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Disease response and durability of remission are very heterogeneous in
patients with acute myeloid leukaemia (AML). There is increasing evidence
that the individual risk of early relapse can be predicted based on the
initial treatment response. However, it is unclear how such a correlation is
linked to functional aspects of AML progression and treatment. We suggest
a mathematical model in which leukaemia-initiating cells and normal/
healthy haematopoietic stem and progenitor cells reversibly change between
an active state characterized by proliferation and chemosensitivity and a
quiescent state, in which the cells do not divide, but are also insensitive
to chemotherapy. Applying this model to 275 molecular time courses of
nucleophosmin 1-mutated patients, we conclude that the differential chemo-
sensitivity of the leukaemia-initiating cells together with the cells’ intrinsic
proliferative capacity is sufficient to reproduce both, early relapse as well
as long-lasting remission. We can, furthermore, show that the model
parameters associated with individual chemosensitivity and proliferative
advantage of the leukaemic cells are closely linked to the patients’ time to
relapse, while a reliable prediction based on early response only is not
possible based on the currently available data. Although we demonstrate
with our approach, that the complete response data is sufficient to quantify
the aggressiveness of the disease, further investigations are necessary to
study how an intensive early sampling strategy may prospectively improve
risk assessment and help to optimize individual treatments.
1. Introduction
Acute myeloid leukaemia (AML) describes a group of malignant stem cell
disorders, in which functional blood cells are rapidly replaced by malignant
blasts. Owing to the acquisition of multiple genetic and epigenetic aberrations
in haematopoietic stem and progenitor cells, those cells lose their ability to finally
differentiate, which is frequently combined with an increase of their proliferative
potential. These changes induce a competitive advantage and the malignant cells
ultimately outcompete normal haematopoiesis. Clinically, the expansion of the
malignant cells results in an acute and, if not immediately treated, fatal haemato-
poietic insufficiency.Whole-exome sequencing of large numbers of AML samples
showed an extensivemutational heterogeneity between different patients with an
average of five mutations in genes that are recurrently mutated [1]. The patient-
specific mutational profile combined with other cytogenetic measurements at
the time of diagnosis is used to categorize the patients into different risk-
groups according to the European leukemia net (ELN) recommendations [2].
This categorization supports decisions about suitable treatment strategies.
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Although treatment options have improved over the last
decades, the prognosis for AML patients is still unsatisfactory.
While 35–40% of patients under the age of 60 are cured,
older patients have a significantly worse prognosis with less
than 10% surviving after 5 years [3]. Whereas allogeneic
haematopoietic cell transplantation is often the only curative
approach, this option is not available to all patients and con-
veys its own specific risks, such as graft-versus-host disease.
Therefore, the standard primary treatment for AML still
consists of intensive chemotherapy including an induction
therapy followed by a period of consolidation therapy.
Chemotherapies are administered in a cyclic manner with
usually 7 days of treatment followed by a treatment free inter-
val. Induction and consolidation therapy include about
five cycles of treatment. Cytarabine combined with an antracy-
clin are the most frequently used chemotherapeutic drugs in
AML. These chemotherapies are highly cytotoxic, especially
when applied in high doses. In particular, they act unspecifi-
cally, i.e. not only affecting the malignant but also all other
dividing cells, therefore, often leading to severe side effects.
Even after successful primary therapy about half of the patients
relapse. Those relapses represent a major challenge in AML
treatment as they are both, hard to predict and difficult to
treat. Therefore, the time point of relapse is a critical measure
reflecting the severity of the subsequent disease course.

About 30% of all AML patients present with a mutation
of the nucleophosmin 1 (NPM1) gene, thereby forming one
of the largest AML subgroups sharing a common characteristic
mutation [1]. NPM1 mutations typically result in a dislocation
of the protein from the nucleus, reducing its tumour supressive
function [4]. Clinically, theNPM1mutation is associatedwith a
good response to AML induction therapy and a favourable
prognosis [5]. Over the last years, polymerase chain reaction
(PCR)-based quantification ofNPM1mRNA (relative to a suit-
able control gene, such as ABL) has been established as a
surrogate measure of leukaemia abundance, especially for
the detection of minimal residual disease levels.

In a recent study, we could show that monitoring NPM1
dynamics are closely linked to the long-term outcome in
NPM1-mutated (NPM1-mut) AML patients [6]. Therefore,
we argue that it is beneficial to incorporate measures about
the individual disease dynamics in the process of clinical
decision-making in order to further improve personalized treat-
ment adaptation. Technically, the assessment of molecular
disease dynamics is realized by monitoring the leukaemic
burden in AML patients during and after therapy. However,
the quantitative assessment of leukaemicmarkers is challenging
as the abundance of those mutations does not necessarily corre-
late with the disease load. Some mutations in genes, such as in
DNMT3A and TET2 are known as preleukaemic mutations
that can persist during complete remission [7], while others
are germ line associated, such as RUNX1 and GATA2 [8].
Mutations in genes like FLT3-ITD and NRAS are frequently
lost upon relapse. Stable lesions recommended by the ELN for
measurable residual disease (MRD) monitoring are the NPM1
mutations and gene fusions such as RUNX1-RUNX1T1,CBFB-
MYH11 and PML-RARA [9]. As the measurement of mutated
NPM1 (relative to the reference gene ABL) is now included in
clinical routine and these values can be used as a surrogate for
leukaemic burden, it is possible to track the molecular disease
dynamics for these patients with high accuracy.

To gain further insights in the molecular mechanisms and
individual differences in disease dynamics, mathematical
models are a powerful tool, as was already shown for several
diseases, such as cancer in general [10], chronic myeloid
leukaemia (CML) [11–13], Alzheimer’s disease [14,15] and
Parkinson’s disease [16,17]. Existing models of AML either
address properties of the leukaemic cells [18–20] or focus
on the mechanisms of the disease in general [21–23]. How-
ever, so far none of these models has been specifically
tailored to account for individual patients’ molecular disease
dynamics and to correlate these with achievement of
remission or relapse. Such a model would allow us to quan-
titatively study the course of disease and factors influencing it
in silico and to facilitate predictions on the relapse risk.

Earlier studies demonstrated that a mathematical model of
haematopoietic stem cell (HSC) organization, which assumes
a reversible switch between two functional states of HSC
(i.e. a proliferative, active and a quiescent state), is able to con-
sistently reproduce a number of experimental and clinical
phenomena [24–26]. Translating this concept into the leukae-
mia context proved to be predictive, especially for the case of
CML. Here, the theoretical analysis of the interaction between
the cell cycle status of leukaemic cells and the effects of tyrosine
kinase inhibitors allowed the quantitative predict ion of
individual long-term disease dynamics [27] as well as the
potential for tyrosine kinase inhibitor dose de-escalation and,
therefore, side-effect reduction [13]. Based on these insights,
we here apply the same concept to capture the treatment
dynamics of AML. In particular, we investigate the question
of whether the leukaemic reduction during chemotherapy
can bemimicked without directly integrating any assumptions
of a differential cytotoxic effect on leukaemic cells.

In the present study, we intentionally use a simple two-com-
partment approach to mathematically model disease and
treatment dynamics in AML. We explicitly consider a che-
motherapy effect operating on all actively cycling cells,
independent of their mutation status. It is our main objective
to test whether such a simple model description, i.e. considering
an unspecific therapeutic cell kill together with an increased cell
cycle activity of malignant cells, is sufficient to consistently
describe the individual patient dynamics as observed in a large
cohort of patients. To do so, we fit the model individually to
eachmolecular time course of n= 275NPM1-mut AMLpatients.
We further investigate the ability of the model to estimate
patients relapse times as a measure of the severity of disease,
as well as to improve risk stratification and predict relapse.
2. Methods
2.1. Patient data
We used quantitative PCR (qPCR) NPM1 time courses of n = 275
patients from the AML Registry of the University Hospital Dres-
den Carl Gustav Carus and two phase 3 trials of the Study
Alliance Leukemia (SAL), namely AML2003 (NCT00180102) and
AML60+ (NCT00180167). All patients gave written informed con-
sent to participate in the study in accordance with the Declaration
of Helsinki. Specifically we selected patients from this cohort,
according to the following selection criteria: NPM1-mutated
AML subtype, available therapy information and at least three
NPM1 measurements (more details and a flow chart can be
found in the electronic supplementary material, S2). Bone
marrow aspirates were taken at irregular time points, usually at
diagnosis and during primary therapy, with additional measure-
ments during follow-up and at relapse. NPM1 quantification was
processed as described in [28], quantifying the amount of NPM1-
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Figure 1. (a) Schematic overview of the mathematical model describing the dynamics of leukaemia-initiating cells (LIC), L and healthy stem cells (HSC), H in the
bone marrow of an AML patient. (b) Leukemic burden after therapy depending on the ratio of leukaemic activation to healthy activation tAl =t

A
h . Dashed line shows

detection limit for clinically measured leukaemic burden. For x the time course is shown in figure 1c. (c) Time course of leukaemic and healthy cell numbers relative
to the numbers at diagnosis with a tAl =t

A
h ¼ 70.
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mut transcripts relative to the amount of transcripts of the refer-
ence gene ABL in the bone marrow samples. As there were two
different platforms used for PCR-quantification (i.e. Lightcy-
cler480 and Taqman 7500, both with 5’-nuclease assays) a
correction factor between the two values was estimated and
applied to ensure comparability between measurements (for
details see the electronic supplementary material, S1). In total, 69
patients presented with a molecular relapse and 57 patients did
not reach remission. The median age was 53 years (range: 20–79).
The median number of NPM1 measurements per patients was
five (range: 3–21). The medium number of therapy cycles received
was four (range: 1–10). Measurements below the detection limit of
0.001%NPM1/ABL (i.e. the lower limit of detection of the method)
were handled as 0.001%. All measurements after allogeneic stem
cell transplantation were removed from the dataset, as this treat-
ment has a major effect on the disease dynamics and is not part
of this analysis.

Patients were only included in our analysis of the accuracy of
relapse time estimation if they did not reach remission at all,
reached remission and relapsed within two years, or presented
with later measurements confirming sustained remission
during the entire 2 years.

We recently suggested different quantitative characteristics to
describe a patients’ molecular time course (in [6]). These are: the
elimination slope (α, quantifying the decrease of the leukaemic
burden during primary treatment), the minimal NPM1/ABL level
after primary treatment (induction + consolidation) within nine
months after treatment start (termed n), the maximum slope
during molecular relapse (β, quantifying the speed of relapse out-
growth) and the time of molecular relapse (d) (for explanation
see figure 3a; electronic supplementary material, S3). We defined
molecular relapse as the approximated time point when the
NPM1/ABL ratio exceeds the relapse threshold of 1% (following
the suggestion in [28]). This time was approximated using a
linear interpolation between the last point below the threshold
and the first one above.

The whole dataset used for the present analyses is available
as the electronic supplementary material, (PatientData1.csv
with all patient-specific information; PatientData2.csv with
NPM1/ABL measurements).

2.2. The mathematical model
We developed a mathematical model describing the HSC
dynamics in the bonemarrow ofAMLpatients (figure 1a). Because
AMLdynamics are largely driven by a pool of leukaemia-initiating
cells, we restrict our model to the stem cell dynamics (cf. [19]).
Similar to the general modelling concept applied for healthy hae-
matopoiesis and CML [11,24], we consider two stem cell states
with different proliferative activity, i.e. quiescent and proliferating
cells. Cells in these two states are assumed to differentially respond
to chemotherapy. While quiescent cells, both leukaemic (LQ) and
healthy (HQ), are considered insensitive to S-phase specific
drugs, activated leukaemic (LA) and healthy cells (HA) are targeted
by those substances. Assuming a finite (stem cell-niche related)
carrying capacity for both states (KQ/A) (describing the distinct
micro-environments of the two different states, for which we
make the simplifing assumption of a 1 : 1 ratio) [29] the transition
between the states is modelled as a function of the number of
cells in the target state. Additionally, assuming different transition
rates between the states for leukaemic (tlQ=A) and healthy (thQ=A)
cells, the following system of ordinary differential equation
(ODEs) describes the change of the number of cells (HQ/LQ) in
quiescent state Q over time (t):

dHQ

dt
¼ tQh � 1� LQ þHQ

KQ

� �
�HA � tAh � 1� LA þHA

KA

� �
�HQ

(2:1)
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and

dLQ
dt

¼ tQl � 1� LQ þHQ

KQ

� �
� LA � tAl � 1� LA þHA

KA

� �
� LQ: (2:2)

The cell numbers (HA/LA) in active state A are additionally
influenced by the proliferation of the active cells with rate ph/l,
and by their dependency on the total amount of cells in the cur-
rent state, modelled by the carrying capacity KA. Furthermore,
active cells can leave the stem cell state with a differentiation
rate dh/l or they can be targeted by chemotherapy with a constant
kill rate c during treatment. The cyclic chemotherapy adminis-
tration is realized in the model by a fixed chemotherapy kill
rate, which can be switched on and off. These assumptions
lead to the following model description in the active state A:

dHA

dt
¼ tAh � 1� LA þHA

KA

� �
�HQ � tQh � 1� LQ þHQ

KQ

� �
�HA

þ ph � 1� LA þHA

KA

� �
� c� dh

� �
�HA

(2:3)

and

dLA
dt

¼ tAl � 1� LA þHA

KA

� �
� LQ � tQl � 1� LQ þHQ

KQ

� �
� LA

þ pl � 1� LA þHA

KA

� �
� c� dl

� �
� LA: (2:4)

The complete model describes the competition between
healthy and leukaemic cells, in which the leukaemic cells would
progressively outcompete the healthy cells if left untreated.
The leukaemic burden, which is the main readout of the model,
is calculated as the relative fraction of leukaemic cells in both
states with respect to the overall number of all cells in these
states, i.e.

leuk. burden[%] ¼ LA þ LQ
HA þHQ þ LA þ LQ

� 100%: (2:5)

The leukaemic burden is directly compared to the patient’s
NPM1/ABL measurements, thereby making the simplifying
assumption that the NPM1/ABL ratio in the unsorted bone
marrow aspirates sufficiently approximates the relative frequency
of leukaemic cells within the respective stem cell compartments.

To compare model results with the data, all values below the
detection limit of the qPCR method of 0.001% were set to this
limit (left-censoring). As it is common to have NPM1/ABL ratios
of up to 1000%, because of the higher abundance of theNPM1 tran-
script compared to the reference gene [30,31] the percentage of
leukaemic cells from the model was increased by a factor of 100
to translate them into the NPM1/ABL ratio and make the model
results comparable with the measurements. This scaling factor
does not influence the overall model behaviour.

2.3. Model parameters
Most values for themodel parameterswere taken fromthe literature
(see below) and treated as constant values for all patients. To
account for patient-heterogeneity, we compared several models
with different choices of the free parameters and evaluated them
with respect to an optimal fitting to the respective data. Using
Akaike’s information criterion (AIC,which considers both the qual-
ity of the fit as well as the number of free parameters) as well as the
identifiability of the parameters to be fitted to the data, (see the
electronic supplementary materials, S4 and figures S1 and S5),
we identified that the leukaemic proliferation rate pl (reflecting the
aggressiveness of the leukaemic clone) and the leukaemic activation
rate tAl (reflecting the individual chemosensitivity) represent the
best choice for a minimal but optimal model parametrization.
The transition rate of leukaemic cells into quiescence (tQl ) was
kept constant for all patients and was set to 0.002 d−1. It was
obtained by fitting the model to all patient time courses multiple
times, each time with a different inactivation rate to find the glob-
ally best fitting rate. The other model parameters were set to
plausible values based on available literature data.

— Chemotherapeutic kill rate (c) was kept constant to ensure iden-
tifiability of the fitted parameters. It was set to 0.99 d−1 to
account for the high total leukaemic cell kill, as reported for
an in vivo mouse study [32]. An analysis of different values
for c showed nearly no dependence on the choice of this par-
ameter. Only much smaller kill rates result in inferior model
fits (see the electronic supplementary material, figure S6C).

— Proliferation rate of healthy cells (ph) was set to once every 25
days. It was estimated that healthy haematopoietic stem
cells divide once every 30 days [33]; but as the actual prolifer-
ation rate in the model depends on the niche space in the
current state and hence this rate would only be reached for
an empty state, the rate was set to this higher value. Model
results showed no qualitative dependence on the choice of
this parameter (see the electronic supplementary material,
figures S6A and S7).

— Stem cell differentiation rate (dh/l) was set to the value
of the proliferation rate without influence of the capacity
(1/30 d−1) for both leukaemic and healthy cells.

— Activation rate for healthy cells (tAh ) was set to 0.01 d−1 and
the inactivation rate (tQh ) to 0.2 d−1, based on the functions
for these values from the original model [11].

— Carrying capacities for each state (KA/Q) were based on the value
of 105 cells as previously described [11], which is about a factor
10 smaller than actual stem cell numbers in a patient’s bone
marrow. An analysis of different carrying capacities, showed
that a smaller capacity for the active state results in slightly
inferior model fits, whereas other values had no impact
(electronic supplementary material, figure S6B).

The competitive advantage of leukaemic cells compared to
healthy cells originates from their increased proliferative poten-
tial [34,35], which is represented in the model as an increased
leukaemic proliferation rate of up to once every 5 days.

When fitting the model to patient data, the leukaemic acti-
vation rate (tAl ) and the leukaemic proliferation rate (pl) were
estimated byminimizing theweighted log-likelihood, where nega-
tive NPM1/ABL measurements were double weighted to account
for the possibility of these values being far below the detection
limit. Differences between values were calculated on the log10
scale. For all patients, 100 random starting points were generated
for fitting to eliminate the dependence on the start value and
to increase the probability of reaching the global minimum. In
order to avoid overfitting, we assessed the identifiability of the
fitted parameters using the profile likelihood (see [36] for details).
In the corresponding likelihood landscape in the electronic sup-
plementary material, figure S1, it is shown that the identifiability
is given for both free parameters.

For an additional, easier interpretable measure of goodness
of fit the mean absolute error (MAE) was estimated by comput-
ing the mean divergence of the model from the measurements
for each patient fit on the log10 scale.

2.4. Statistical analysis
General bivariate correlations were quantified using the Spearman
rank correlation coefficient (ρ). p-values for multiple pairwise cor-
relations were adjusted using Bonferroni correction. To specifically
measure the agreement between relapse times estimated with the
model and estimated from the clinical data we applied the Lin’s
concordance correlation coefficient (ρc). The (Mann–Whitney)
U-test was applied to compare rank distributions (i.e. shift in the



royalsocietypublishing.org/journal/rsif
J.R.Soc.In

5
medians) of two independent groups of patients. The Kaplan–
Meier method was used for relapse-free survival analysis, using
the time until recurrence/death. The logrank-test was applied to
compare the survival of two independent groups. A cox regression
was conducted for hazard ratio (HR) estimation. The threshold of
the parameter ratio to discriminate between the two groups was
determined by maximizing the HR with the additional require-
ment of at least 10 target events (i.e. relapse) in each group.
Odds ratios were determined by logistic regression. Identifiability
of the model parameters was assessed using the profile likelihood
approach, as described in detail in [36]. The likelihood landscape is
derived by estimating the profile likelihood for all parameter com-
bination. The 95% confidence intervals (CI) for the model
parameters were derived following the likelihood-based CI defi-
nition by Meeker & Escobar [37].

All analyses were donewith MATLAB R2018b (The MathWorks,
Inc., 1994–2018). The source code is available from the authors
on request.
terface
17:20200091
3. Results
3.1. Reduction of leukaemic burden can be modelled

without assuming a different chemotherapeutic
kill effect on normal and leukaemic cells

In order to reproduce the molecular dynamics of AML,
we developed a mechanistic mathematical model of the
competition of leukaemic and healthy stem cells in the bone
marrow. This modelling approach is in line with earlier
works in which a minimal, two-compartment model of HSC
organization was applied to describe various phenomena
such as stem cell competition, ageing and leukaemia
[11,13,24,25,38,39]. The model describes two functional states
between which the cells can reversibly transit depending on
the capacity in the target state. While in the ‘active state’ the
cells proliferate and can potentially differentiate, they stay
inactive in the ‘quiescent state’ (figure 1a). Both healthy HSCs
and leukaemia-initiating cells (LICs) can adopt each state.
However, while their transition dynamics between the two
states differ, leukaemic and normal cells are competing for
shared resources (such as limited niche space). The parameters
for the healthy cells were taken from the literature as described
in Material and methods. The routinely used chemotherapeu-
tics D-arabinosyl cytosine (AraC) and Daunorubicin effect all
dividing cells during S-phase equally [40]. Therefore, our first
question to be answered was, whether it is possible to
assume an equal cell kill on both active HSCs and LICs
during chemotherapy and still achieve a leukaemic clearance.
Therefore, we defined all parameters for the leukaemic cells
to be the same as for the healthy ones, while only the leukaemic
activation rate (tAh ) was increased systematically. Figure 1b
shows the leukaemic burden at the end of five chemotherapy
cycles depending on the assumed value of leukaemic acti-
vation. The figure indicates that an elimination of the
measurable leukaemic burden (for a detection limit at 10�3%)
can be consistently explained even without differences in the
chemo-induced kill rate if an elevated activation of leukaemic
cells by a factor of 50 is assumed compared to healthy cells.
The exemplary time course in figure 1c confirms the rapid
decline of leukaemic cells during therapy, while the healthy
cells stay at a high level. This adheres to the general concept
that leukaemic cells are almost constantly proliferatingwithout
periods of extended quiescence and reflects the typical
leukaemic phenotype [41]. It shows further that this model is
able to reproduce a broad bandwidth of treatment-induced
reduction of leukaemic burden (reaching from 1 to 6 log-
reduction), which is also confirmed in different AML patients
during chemotherapy [31].
3.2. A simple mechanistic model is able to mimic
the molecular dynamics of most NPM1-mut
AML patients

After having demonstrated the general ability of the model to
mimic the leukaemic reduction during therapy we analysed
whether the model can also account for the interpatient-
variability in treatment response and dynamic behaviour.
For this analysis, 1567 NPM1/ABL measurements of 275
patients with a median number of five measurements per
patient were available. We assessed the ability of the model
to reflect a large variety of time courses, including remission
(n = 149), unresponsiveness to therapy (n = 57) and relapse
cases (n = 69). Therefore, we adjusted the individual acti-
vation rate of leukaemic cells tAl , as well as the individual
leukaemic proliferation rate pl for each patient’s time course
of leukaemic burden to find a patient specific parameter com-
bination that optimally describes the individual disease
dynamics, while all other parameters were kept constant.
In figure 2a,b, there are two examples of fitted patient time
courses along with the 95% CI for the optimal fit. These
examples illustrate that the model reproduces the character-
istic time course of AML patients presenting with either a
molecular relapse or a sustained molecular remission.
Although both patients received very similar chemotherapies
it can be seen that for the relapsing patient the NPM1 burden
is not eliminated after the therapy (figure 2a), while for the
other patient (figure 2b) the value is below the detection
limit. Hence, the slightly higher leukaemic activation (tAl )
and the lower leukaemic proliferation (pl) are sufficient to
explain the difference between relapse and sustained remis-
sion. Furthermore, we observed, that a high leukaemic
activation rate is linked to a fast decline of leukaemic
burden during therapy, an effect which is illustrated clearly
by the good responding patient in figure 2b. Therefore, we
conclude that this rate estimate can be interpreted as a
measure for the patient’s individual chemosensitivity. Also,
we observed, that a high leukaemic proliferation rate is
linked to fast leukaemic regrowth, which can be seen in the
poorly responding patient in figure 2a. From this, we con-
clude that the estimated leukaemic proliferation rate
provides a measure of the tumour intrinsic aggressiveness.

Looking in more detail how the different cell populations
within our model respond to the treatment (figure 2c,d), one
observes that the difference between a good and a poor therapy
response iswithin the leukaemic cell population, with the good
responder showing steeper decline during therapy as well as
slower regrowth afterwards. In the poor responder the
number of leukaemic cells in the model also drops to a vanish-
ingly low proportion of their initial numbers during treatment.
Nonetheless, a relapse occurs within a few months, because of
the fast regrowth. Furthermore, a decrease of the net prolifer-
ation rate during leukaemic regrowth after chemotherapy can
be observed (as the curves (LA and LQ) flatten after an exponen-
tial growth phase around 350 days after diagnosis). This
observation agrees with a recent study by Akinduro et al.
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where the authors analysed the growth of AML cells after
transplant in a mouse model [42]. The high number of quies-
cent HSCs is also in accordance with experimental data, as it
was recently shown that in a leukaemic mouse bone marrow
HSCs were mostly in a quiescent state [43]. This mechanism
is also referred to as ‘self-protection’ by which HSCs avoid
environmental effects in the quiescent state [44].
The quality of the individual fits was evaluated using
the MAE of each model fit, which corresponds to the
average residual between model fits and available data
points on the log10 scale. We observed that fits with a
MAE of up to 1 could quantitatively describe the
patient’s course of disease. Hence, at least 227 of the
275 patients can be sufficiently described by the
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individual model fits (figure 2e). Patients with an average
error of up to 1.5 log could still be qualitatively described
(n = 260).

Looking more closely at the 15 patients in which the
model could not optimally fit to the time course data, it
becomes clear that for most of them (10) the model as it is
cannot account for the strong leukaemic reduction found
in the data (example patient in the electronic supplementary
material, figure S3A). For two of the patients the very
fast regrowth is not reproducible with the model and
for three patients a chemo-resistance arises during treatment
of a relapse, which is not yet captured by our current
model (both can be seen in example patient in the electronic
supplementary material, figure S3B).

Taken together, we could show that the proposed simple
model is indeed able to reproduce most of the molecular be-
haviour of NPM1-mut AML patients, which can now be used
to analyse themolecular characteristics of the course of disease.

3.3. The model parameters are closely linked to time
course characteristics

Based on the patient individual model fits we obtain a
pair of model parameters (leukaemic activation rate tAl and
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leukaemic proliferation rate pl) for each specific patient time
course (distribution of the parameters in the cohort can be
found in the electronic supplementary material, figure S2).
In order to investigate how these model parameters correlate
with typical, clinically relevant characteristics of the NPM1/
ABL dynamics, we perform a systematic correlation analysis.
For a quantitative description of the relevant NPM1/ABL time
course characteristics, we use a parametrization based on the
elimination slope (α), the minimal NPM1 level after primary
treatment (induction + consolidation) within nine months
after treatment start (n), the maximum slope during relapse
phase (β) and the time until molecular relapse (dd) (see
figure 3a, [6]). Figure 3b provides a summary of pairwise
comparisons between the individually fitted model par-
ameters and the characteristics of treatment response.
Generally, for all characteristics but the relapse slope β, a sig-
nificant correlation with a correlation coefficient of up to 0.6
was found. Furthermore, the leukaemic activation (tAl ) and
leukaemic proliferation (pl) are conversely correlated with
all described time course characteristics. This means that
later molecular relapse is linked to increased leukaemic acti-
vation, but decreased leukaemic proliferation. This supports
the earlier conclusion, that the leukaemic activation is a
measure for chemosensitivity, whereas the leukaemic pro-
liferation provides a measure for the aggressiveness of the
disease. Furthermore, this anti-correlation with the time
course characteristics suggests that the ratio between the
two parameters (tAl /pl) reflects a good measure for the overall
severity of the patient’s individual course of disease.

From a clinical perspective, it is most important to know
whether and when a patient will relapse or not, and to
estimate the chance for relapse-free survival. Using the
approximated time point of molecular relapse as a surrogate
for haematological relapse (including irresponsiveness),
we studied whether a division into high and low ratio of
estimated leukaemic activation and leukaemic proliferation
(i.e. tAl =pl; threshold at tAl =pl ¼ 18, determined by maximizing
the difference between both groups, details in Material and
methods) can improve the current ELN risk stratification
(stratifying into high and low risk). Figure 3c,d supports
the notion that both variables are indeed correlated
with relapse-free survival. However, the differences in the
Kaplan–Meier plots indicate that this effect is considerably
more pronounced using the ratio of leukaemic activation
and proliferation. Comparing the HR between the two strati-
fications further supports this impression (HRratio = 5.5 (95%
CI: 2.8 to 10.4); HRELN = 1.9 (95% CI: 1.2; 2.8)). A clear differ-
ence in the time of relapse can be seen, when directly
comparing the molecular relapse times of the high and the
low parameter groups (figure 3e). Patients with a high par-
ameter ratio tAl =pl tended to relapse in median 15.3 months
later. Moving away from the division into two risk groups,
we apply a logistic regression approach to estimate to
which extent the estimated ratio (tAl =pl) correlates with the
probability to relapse within the first year after diagnosis
(figure 3f ). The odds ratio of 1.17 (95% CI: 1.11 to 1.22) indi-
cates that an increase in the ratio by 5 units more than
doubles the chance of experiencing a relapse within the first
year. However, the nearly linear relationship between the
ratio (tAl =pl) and the relapse risk indicates that the ratio
tAl =pl alone cannot reliably predict relapse for a particular
patient, although it can be useful in combination with other
measures to improve risk prediction.
3.4. Clinically relevant characteristics can be estimated
using the mathematical model

In the clinical context, the time of molecular relapse is a highly
relevant measure. For this reason, we compared the molecular
relapse time approximated from the data (dd, definition can be
found in Material and methods) with the estimated molecular
relapse time predicted by the model (dm). Figure 4a shows the
corresponding scatter plot for all patients for which a relapse
time within 2 years could be approximated (n = 175). As
expected, there is a good accordance for most patients, while
only for 13 out of the 175 patients (7%) the estimated molecular
relapse time from the model diverges more than half a year
from the molecular relapse time approximated from the data.
The mean divergence for all patients is 1.9 months. However,
the larger differences for some patients raises the question of
why themodel is incapable ofmimicking their course of disease.

Studying the 13 critical patients more closely it appears
that the model is insufficient to describe at least six of them
for technical reasons, i.e. very fast regrowth, very high che-
mosensitivity or stable tumour levels, that are not depicted
in the model (see example in figure 4c). To explain a stable
tumour level over a longer time (as in the example patient),
an additional intrinsic leukaemic suppression (such as an
immunological component) would be necessary in the
model. For the other seven patients with poor accordance
of the relapse times, it is the sparsity of the available measure-
ments that limits a reliable approximation of the relapse times
from the data. For the example patient in figure 4d, the
measurements suggest that a remission could not be reached,
but it is conceivable that the tumour burden decreases further
during the time of therapy. Therefore, it is very likely that a
temporary remission occurs at the end of therapy, as
suggested by the model fit. However, just from the available
data both conclusions cannot be excluded. Therefore, it is
possible that the estimated relapse time from the fit is closer
to the true relapse time than the approximation from the
data. Hence, we conclude that the model, although not able
to perfectly describe every single course of disease, might
indeed harbour additional information about the true
course between available measurements.

3.5. Predicting the relapse time based on the early
time course is not reliable

We could show that the ratio tAl =pl is correlated to the
approximated time of molecular relapse and suggested that the
model can help to estimate the particular time point of molecu-
lar relapse occurrence. Moving a step further, we raise the
question of whether an early (and clinically even more rel-
evant) prediction of the relapse behaviour can be made with
comparable precision. From a clinical perspective, nine
months after treatment start is a time point when a decision
about future treatment options for a particular patient is still
relevant. We chose this time point as a cut-off until which the
models were fitted, given there are at least three data points
within this time period (n = 89). Figure 4b compares the relapse
times predicted by the model based on these truncated time
courses with the approximated relapse time from the complete
data. It appears that reliable model predictions cannot be
achieved for the majority of cases. In fact, for more than 40%
of the patients the divergence is more than six months and
the mean difference over all patients is 6.6 months. This
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visualization indicates that a reliable prediction of relapse occur-
rence cannot be achieved if only sparse measurements during
the initial treatment response during the first nine months of
treatment are considered. However, it cannot be excluded
from our current study that additional diagnostic parameters
together with close-meshed short term time course data
convey more information for better predictions.
4. Discussion
In this study, we have developed and validated a simple
mechanistic, mathematical model that is able to correctly reflect
the individual molecular disease dynamics ofNPM1-mut AML
patients treated with cytotoxic drugs. As the model describes
AML treatment response as the result of the competition
between more proliferative leukaemic and less proliferative
healthy stem cells,we can use thismodel to functionally analyse
the underlying mechanisms and contribute to the understand-
ing of AML remission and relapse. In particular, we explicitly
assume that both healthy and leukaemic stem cells can be in a
quiescent and chemotherapy-insensitive state, while they are
equally targeted by chemotherapeutics if they are in an actively
cycling state. Based on these assumptions, we addressed the
question of how the individually fitted model parameters for
each patient are linked to clinically relevant measures, such as
the approximated time of molecular relapse.
The dynamics of AML pathogenesis and treatment have
attracted several modelling approaches. However, few
models explicitly address the competitive imbalance between
leukaemic and healthy haematopoiesis, and nearly none
are validated with large patient cohorts. To our knowledge,
only a study by Stiehl et al. [45] follows a similar competitive
approach in which the time after induction therapy is con-
sidered. However, this model focuses only on the time after
therapy, starting always with a state in which no leukaemic
cells are detectable. Thereby, patient-specific differences in
their therapy response and treatment regimen are neglected.
Considering earlier clinical findings [28], as well as our
patient-specific analysis, this restriction to homogeneous
treatment response limits the generalizability of this model-
ling approach.

The overall agreement between measured patient time
courses and the optimally adapted model dynamics allows
us to conclude that our model captures a set of features that
are characteristic for the response of AML patients to cytotoxic
treatment. Most importantly, this correspondence ensures us
that the general notion of haematopoietic or leukaemic stem
cells reversibly changing between states of differential prolif-
erative activity and chemosensitivity, can also be applied in
the context of AML. Strikingly, we did not even assume a
different chemotherapeutic effect for dividing cells, irrespec-
tive of whether they are leukaemic or healthy cells. This
reflects the mechanism of action inherent to S-phase specific
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drugs which effects all dividing cells. From our model
estimates we conclude that the unregulated and strongly
increased activation of leukaemic cells into the cell cycle is suf-
ficient to describe a preferential targeting of this population
and to explain the typical remission behaviour. And although
NPM1-mut AML is more chemosensitive than other AML
subtypes [46], the model could be transferred, as also unre-
sponsiveness to treatment can be captured by the model.
Furthermore, our simplistic model provides additional expla-
nations for other phenomena observed in AML, which are
not explicitly included in the model set-up. One of these
phenomena is that the leukaemic proliferation rate decreases
during regrowth [42]. This can be explainedwith the limitation
of the proliferation by the available stem cell niche capacity.
During leukaemic expansion the niche is rapidly filling, lead-
ing to a decreased proliferation. Another phenomenon is the
high number of quiescent HSCs in AML [43], which can be
explained by the fast activation of leukaemic cells into the
active state. Therefore, the limited niche capacity is rapidly
populated by leukaemic cells, pushing the healthy cells to
stay quiescent. This is also in agreement with findings by
Miraki-Moud et al. who showed that bone marrow failure in
AML is not caused by depleting HSC numbers but impairing
their differentiation [47]. Another phenomenon is the increased
proportion of active cells within the leukaemic bulk in patients
with a good therapy response compared to a poor therapy
response [48] (electronic supplementary material, figure S4).
This can be explained by the link between high leukaemic acti-
vation and a high chemosensitiviy. The higher leukaemic
activation leads to more active leukaemic cells, which can be
more easily killed by the treatment.

Furthermore, we could show that the two individually
fitted model parameters, namely the leukaemic activation rate
and the leukaemic proliferation rate, are closely linked to the
patients’ time course characteristics, e.g. the elimination slope,
theNPM1 burden after primary treatment and the time of mol-
ecular relapse. As the leukaemic proliferation is assumed to be a
measure for the tumour aggressiveness, we expected to see a
close link with the relapse slope β. However, only a weak corre-
lation was found. The reason for this can be found in the
imprecise estimation of the relapse slope on the basis of too
sparse data, as the strong correlation (ρ = 0.97) with the relapse
slope estimated from patients’ model time courses suggests.
The leukaemic activation rate, which is assumed to be a
measure for the patient’s chemosensitivity has a less clear
impact on the time course, as it has medium influence on all
characteristics, except for the relapse slope. In general, we
found, that both parameters combined as a ratio show the clo-
sest link to the time course characteristics. Using this ratio of
leukaemic activation and proliferation from themodel to separ-
ate the patients into two groups (high and low estimated ratio)
improves the risk stratification into favourable and intermediate
risk patients compared to the ELN scheme (figure 3d). This
supports our previous claim, that the close monitoring of mol-
ecular disease markers and incorporation of the molecular
disease dynamics in risk stratification schemes will improve
assessment of the severity of the patients’ AML [6].

Nonetheless, the inability of the model to reproduce all
patients’ time courses shows that the model lacks some further
regulations that cannot be neglected for some patients. Likely
candidates for such a regulation could be the immune
response, as suggested by an increased activity of natural
killer cells in patients with longer relapse free survival [49],
the emergence of new leukaemic clones at relapse with poss-
ibly different properties than the clone at diagnosis [50,51],
the differences in cellularity found in AML bone marrow [52]
or the ability of AML blast cells to de-differentiate [53].

When using the model to predict the individual patient’s
time of relapse based on the measurements of the first nine
months, the accuracy was rather limited. Therefore, we reason
that individual predictions of relapse times are only possible
with a high level of uncertainty, which is of limited value for
individual patients. Most prominently, it is the above-
mentioned inability of fitting some of the patients’ time courses,
which in most cases results from the sparseness of the data and
the individual measurement error, that render it difficult to
obtain a suitable approximation of the patients’ molecular
relapse time. A stringent MRD monitoring, as proposed by
Rautenberg et al. [54], would help to overcome these shortcom-
ings in the future. To our understanding, such an improvement
of the time course data will allow better model fits and can
contribute to better relapse predictions for AML patients.

In conclusion, we showed that the fitted parameters of a
simple mathematical AML treatment model can consistently
describe individual time course characteristics in the majority
of the analysed patients. Furthermore, the model contributes
to a better understanding of the complex dynamics and
mechanisms of AML treatment. Finally, we showed that
such a model-based understanding can further improve the
classification of disease severity and risk predictions.
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