t þ (g0 þ g1t), (3:1)

is a natural, parsimonious choice to capture the saddle-node
bifurcation and outperforms a linear map considerably when
the Akaike Information Criterion is applied. (At first glance,
this may be surprising since it seems that a straight line
ought to give a better fit than the pronounced quadratics
shown, because the data points lie close to the diagonal,
but it makes more sense when we keep in mind the time
dependence of the maps as well as the transversal response
of the system to noisy perturbations that can be seen in the
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Figure 3. Forecast resilience profile from the lake phosphorous model.
Predicted stable (blue, solid line) and unstable (orange, dashed line)
equilibria, alongside the time series generated by the model (grey). The
calibration window lies between t = 0 to t = 1250.
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Figure 4. Simulated time series from the fishery model with linearly ramped
harvesting (calibration window shown in grey). Subplots show stretches of
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respectively.
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inset.) Extrapolation of this map beyond the times within the
calibration window produces a prediction of the future
system states. For the given time series and calibration
window, we obtain best-fitting parameters α0 = 1.4710, α1 =
6.7954 × 10−5, β0 =−3.2617, β1 =−4.4833 × 10−4, γ0 = 2.4913
and γ1 = 7.4680 × 10−4. Snapshots of the fitted map at the
start and end of the time series, t = 0 and t = 3000, are plotted
in figure 2. In the fitted maps in figure 2, at time t = 0, we have
a low-phosphorous stable equilibrium corresponding to the
initial equilibrium in the original model (filled circle) and a
higher unstable equilibrium (open circle) forming a threshold
concentration above which eutrophication will be triggered.
At t = 3000, the map is forecast to have shifted completely
above the identity line, causing the two equilibria to come
together and disappear in a saddle-node bifurcation, trigger-
ing a regime shift to the eutrophic state (which is not
captured by the approximate discrete time map).

By tracking the equilibria of the time-dependent map
along with their stability, extended beyond the calibration
window, we can produce predictions for the system state,
the boundary of its basin of attraction, and any bifurcations
inducing a regime shift. Figure 3 shows such a forecast for
the lake eutrophication model, with the original time series
plotted alongside for comparison. The blue curve tracks the
phosphorous concentration of the non-eutrophic state of the
system. The dashed orange curve tracks the threshold concen-
tration: if the phosphorous concentration passes above this
level, a shift to the eutrophic state will be triggered. Based
on the calibration data up to t = 1250, a regime shift is indi-
cated at around 2600. This closely precedes the transition in
the actual system at t≈ 2800.
4. Application to a boundary crisis:
overcompensatory population with ramped
harvesting

While saddle-node bifurcations and other shifts from a
regime at equilibrium are well studied, and many metric-
based resilience indicators have been developed for them,
non-local bifurcations such as basin-boundary crises are
generally much more challenging to predict. Since nearly-
1D dynamics can be obtained from time series of many
systems with low-dimensional chaos in ecology and related
disciplines, they offer a possible route for developing early
warning signals for some of these transitions. For simplicity
of presentation, we consider a 1D discrete-time system: a fish-
ery model given by the Hassell map [56], with linearly
ramped constant yield harvesting (see appendix A). Since
the dynamics of this system are already 1D, a 1D map can
be fitted directly to the set of consecutive points in the time
series. For nearly-1D systems in general this is not possible,
and peak-to-peak coordinates need to be taken (or a similar
technique needs to be used) in order to fit a 1D map.

A time series obtained from this model is shown in
figure 4. The Hassell map is known to display chaotic
dynamics through overcompensation, and this is seen in the
fish population cycles: they are irregular and show sensitivity
to initial conditions. As the harvesting yield per season is
ramped, the oscillations take place at lower population
levels, with occasional ‘periodic windows’ in which the
dynamics become more regular temporarily, until there is a
collapse of the fish stock at time t≈ 2500 due to a boundary
crisis of the chaotic attractor. Essentially, as the population
cycles are shifted to lower values by the increased fishing, a
harvesting-driven Allee effect arises when an unstable equili-
brium close to zero appears and acts as a minimum viable
population level. Eventually, the minimum population level
reached in the population cycles drops below this level and
the fish stock collapses.

Again we consider a calibration window consisting of
time points up to t = 1250, but as the data is already in dis-
crete form, we do not need to perform delay-embedding or
consider peak-to-peak maps. We can plot the xt+1 data
against the xt data, and fit a map with parameters linearly
depending on time—here we fit a Ricker map shifted in
both vertical and horizontal directions

xtþ1 ¼ [xt � (a0 þ a1t)] exp (r0 þ r1t) 1� xt � (a0 þ a1t)
K0 þ K1t

� �� �

þ (b0 þ b1t),

(4:1)
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which is chosen as a parsimonious representation of a
unimodal functional form. The best fit for such a map
to this time series and calibration windows is given by
the parameters r0 = 2.580, r1 = 2.549 × 10−6, K0 = 0.9743,
K1 =−2.1676 × 10−6, a0 =−0.0023, a1 = 1.4098 × 10−6, b0 =
0.0130 and b1 =−9.6577 × 10−5. Snapshots of this map,
together with data points from before the transition, are
shown in figure 5. From the time dependence, we can
extend the map beyond the calibration window and compute
the critical threshold in the dynamics at each time, by finding
the lowest equilibrium in the map, as well as the minimum
point possibly reached in the chaotic cycles. To do this, we
use the hump shape of the map which implies that the mini-
mum of the cycles can only be reached by starting from the
maximum of the map and iterating once (see electronic sup-
plementary material, appendix b). Note that both of these
extremes are computed from the maps fitted to the entire
range of dynamics, instead of considering values near to
the critical level alone. The difference between the minimum
in the population cycles and the critical population threshold
gives us the resilience of the system at each time, and tells us
if a boundary crisis is possible.

By tracking the change in the population cycle minimum
and the critical population threshold in time, we can obtain a
resilience profile for the system as shown in figure 6. The
orange dashed curve shows the critical threshold of the popu-
lation level, which is predicted to increase with time, and the
blue curve shows the minimum population level reached by
the attractor, which is predicted to steadily decrease with
time. Where these two curves cross at t≈ 3850, we see a
boundary crisis in the fitted time-dependent map. A corre-
sponding critical transition in the original system leading to
extinction of the fish population is predicted at this time. In
fact, this actually happens earlier in the sample time series
because noise drives the fish stock below the extinction
threshold, a consequence of the resilience loss in the system.
The resilience is given by the distance between the attractor
minimum and the critical threshold and represents the smal-
lest perturbation that could trigger a critical transition.
However, in this case such a perturbation would need to be
timed to take place when the population is at its lowest
level in the chaotic cycle in order to induce a collapse.
5. Data requirements
In order to gain some insight into how the characteristics of
the dataset available affect the ability of nearly-1D maps to
predict critical transitions, we can consider how the error in
the predicted transition time changes for different windows
of calibration data. A calibration window is a range of
times [t1, t2] to which the time-dependent model is fitted,
where t1 < t2 < tc for a transition taking place at time tc. Two
key properties of a calibration window are its length, t2− t1,
and the time at which it starts, relative to the transition,
t1− tc. The heat maps in figure 7 show the prediction error
as a function of the start time and the length of the calibration
window, averaged over 10 realizations of the lake phosphor-
ous model, for noise intensities of σR = 0.5% and σR = 1%.
Here, blue regions indicate more accurate predictions, and
red/orange ones indicate calibration windows giving less
accurate predictions, or for which the method failed to pre-
dict a transition at all. Although we could consider that the
indicator has ‘failed’ in the latter case, a considerable loss of
resilience is still often predicted. Throughout the figure, a
pattern of diagonal ‘streaks’ showing similarly accurate pre-
dictions is visible in spite of the averaging over multiple
replicates. Since these diagonals correspond to calibration
windows ending at the same time, the latest data points
used for calibration have a particular significance for the
accuracy of the method.

To examine how the reliability of the prediction depends
on the length of available calibration data and its closeness to
the transition, in figure 8 we plot the proportion of predicted
transitions within 500 time points of the actual transition seen
in the time series, both as a function of the length of the cali-
bration window, t2− t1, and its start time relative to the
transition time, t1− tc. Figure 8a shows that the length of
the calibration window has a strong effect on the reliability
of predictions. In order to have a greater than even chance
to anticipate the saddle-node bifurcation in the lake phos-
phorous model, we need to have a sufficiently long
calibration window available, with the required length
depending on the noise intensity: around 1400 time units
with sR ¼ 0:5%, 1500 for sR ¼ 1% and 2000 for sR ¼ 2%.
A similar length of calibration window is necessary to reliably
avoid false positives when applied to a time series without a
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length t2− t1 of the calibration window and averaged over start times t1− tc for t1∈ [0, 600] (b) given a fixed start time t1− tc and averaged over window
lengths t2− t1∈ [0, 1100]. Each set of results is averaged over 10 independent realizations of the system.
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transition (electronic supplementary material, appendix c). We
also see a slight tendency for more accurate predictions the
closer to the transition the time series starts (figure 8b, also vis-
ible in the shift to more prevalent blue regions in figure 7), but
this is not as strong as one might expect. Note that the reason
for the low proportion of acceptable predictions is that the
length of the calibration window needs to be limited in
order to explore a significant range of start times within the
whole time series. This also holds for figure 9b.

The dependence of the frequency of successful predictions
on the window of calibration data for the fishery model is
shown in figure 9. For this system, we take the error in the
predicted transition time relative to the boundary crisis
seen in the deterministic time series, rather than the stochastic
time series from which the prediction is generated. This is a
more fitting comparison since the fitting of time-dependent
nearly-1D dynamics to the time series can only track the resi-
lience loss caused by changes in the deterministic skeleton,
while the precise time of the transition itself depends on
extrinsic perturbations. Indeed, the simulated perturbations
in the stochastic system essentially guarantee a considerably
earlier collapse than in the deterministic case: in all the sto-
chastic time series considered here, the crisis takes place
around t = 2500 rather than T̂det ¼ 3718 in the deterministic
system, so that the deterministic case gives an upper bound
on the time to the tipping point. Tipping points that are trig-
gered by perturbations or noise are referred to as N-tipping
points [53]. Prediction of transitions including N-tipping
would involve the addition of a noise term to the time-
dependent nearly-1D map, which can be done relatively
straightforwardly. The data requirements for the fishery
time series are similar to those of the lake phosphorous
time series: the calibration window needs to be of a certain
length if the method is to successfully anticipate the transition
within a given accuracy, while the closeness of the calibration
data to the transition has a far weaker effect.
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Figure 9. The dependence of the reliability of the predictions on the length and start time of the window of calibration data for different noise levels σ in the
fishery system. The proportion of predicted times of total resilience loss which are within 500 time points of the actual transition time tc (a) given a fixed
length t2− t1 of the calibration window and averaged over start times t1− tc for t1∈ [0, 500] (b) given a fixed start time t1− tc and averaged over
window lengths t2− t1∈ [0, 500]. Each set of results is averaged over 10 independent realizations of the system.
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6. Discussion
In the class of systems in which the dynamics are nearly 1D
and can be well approximated by 1D discrete-time systems,
there is the possibility to construct new model-based indi-
cators for the loss of resilience and a shift to a different
regime. Significantly, this can be done for challenging systems
which show complicated dynamics such as chaos, as well as
the more commonly studied case of systems starting at equi-
librium. The approach is centred around fitting generic,
parsimonious models with time-dependent parameters to
the approximate 1D map in order to track how the system
dynamics are changing. By doing so, we can obtain a predic-
tion of the state of the system or its extreme values, and the
thresholds beyond which the system cannot be perturbed
without triggering a regime shift. This yields two important
pieces of information: it tells us if and moreover when a
regime shift can be expected, and it allows us to forecast
the future resilience of the system, in the sense of the maxi-
mum disturbance that can be tolerated without triggering a
shift. Such forecasts can either be made continuously using
a moving calibration window as with metric-based early
warning signals, or incorporated into an iterative forecasting
framework [57].

Most existing early warning signals take metric-based
approaches, in that they use trends in statistical properties
of the times series, such as an increase in variance due to criti-
cal slowing down of the response to perturbations, as
indicators that the system may be losing resilience or
approaching a regime shift. Such indicators have many
benefits in that they are generic and require no knowledge
of the system monitored, at least in principle. However,
these statistical trends generally do not yield quantitative esti-
mates of the resilience of the system or forecasts of the time at
which a system should undergo a transition [24,33]. One way
to rectify this is to develop model-based approaches such as
the one presented here to supplement metric-based indicators
[32]. Model-based techniques could be applied to systems
which are flagged by metric-based indicators as possibly
losing resilience or approaching a critical transition, both in
order to corroborate the early warning signal from the indi-
cator and to provide extra information about the resilience
loss and predict how it is likely to unfold. Although model-
based methods involve the fitting of models rather than the
monitoring of statistical trends, the two groups of indicators
share many common assumptions. In particular, both
assume a basic separation of timescales between fast state
variables and slowly changing environmental conditions
or parameters, as well as a distinction between intrinsic
deterministic dynamics and external stochastic perturbations.

In order for the model-based approach presented here to
anticipate transitions successfully, the system and the available
data must satisfy additional requirements beyond the presence
of nearly-1D dynamics. The assumption of a clear time-scale
separation between slowly changing parameters and faster
dynamical variables implies that the approach will fail in the
presence of rapidly changing conditions [53]. Similarly, a par-
ticular dependence of parameters on time is required–here a
linear dependence on time is assumed. Stressors in real-
world systems are unlikely to increase at a precisely linear
rate, but linear ramping may serve as a valid first-order
approximation so long as the ramping is broadly uni-
directional. When ramping in system drivers is nonlinear,
predictions beyond a certain time scale will likely be inaccur-
ate, with this time scale becoming shorter with more
nonlinear ramping. Additionally, noise with too large a var-
iance can overwhelm the time-dependence of the dynamics
and cause the ‘signal’ of the gradual change in the structure
of the system to become indiscernible [33]. On the other
hand, in the case of systems at equilibrium such as the lake
phosphorous model, sufficient noise is needed to reveal the
system structure and its changes: negligible noise levels are
insufficient for the system response to reveal the nearly-1D
dynamics away from the equilibrium. Furthermore, a suffi-
ciently long dataset is needed to adequately fit the time-
dependent nearly-1D map, as the plots in figures 8 and 9
show. This remains a particular challenge to forecasting critical
transitions in ecology, where data availability is limited.

Unlike the system properties used by many metric-based
indicators, nearly-1D dynamics are not universal. There is,
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however, evidence that they are widespread in ecology
[47,49], epidemiology [46], physiology [58,59], electronics
[60] and chemical systems [61,62]. Nearly-1D dynamics are
often not immediately recognizable in time series without
using delay-embedding or considering peak-to-peak maps,
but there are certain types of system in which they are
more common. In particular, dynamics which follow low-
dimensional chaotic or quasi-periodic cycles are frequently
nearly-1D. Deterministic periodic systems exhibit nearly-1D
dynamics which consist of jumps between a finite number
of points, making the interpolation and tracking of a 1D
map difficult. However, sufficient noise can change this by
displacing the state from the periodic orbit and revealing
more of the nearly-1D dynamics in a surrounding invariant
region, even to the point of inducing stochastic chaos
[63–65]. In deterministic systems at equilibrium, nearly-1D
dynamics will always be given by a single point and it
remains an open question for which systems noise can
reveal a full nearly-1D map in this case. Some multidimen-
sional systems show fast–slow dynamics which imply
nearly-1D dynamics, but arguably they should also be seen
in many more systems near tipping points: the centre mani-
fold theorem guarantees that critical slowing down only
takes place in the direction of the centre manifold [66]
which will be a 1D curve for saddle-node and other types
of bifurcation. Observed data points should be primarily
distributed along this curve, because perturbations perpen-
dicular to it will return more quickly than those tangent to
it [67]. Time-series analysis techniques such as delay embed-
ding may reflect this by returning nearly-1D dynamics,
although the success of such techniques with substantial
noise is not guaranteed [68]. Overall, however, there remains
the need for similar methods for higher dimensional systems
without nearly-1D dynamics. The framework presented here
may be extended to such systems by, e.g. approximating their
dynamics from time series using current methods such as
those found in [69,70].

The additional information which we can gain by consid-
ering the nearly-1D dynamics of a system means that they
can play an important role in bringing existing early warning
signals closer to management decisions with the view of
taking action to manage a transition or prevent it completely.
Firstly, time scale is an important factor in most management
strategies, because they rely on the gradual effect of physical
or biological processes, the development of new technology,
or simply need time to be organized [8,13]. In ecology, life-
history effects and delay mean that biological interventions
may only be effective on the time scale of one or more
lifespans of the organisms involved [71]. The time require-
ments and monetary cost of management actions can
necessitate estimates of the time left available in order to
decide which transitions can be reversed, and which manage-
ment strategies will be effective. Estimates of the resilience
and critical thresholds in the run up are also useful to
inform a decision as to which management measures are
necessary or cost-effective—for instance, whether to take
short-term measures such as keeping the state away from
the threshold or longer-term measures such as moving the
threshold itself [4], or whether it is even worth trying to miti-
gate the regime shift rather than allowing it to take place and
concentrate on helping the system adapt [72,73].

Another prospect for the use of nearly-1D dynamics to
guide early warning signals lies in their ability to anticipate
regime shifts caused by non-local bifurcations, before which
the system is not at equilibrium, but instead undergoes peri-
odic or chaotic cycles. Such regime shifts are particularly
challenging to anticipate, and many of the standard
approaches in the early warning signals toolbox cannot be
applied effectively at all. While these bifurcations do exhibit
critical slowing down in a sense [43], statistical trends are
usually lost among the intrinsic fluctuations already present,
especially if they are chaotic or if the system is only close to a
threshold for a small part of each cycle. The use of nearly-1D
dynamics finally opens up the prospect of constructing early
warning signals for these types of regime shift in certain
cases.
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Appendix A. Models used to produce simulated
data
A.1. Lake phosphorous model
The dynamics of phosphorous in lake water are described by
the following equation from [55]:

dx
dt

¼ c1U(t)� c2xþ c3mF(x)þ sRmF(x)
dW
dt

and

F(x) ¼ xq

cq4 þ xq
:

x is the concentration of phosphorous in thewater in gm−2. c1 =
0.00115 is the phosphorous inflow from groundwater, c2 = 0.85
the outflow coefficient, c3 = 0.019 the recycling rate, c4 = 2.4
the recycling half-saturation coefficient,m = 200 g m−2 the con-
centration of phosphorous in the lake sediment, q = 8 the
recycling function exponent, and σR the standard deviation
of stochastic perturbations to recycling (sR ¼ 0:5% unless
specified otherwise). The mass of phosphorous in the water-
shed soil is given by the linear function U(t) =U0 +U1t,
where U0 = 600 g m−2 and U1 = 1/6 g m−2〈t〉−1. W is a
standardized Wiener process.
A.2. Fishery model
The model for a harvested fish population with overcompen-
satory dynamics is given by the following equation, based on
the Hassell model [56] with constant yield harvesting and
multiplicative environmental noise

xtþ1 ¼ (1þ sj)
rxt

(1þ axt)
b
� h(t)

� �
,

https://doi.org/10.5281/zenodo.3994459
https://doi.org/10.5281/zenodo.3994459
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r = 13.5 is the basic growth rate, a = 0.03 the rate of density-
dependent saturation, β = 90 the compensation parameter, σ
is the standard deviation of the noise (s ¼ 2% unless speci-
fied otherwise) and ξ is a normally distributed random
variable with mean of 0 and variance of 1. Note that in the
limit β = 1/a→∞, this model convergences to the Ricker
map. The harvesting yield is given by h(t) = h0 + h1t, where
h0 = 0, and h1 = 1 × 10−4.
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