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Summary
With mounting interest in translating genome-wide association study (GWAS) hits from large meta-analyses (meta-GWAS) in

diverse clinical settings, evaluating their generalizability in target populations is crucial. Here, we consider long-term survivors of

childhood cancers from the St. Jude Lifetime Cohort Study, and we show the limited generalizability of 1,376 robust SNP associa-

tions reported in the general population across 12 complex anthropometric and cardiometabolic phenotypes (n ¼ 2,231; observed-

to-expected replication ratio ¼ 0.70, p ¼ 6.2 3 10�8). An examination of five comparable phenotypes in a second independent

cohort of survivors from the Childhood Cancer Survivor Study corroborated the overall limited generalizability of meta-GWAS

hits to survivors (n ¼ 4,212; observed-to-expected replication ratio ¼ 0.55, p ¼ 5.6 3 10�15). Finally, in direct comparisons of sur-

vivor samples against independent equivalently powered general population samples from the UK Biobank, we consistently

observed lower meta-GWAS hit replication rates and poorer polygenic risk score predictive performance in survivor samples for mul-

tiple phenotypes. As a possible explanation, we found that meta-GWAS hits were less likely to be replicated in survivors who had

been exposed to cancer therapies that are associated with phenotype risk. Examination of complementary DNA methylation data in

a subset of survivors revealed that treatment-related methylation patterns at genomic sites linked to meta-GWAS hits may disrupt

established genetic signals in survivors.
Introduction

Genetic associations reported in recent meta-analyses of

genome-wide association studies (meta-GWAS) with large

general population study samples (n > 10,000) of pre-

dominantly European ancestry have proven to be highly

generalizable to other European cohorts.1 For example,

an examination of genome-wide significant associations

for 32 complex traits across five broad disease groups re-

ported a median replication rate of 84% in a general pop-

ulation cohort with >13,000 individuals of European

ancestry.2 As ever-larger meta-analyses continue to corrob-

orate the generalizability of previous GWAS findings

across European general population samples and discover

novel susceptibility loci, polygenic risk scores (PRS)—typi-

cally weighted sums of an individual’s risk alleles at

genome-wide significant SNPs identified in the litera-

ture—are increasingly viewed as viable genetic predictors

of disease risk. PRS based on genome-wide significant

SNPs have been shown to improve clinical prediction

models for cardiovascular disease risk and have been

used to support pharmaceutical interventions to target re-

ductions in low-density lipoprotein (LDL) levels in high-

risk individuals.3,4
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However, the generalizability of robust genetic associa-

tions reported by these large-scale meta-GWAS (hereafter

referred to as meta-GWAS hits) to specialized clinical

populations has not been established. Given that the

clinical utility of genetic risk prediction tools based on

published meta-GWAS findings, e.g., PRS, depends on

the extent to which these genetic associations are gener-

alizable to target populations, it is imperative to evaluate

the generalizability of established meta-GWAS hits in

specialized clinical populations. Childhood cancer survi-

vors are one such specialized clinical population that

would greatly benefit from genetic predictors of disease

risk. Today, approximately one in every 750 individuals

is a survivor of childhood or adolescent cancer in the

United States.5 This growing population of survivors dif-

fers markedly from the general population: studies have

consistently shown that survivors are at greater risk for

a wide range of serious health conditions earlier in life

relative to general population or sibling controls, in

part due to their exposures to treatments necessary to

cure pediatric cancers;5–9 this includes greater risk for

chronic cardiovascular and metabolic health conditions

that are among the leading causes of morbidity and mor-

tality among survivors.6,10–13
ada; 2Department of Epidemiology and Cancer Control, St. Jude Children’s

artment of Pediatric Medicine, St. Jude Children’s Research Hospital, Mem-

ospital, Memphis, TN 38105, USA; 5Division of Cancer Epidemiology and

t of Health and Human Services, Bethesda, MD 20892, USA; 6Institute for

Birmingham, AL 35294, USA; 7Department of Computational Biology, St.

r 1, 2020

mailto:cim1@ualberta.ca
https://doi.org/10.1016/j.ajhg.2020.08.014
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ajhg.2020.08.014&domain=pdf


Here, we report on the limited generalizability of 1,376

meta-GWAS hits (p < 5 3 10�8) identified from the litera-

ture for 12 anthropometric and cardiometabolic pheno-

types to adult survivors of childhood cancer from the St.

Jude Lifetime Cohort Study8 (SJLIFE; n ¼ 2,231, European

ancestry), a single-institution retrospective cohort study

with longitudinal follow-up of survivors with clinically as-

certained health outcomes. We evaluated the generaliz-

ability of meta-GWAS hits in a second cohort of survivors

for five phenotypes available for comparison from the

Childhood Cancer Survivor Study (CCSS; n ¼ 4,212, Euro-

pean ancestry), a multi-center study with self-reported

health conditions.We also comparedmeta-GWAS hit repli-

cation frequencies and corresponding PRS predictive per-

formance for phenotypes that were evaluable in both

SJLIFE and CCSS in equivalently powered independent

general population samples. We found that depletions of

replicated meta-GWAS hits for some phenotypes were

exacerbated in survivor subgroups exposed to certain can-

cer treatments, particularly when treatments had larger

contributions to phenotype variation. Lastly, we conduct-

ed ancillary analyses to explore the role of DNA methyl-

ation, an epigenetic alteration that is influenced by both

inherited genetic variation and environmental factors.14

Among the 236 survivors in SJLIFE with both germline

methylome and genotype data, we found that cancer treat-

ments, particularly radiation therapy (RT), may obscure

some robust meta-GWAS SNP associations in survivors.
Subjects and Methods

Compiling SNP Associations with Complex Traits and

Diseases
We selected 12 complex traits and diseases that were: (A) related to

cardiovascular andmetabolic disease; (B) ascertained during SJLIFE

study visits; and (C) examined in at least one recent (i.e., published

after 01/01/2008) meta-GWAS with >10,000 participants of Euro-

pean ancestry. The 12 selected phenotypes included three anthro-

pometric traits (height, body mass index [BMI], and waist-to-hip

ratio [WHR]); two blood pressure traits (systolic [SBP] and diastolic

[DBP]); four serum lipid traits (high-density lipoprotein levels

[HDL], low-density lipoprotein levels [LDL], total cholesterol

levels [TC], and triglycerides [TG]); and three cardiometabolic dis-

ease outcomes (coronary artery disease [CAD], obesity, and type 2

diabetes [T2D]). For each of the selected phenotypes, we searched

all reports available in the NHGRI-EBI GWAS Catalog15 (accessed

11/20/2017). Using the following selection criteria, we retained

any study that: (1) investigated single SNP associations with

selected phenotypes; (2) included a replication analysis for novel

findings; and (3) had discovery and/or replication sample size(s)

with>10,000 participants of European ancestry (Figure S1). We re-

viewed each of the compiled studies to confirm the set of ‘‘index

SNPs’’ for replication testing, i.e., published SNPs with genome-

wide significant associations (p < 5 3 10�8), and their respective

effect sizes, standard errors, p values, and effect alleles. To address

the potential effects of ‘‘Winner’s curse’’ on replication power cal-

culations, reported effect sizes and p values for each published SNP

association were taken from the combined analysis of discovery
The America
and replication samples from the largest current reference meta-

GWAS for the phenotype; if combined analysis results were not

available, effect sizes were taken from the replication analysis.

When necessary, we transformed effect sizes reported in different

units across papers for comparability.
Description of Study Cohorts
This study was approved by the Institutional Review Boards at St.

Jude Children’s Research Hospital (SJCRH; Memphis, Tennessee)

and all participating study centers. All study participants provided

informed consent. Brief descriptions of the two cohorts included

in our study are provided below.

SJLIFE Cohort

Initiated in 2007, the St. Jude Lifetime Cohort Study16 (SJLIFE) is

an ongoing retrospective cohort study dedicated to the longitudi-

nal study of a wide-ranging set of health outcomes in survivors

treated for pediatric cancer at SJCRH. The details of this study

have been described previously.16 In brief, eligibility criteria

include treatment for pediatric cancer at SJCRH and R5 years sur-

vival since diagnosis. Participants included in the current study

wereR18 years of age, had no history of allogeneic stem cell trans-

plantation, participated in specimen biobanking, and had

completed at least one study visit as of June 30, 2015.

SJCRH study visits include medical evaluations (with core labo-

ratory and/or diagnostic studies), assessments of self-reported out-

comes, and examinations of neurocognitive function and physical

performance. Data for demographics, treatments (chemothera-

peutic agent cumulative dosages, field and doses of RT, and surgi-

cal interventions), and primary cancer diagnosis were obtained

from medical record review. Quantitative trait measurements

were taken from the participant’s most recent SJLIFE study visit.

Height and weight weremeasured using a stadiometer and an elec-

tronic scale (Scale-Tronix). Waist and hip circumferences were

taken with a Gulick tape measure. BMI values were adjusted for

amputation, and obesity was defined as BMI R 30 kg/m2. Average

SBP and DBP (mmHg) values taken with a calibrated sphygmoma-

nometer after an initial 5-min rest were used for participants with

at least twomeasurements. Fasting blood lipids (mg/dL), including

HDL, calculated LDL, TC, and TG, were measured using an enzy-

matic spectrophotometric assay (Roche Diagnostics). CAD and

diabetes mellitus were clinically assessed and graded according

to the National Cancer Institute (NCI) Common Terminology

Criteria for Adverse Events (CTCAE) v4.03 classification sys-

tem.17 For CAD, use of medications to treat angina symptoms or

evidence of abnormal cardiac enzymes, angina and ischemic heart

disease, myocardial infarction, percutaneous transluminal coro-

nary angioplasty (PTCA), or coronary artery bypass grafting

(CABG) was used to define cases. Participants with symptomatic

diabetes or use of oral medications or insulin to treat diabetes

were treated as T2D cases given that >79% of cases in survivors

can be classified as T2D.18 Resolved episodes occurring immedi-

ately after treatment or pregnancy were excluded.

CCSS Cohort

The Childhood Cancer Survivor Study19 (CCSS) is a retrospective

cohort study of 5-year childhood cancer survivors with prospec-

tive follow-up. Descriptions for CCSS participant eligibility and

study design have been published in detail elsewhere.20,21 CCSS

participants included in this analysis were <21 years of age at pri-

mary cancer diagnosis between January 1, 1970 and December 31,

1986; received treatment for pediatric cancer at one of 26 partici-

pating study institutions in North America; responded to at least
n Journal of Human Genetics 107, 636–653, October 1, 2020 637



one CCSS questionnaire covering demographics, health condi-

tions, health-related behaviors, and health care use; and provided

a whole blood, saliva, or buccal sample for DNA sequencing.

All phenotypes assessed in CCSS (height, BMI, obesity, CAD,

and T2D) were self-reported or reported by family proxies for sur-

vivors who could not complete surveys, were deceased, or were

<18 years old. For CAD and T2D phenotypes, questionnaire re-

sponses related to these conditions, including relevant medica-

tion use, were graded using CTCAE v4.03. Information related

to chemotherapy, radiotherapy, and surgery was abstracted

from medical records. Participants with height values above or

below 54 standard deviations (SDs) of the sample mean or

improbable BMI values (<10, >100 kg/m2) were excluded. All

exclusion criteria, adjustment covariates, and case/phenotype

definitions were consistent with those applied to the SJLIFE

analysis.
Genotype Data
Our analysis was restricted to the common SNPs (R1% effect allele

frequency [EAF]) reported to have a genome-wide significant asso-

ciation (p < 5 3 10�8) with phenotypes in selected meta-GWAS.

We also considered best common SNP proxies, or SNPs in high

linkage disequilibrium (LD) with corresponding index SNPs in

the European 1000 Genomes22 (1000G EUR) populations likely

to fall in the same LD block.

SJLIFE Genotype Data

The SJLIFE genotype data used in this analysis were collected as a

part of larger effort to sequence whole genomes of SJLIFE partici-

pants.23 Comprehensive details of DNA sample collection, extrac-

tion, sequencing, quality control, and variant mapping have been

described previously.23,24 In brief, sequencing for 3,006 samples

was completed at the HudsonAlpha Institute for Biotechnology

Genomic Services Laboratory (Huntsville, Alabama) using the Illu-

mina HiSeq X10 platform to yield 150 base pair paired-end reads

with an average coverage per sample of 36.83. Sequenced data

were aligned to the GRCh38 human reference using BWA-ALN

v0.7.12.25 Variant calls were processed with GATK v3.4.026 and

BCFtools.27 PLINK v1.90b28 and VCFtools v0.1.1329 were used to

perform additional quality control, applying the following sample

exclusion criteria: excess missingness (R5%), cryptic relatedness

(pi-hat > 0.25), and excess heterozygosity (>3 SD). Variants with

Hardy Weinberg Equilibrium (HWE) p < 1 3 10�10 and >10%

missingness across samples were removed, leaving approximately

84.3 million autosomal single-nucleotide variants (SNVs) and

small insertions and deletions (indels) in 2,986 samples. We

then restricted our sample to the 2,364 participants that were

identified as European (see Ancestry below).

CCSS Genotype Data

Details describing methods used to generate genotype data for the

CCSS cohort can be found in previous papers.30,31 To summarize,

DNA was extracted from whole blood, saliva, or buccal samples

and genotyped at the Cancer Genomics Research Laboratory of

the National Cancer Institute (Bethesda, Maryland) using the Illu-

mina HumanOmni5Exome array. Genotyping Module v1.9 (Illu-

minaGenomeStudio software v2011.1) was used to call genotypes.

The following per-sample exclusion criteria were applied: R8%

missingness, heterozygosity <0.11 or >0.16, X chromosome het-

erozygosity >5.0% for males or <20.0% for females, and iden-

tity-by-descent sharing >0.70. Genotypes were then imputed us-

ing Minimac332 and the Haplotype Reference Consortium r1.1

reference panel for the 5,739 samples meeting quality control
638 The American Journal of Human Genetics 107, 636–653, Octobe
thresholds. After we retained 4,513 survivors of European ancestry

(see Ancestry below) with no overlap with SJLIFE, downstream an-

alyses excluded SNPs with minor allele frequency <1% and miss-

ingness >5% and only considered SNPs with high imputation

quality (r2 R 0.8).

Ancestry

Procedures to identify the ancestry of SJLIFE and CCSS samples

have been described elsewhere.24 In brief, PLINK v1.90b was

used to perform an EIGENSTRAT-based Principal Component

Analysis33 for each cohort by combining the cohort samples

with samples from 1000G global reference populations. Cohort

samples with principal component scores within 3 SD of the

means of the first two principal components in the 1000G EUR

populations were considered to be of European ancestry.
SJLIFE DNA Methylation Data
Whole blood DNA methylation was measured in 300 survivors in

SJLIFE with a range of treatment histories through the use of the

InfiniumMethylationEPIC Array (Illumina) according to theman-

ufacturer’s protocols. Genomic DNA (500 ng per sample; previ-

ously extracted for whole-genome sequencing) was treated with

bisulfate using the Zymo EZ DNA Methylation Kit under the

following thermos-cycling conditions: 16 cycles: 95�C for 30 s,

50�C for 1 h. Following bisulfite treatment, DNA samples were de-

sulphonated, column purified, then eluted using 12 ml of elution

buffer (Zymo Research). Bisulfite-converted DNA (4 ml) was then

processed by following the Illumina Infinium Methylation Assay

protocol, which includes hybridization to MethylationEPIC Bead-

Chips, single-base extension assay, and staining and scanning us-

ing the Illumina HiScan system. The raw intensity data were ex-

ported from the Illumina Genome Studio Methylation Module

as IDAT files for further downstream analysis.

Raw intensity data were processed with the ‘‘minfi’’ R package,34

including sample and probe quality controls, background correc-

tion, and normalization. Probes were mapped to the GRCh38

build to identify and remove cross-reactive and non-specific

probes. We eliminated samples with a low call rate (<95% probes

with a detection p value < 0.01) or sex discrepancies, along with

probes located on sex chromosomes, with low detection rates

(<95%), or with SNPs at CpG sites. A total of 689,742 high-quality

probes were retained for 300 samples after preliminary quality

control. Data from the BIOS Consortium35 (BIOS QTL) were

used to identify significant (false discovery rate [FDR] < 0.05) cis-

methylation quantitative trait loci (cis-meQTLs,%250 kb between

SNP and CpG) linked to index SNPs; of the 15,481 probes in BIOS

QTL contributing to significant cis-meQTLs with index SNPs,

11,458 probes were available after quality control.
SNP-Phenotype Association Testing and Replication

Enrichment Analysis
We conducted association tests for index SNPs by using

phenotype definitions, exclusion criteria, and adjustment co-

variates that were consistent with the compiled meta-GWAS

(Table 1). Linear or logistic regression models were used for as-

sociation testing using R v3.4.1. All association tests assumed

an additive model of genetic inheritance. We used the first

10 principal components as covariates in all association ana-

lyses to account for population stratification. SNP-phenotype

associations with p values <0.05 and the same direction of ef-

fect as the reference literature were considered to be successful

replications. While we also evaluated replications under
r 1, 2020



Table 1. Summary of Methodological Components for Each SNP-Phenotype Association Analysis in SJLIFE

Phenotype
Phenotype
Transformationa

Unit or
Definitiona

GWAS Adjustment
Covariatesa Childhood Cancer Survivor Adjustment Covariatesb Exclusionsa Reference Meta-GWASc (PMID)

Anthropometric

Height sex-standardized
Z score

cm age, ancestry surgical procedures affecting spinal growth; scoliosis;
hypothalamic-pituitary axis tumors; cranial or
craniospinal radiation

genetic syndromes,
health conditions
affecting stature

25282103, 20881960, 19570815,
19343178, 18391952, 18391951, 18391950

Body mass
index (BMI)

inverse normal
transformation
of residuals

kg/m2; BMI
adjusted for
amputation

age, age2, sex,
ancestry

hypothalamic-pituitary axis tumors; cranial
radiation; glucocorticoids

none 25673413, 24064335, 23669352, 22982992,
20935630, 19079261

Waist-to-hip
ratio (WHR)

inverse normal
transformation of
sex-standardized residuals

ratio of waist
and hip
circumference
(cm)

age, age2, BMI,
ancestry

hypothalamic-pituitary axis tumors; cranial
radiation; glucocorticoids

none 28443625, 25673412, 20935629

Blood Pressure

Systolic blood
pressure (SBP)

þ15 mmHg with use
of blood pressure
lowering medications

mmHg age, age2, sex, BMI,
ancestry

abdominal, pelvic radiation prior myocardial
infarction or heart
failure

28135244, 28739976, 26390057, 21909115,
19430483, 19430479

Diastolic blood
pressure (DBP)

þ10 mmHg with use
of blood pressure
lowering medications

mmHg age, age2, sex, BMI,
ancestry

abdominal, pelvic radiation prior myocardial
infarction or heart
failure

same as SBP

Blood Lipids

High-density
lipoprotein (HDL)

inverse normal
transformation
of residuals

mg/dL age, age2, sex,
ancestry

hypothalamic-pituitary axis tumors; cranial radiation use of lipid-
lowering
medications

24097068, 19060906

Low-density
lipoprotein (LDL)

inverse normal
transformation
of residuals

mg/dL age, age2, sex,
ancestry

hypothalamic-pituitary axis tumors; cranial radiation use of lipid-
lowering
medications

same as HDL

Total cholesterol
(TC)

inverse normal
transformation of
residuals

mg/dL age, age2, sex,
ancestry

hypothalamic-pituitary axis tumors; cranial radiation use of lipid-
lowering
medications

24097068

Triglycerides (TG) inverse normal
transformation of
residuals

mg/dL age, age2, sex,
ancestry

hypothalamic-pituitary axis tumors; cranial radiation use of lipid-
lowering
medications

same as HDL
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phenotype-specific Bonferroni-corrected p value thresholds, we

regarded the p value threshold of 5% as the primary definition

for replications.

In SJLIFE, we also considered whether reported index SNPs

were in high LD with potentially ‘‘causal’’ SNP candidates that

would better capture the phenotype association at a given LD

block. To this end, we tested all best SNP proxies for non-repli-

cated SNP associations, where best proxies for an index SNP

were defined as SNPs in strong LD with the index SNP in

1000G EUR (r2 > 0.8) within a 5-kb window of the index SNP

(based on a median LD block size of �2.5 kb in 1000G EUR).36

Given that non-replication rates from clusters of high-LD SNPs

without replication signals could inflate replication depletions,

we also assessed replication rates for a pruned set of independent

index SNPs (retaining the SNP with the highest EAF among SNPs

in high LD or r2 > 0.8 within a 500-kb window in 1000G EUR), as

well as a restricted set of SNPs from a single meta-GWAS with the

largest sample size.

We used QUANTO v1.2.437 to estimate the power for replicating

each reported SNP association in SJLIFE and CCSS. Power calcula-

tions assumed either a 5% or Bonferroni-corrected significance

threshold, cohort sample sizes and case-control ratios, and an ad-

ditive genetic model. Phenotype-specific power curves for our

main analysis accounting for a range of effect allele frequencies

and effect sizes are provided in Figures S2–S5.We used these power

calculations to estimate the replication power for each SNP-

phenotype association, assuming effect sizes in reference GWAS

and the effect allele frequency observed in the survivor cohorts.

We used the same procedure to also estimate replication power

for each SNP-phenotype association in treatment-exposed and

treatment-unexposed subsamples in SJLIFE, where treatment

exposure was defined as any exposure to one or more curative

agents for pediatric cancer previously associated with the specific

phenotype (treatments listed in Table 1).

In order to evaluate whether the observed replication fre-

quencies were greater or less than expected, we used a Poisson

generalized estimating equations (GEE) regression approach with

robust variance estimation.38 We estimated the expected number

of replications for each phenotype based on the assumption that

each SNP replicationmay be treated as a Bernoulli randomvariable

with a replication probability equal to its estimated replication po-

wer, and under Le Cam’s theorem,39 the sum of independent Ber-

noulli variables that are not identically distributed approximately

follows a Poisson distribution. The model assumed a log-link of

the following form:

logðObsÞ¼ logðExpÞ þ b0

where Obs and Exp were observed replications and the expected

replication probability, respectively. The exponentiated b0 esti-

mate served as the replication enrichment ratio (RER), or the ratio

of observed to expected replication frequencies.

Although we computed phenotype-specific RERs in SJLIFE and

CCSS separately, we also calculated combined cohort RERs by

combining association test results for the evaluable phenotypes

in both studies by using the fixed-effects inverse variance-

weighted meta-analysis method implemented in METAL.40
Comparison of RERs and PRS Predictive Performance in

Comparably Powered General Population Samples
We evaluated meta-GWAS hit replication rates and corre-

sponding RER estimates in comparably powered general
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population samples for four distinct phenotypes (height,

obesity, T2D, and CAD) that were evaluable in both SJLIFE

and CCSS, using data from the UK Biobank (UKBB), an exten-

sive genetic and phenotypic database with �500,000 individ-

uals across the United Kingdom aged 40–69 years at recruit-

ment.41 Specifically, we restricted analyses to 207,604

participants of White British genetic ancestry in the UKBB

phase 2 genotype data release, because these participants

had no overlap with SJLIFE or CCSS or with samples in

compiled reference meta-GWAS. Determination of genetic

ancestry and genotype imputation using the Haplotype Refer-

ence Consortium, UK10K, and 1000 Genomes panels for

UKBB data were performed centrally.41 As previously re-

ported,41 additional exclusions for excess heterozygosity, geno-

type missingness, sex discordance, putative sex chromosome

aneuploidy, or withdrawal of informed consent were applied.

Nearly all (�99%) SNPs were available for comparison in the

UKBB data, and all evaluated SNPs were of high imputation

quality (INFO > 0.8). Phenotype ascertainment in the UKBB

data consisted of: (A) measured height; (B) measured BMI to

define obesity controls and cases (BMI R 30 kg/m2); (C)

self-reported diabetes to define T2D cases; and (D) algorithmi-

cally defined myocardial infarction to define CAD cases based

on self-report or hospitalization or death records, including

ICD-9 codes 410.x, 411.0, 411.1, 411.8, 412.x, or 429.79 or

ICD-10 codes I21.x, I22.x, I23.x, I24.1, or I25.2.

For comparably powered UKBB samples, we took 100

random samples from the UKBB release 2 data for each

phenotype that had: (1) equal sample sizes (and equal case-

control ratios for disease phenotypes) to SJLIFE and CCSS co-

horts; and (2) <1% absolute difference in the median EAF be-

tween GWAS-reported EAFs and sample EAFs. We then con-

ducted power calculations and association testing using the

same methods (e.g., phenotype transformations, statistical

models) applied in the survivor cohorts (Table 1) for each

‘‘pseudo-survivor’’ sample drawn from the UKBB data. Median

and interquartile range (IQR) statistics were examined for the

UKBB pseudo-survivor sample RERs. To calculate phenotype-

specific PRS in the UKBB samples and SJLIFE and CCSS co-

horts that could be compared to sample RERs, we used sum-

mary statistics for genome-wide significant SNPs included in

our primary analysis that were reported in the largest current

study (n > 100K) among the reference meta-GWAS for

height,42 obesity,43 T2D,44 and CAD45 to generate a 358-SNP

polygenic risk score for height, a 61-SNP score for obesity, a

63-SNP score for T2D, and a 52-SNP score for CAD using

PLINK v1.90b.28 To facilitate cross-study comparisons of PRS

performance, we examined the mean change in the SD unit

or log(odds ratio [OR]) per unit increase in PRS as a predictive

performance metric.
Ancillary Analyses: Epigenetic and Functional

Annotation Enrichments
We evaluated external epigenetic and functional annotations

for index SNPs by using resources provided by the Roadmap

Epigenomics Mapping Consortium46 (REMC), the Genotype-

Tissue Expression Project47 (GTEx Analysis v7), Reactome,48

and BIOS QTL.35 For each of 127 cell types or cell lines, we

compared the frequency of enhancer/promoter state overlap

(from 15-state ChromHMM) in the set of SNPs with replicated

associations (‘‘replicated SNPs’’) against the SNPs without
The America
replicated associations (‘‘non-replicated SNPs’’) in our SJLIFE

main analysis with two-sided Fisher’s exact tests. Using

GTEx, we counted the number of significant cis-expression

quantitative trait loci (cis-eQTLs; SNPs within 51 Mb of tran-

scription start sites, FDR % 0.05) for replicated SNPs and non-

replicated SNPs and used a two-sided Fisher’s exact test to

investigate enrichments in gene expressions among replicated

SNPs for each of the 48 available cell or tissue types. Lastly,

we compiled non-overlapping gene sets for replicated and

non-replicated SNPs to conduct a biological pathway enrich-

ment analysis with geneSCF v1.149 and Reactome gene

pathway ontologies. Genes were mapped to SNPs based on

co-location in gene bodies defined by RefSeq50 gene models.

For each biological pathway, the number of genes in repli-

cated and non-replicated SNP groups with a specific ontology

was compared to the number of genes with the same ontology

in all remaining genes in the genome. Top biological pathway

enrichments were determined using FDR-adjusted p values

from two-sided Fisher’s exact tests.
Cis-meQTLs and Treatment-Methylation Associations
DNA methylation at specific CpG sites has been linked to both

GWAS-identified disease variants35 and many complex traits

and diseases.51 As such, significant (FDR < 5%) BIOS QTL cis-

meQTLs may reflect molecular mechanisms contributing to

phenotypes. We validated significant (FDR < 5%) cis-meQTLs re-

ported in BIOS QTL for compiled SNPs in SJLIFE participants

with methylation and genotype data by testing associations be-

tween methylation M-values (log2-transformed ratio of the

methylated to unmethylated probe intensities) at quality-

controlled CpG sites and SNP genotypes assuming an additive

inheritance model using linear regression, adjusting for sex,

age, and genetic ancestry. Because additional analyses to eval-

uate potential confounding by inter-individual differences in

blood cell composition revealed no significant differences in

cell type distributions across samples, no adjustment covariates

for blood cell composition were considered. Established cis-

meQTLs (i.e., BIOS QTL with FDR < 5%) were considered vali-

dated in SJLIFE if associations had p < 0.05 and the same direc-

tion of allelic effect.

Recent studies have also shown that cancer therapies can induce

persistent changes in DNA methylation in diverse cells and tis-

sues.52–58 The set of BIOS QTL cis-meQTLs validated in SJLIFE sur-

vivors effectively nominates meta-GWAS SNPs and corresponding

CpGs that would hypothetically be more likely to employ a DNA

methylationmechanism to contribute to phenotypes in survivors,

and as a consequence, identifies SNPs and corresponding CpGs

that are plausible targets for modifying treatment-methylation ef-

fects. Using two-sided Fisher’s exact tests, we tested for enrichment

of validated cis-meQTLs, first among non-replicated SNPs and

then among groups of SNPs identified a priori as ‘‘treatment-sensi-

tive’’ (not replicated in our main analysis, but replicated in sam-

ples without treatment exposures) and ‘‘treatment-insensitive’’

(replicated in treatment-unexposed and treatment-exposed

samples).

After aligning the directionality of cis-meQTLs reported in

BIOS QTL with GWAS-reported allelic effects on phenotypes

for each SNP, we considered observations of treatment-methyl-

ation associations with directions of effect that were discordant

with SJLIFE-validated cis-meQTL associations (p < 0.05) as po-

tential indicators of disrupted cis-meQTL effects on phenotypes
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Table 2. Descriptive Statistics for Phenotypes, Treatments, and Demographic Variables in SJLIFE and CCSS

Phenotypes/Variables Unit SJLIFE n SJLIFE % or Median (IQR) CCSS n CCSS % or Median (IQR)

Demographic Variables

Sex

Male % 2,231 53.0% 4,513 48.1%

Female % 2,231 47.0% 4,513 51.9%

Age years 2,231 35.8 (13.3) 4,513 40.9 (12.9)

Treatments (any exposure)

Radiation, any type % 2,231 58.3% 4,513 61.9%

Chemotherapeutic agent, any type % 2,231 85.3% 4,513 73.9%

Cranial radiation % 2,199 31.0% 4,227 30.9%

Cardiac-directed radiation % 2,199 22.9% 4,224 26.7%

Abdominal radiation % 2,199 20.0% 4,226 25.9%

Pelvic radiation % 2,199 17.5% 4,226 20.5%

Anthracyclines % 2,231 57.9% 4,290 35.8%

Glucocorticoids % 2,231 47.8% 4,513 43.4%

Platinums (cisplatin, carboplatin) % 2,227 10.3% 4,513 4.4%

Phenotypes

Anthropometric

Height cm 2,025 168.7 (14.6) 4,212 168.0 (18.0)

Body mass index kg/m2 2,229 27.6 (9.3) 4,208 26.1 (7.3)

Waist-to-hip ratio ratio 2,204 0.9 (0.1) – –

Blood Pressure

Systolic blood pressure mmHg 2,020 123.0 (17.7) – –

Diastolic blood pressure mmHg 2,020 75.5 (13.0) – –

Serum Lipids

High-density lipoprotein mg/dL 1,984 49.0 (20.0) – –

Low-density lipoprotein mg/dL 1,964 107.0 (46.0) – –

Total cholesterol mg/dL 1,997 183.0 (50.0) – –

Triglycerides mg/dL 1,997 100.0 (80.0) – –

Cardiometabolic Disease

Coronary artery disease % cases 2,079 4.7% 4,036 4.1%

Obesity % cases 2,229 38.3% 4,208 25.8%

Type 2 diabetes % cases 2,112 7.1% 4,207 7.0%
in survivors. We examined directionally discordant cis-meQTLs

and treatment-methylation associations for CpGs linked to

non-replicated SNPs (‘‘non-replicated CpGs’’) and replicated

SNPs (‘‘replicated CpGs’’) for the cis-meQTLs we validated in

SJLIFE. Among the eight treatment types we considered (cranial,

chest, abdominal, and pelvic radiotherapies; anthracycline,

corticosteroid, cisplatin, and carboplatin chemotherapies), we

limited our analysis to seven treatment types where >5% of

the experimental sample was exposed. To ascertain the direction

of cis-meQTLs at CpGs with multiple associated SNPs without
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arbitrarily assigning a ‘‘best’’ cis-meQTL (i.e., smallest p value),

we used simple majority voting classification to determine the

direction of the cis-meQTL set for such CpGs. For each treat-

ment type, treatment dose associations with M-values at CpGs

contributing to SJLIFE-validated cis-meQTLs were tested with

linear regression, adjusting for age and sex. We compared the

discordance between directions of cis-meQTLs and treatment-

methylation associations among replicated and non-replicated

CpGs using a two-sided Fisher’s exact test. For additional details,

see Supplemental Methods.
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Results

Meta-GWAS Hits Show Limited Generalizability to

Childhood Cancer Survivors

Using the National Human Genome Research Institute

(NHGRI) and European Bioinformatics Institute (EBI)

GWAS Catalog,15 we identified 149 GWAS for 12 anthropo-

metric and cardiometabolic phenotypes, including height,

BMI, WHR, blood pressure (SBP, DBP), blood lipid levels

(HDL, LDL, TC, TG), obesity, CAD, and T2D. After review-

ing the literature against criteria for relevance, ancestry,

and study suitability, we compiled 1,415 genome-wide sig-

nificant (p < 5 3 10�8) SNP-phenotype associations from

46 selected GWAS featuringmeta-analyses with replication

studies that included >10,000 participants of predomi-

nantly European ancestry (Figure S1). We limited our anal-

ysis to the 1,376 SNP-phenotype associations (97.2%) that

could be directly tested using 1,231 quality-controlled

SNPsmeasured in SJLIFE. Of these, 70.4% (969 SNP-pheno-

type associations) were from meta-analyses with n >

100,000.

Using the phenotype definitions, statistical models, and

exclusion criteria described in reference GWAS (Table 1),

we primarily aimed to replicate the 1,376 robust meta-

GWAS hits in 2,231 adult long-term (R5-year) survivors

of childhood cancer of European ancestry in SJLIFE. Rele-

vant descriptive statistics for the SJLIFE cohort are pro-

vided in Table 2. Most survivors had been exposed to at

least one type of chemotherapeutic agent (85.3%) and

over half (58.3%) had received RT. There was high corre-

spondence between EAFs reported in the reference GWAS

and SJLIFE, with a median absolute difference of 0.99%

(IQR ¼ 0.47%–1.71%).
Of the 1,376 meta-GWAS hits, we expected to replicate

�268 SNP-phenotype associations across all phenotypes

based on power (replication was defined by association

test p < 0.05, with same directions of effect in literature).

We replicated 189 SNP-phenotype associations (replica-

tion rate ¼ 13.7%) with models adhering to reference

GWAS, and 185 SNP-phenotype associations (replication

rate ¼ 13.4%) after adjusting for additional covariates

relevant to survivors (i.e., cancer treatment exposures,

Table 1). All SJLIFE replication results are listed in Table

S1. The RER (the ratio of observed-to-expected meta-

GWAS hit replication frequencies) across all 12 pheno-

types was 0.70 (95% confidence interval [CI]: 0.62–

0.80, p ¼ 6.2 3 10�8) when we used models adjusting

for reference GWAS covariates only, indicating that the

overall number of meta-GWAS hit replications observed

in SJLIFE was significantly less than expected (Table

S2). Significant replication depletion was also observed

across all phenotypes when we used models adjusting

for additional covariates relevant to survivors (RER ¼
0.69, 95% CI: 0.61–0.78, p ¼ 1.2 3 10�8). While three

phenotypes (WHR, T2D, TG) showed no evidence of

replication depletion (RER > 1), the remaining nine phe-

notypes had either significant depletions of meta-GWAS
The America
hit replications (RER < 1 and p < 0.05 for height, BMI,

DBP, and obesity) or suggestive evidence of replication

depletions (RER < 1 and p < 0.2 for SBP, HDL, LDL,

TC, and CAD) (Figure 1, Table S2).

Robustness of the Limited Meta-GWAS Hit

Generalizability Finding in Survivors

We explored several alternative evaluation strategies. First,

we examined an ‘‘extended’’ replication strategy, under the

scenario in which all 1,187 non-replicated robust meta-

GWAS hits are weak representatives for nearby causal vari-

ants but are in high LD with causal variants in the same LD

block. We re-tested non-replicated meta-GWAS hits by us-

ing best SNP proxies for reported index SNPs, where best

proxies were defined as SNPs in high LD with the index

SNP (r2 > 0.8 in 1000G EUR) that were likely to fall in

the same LD block.36 Although we re-tested 812 non-repli-

cated SNP associations that each had at least one plausible

proxy (median ¼ three proxies per index SNP), only 12

additional meta-GWAS hits were replicated (overall RER

¼ 0.75, 95% CI: 0.66–0.85, p ¼ 4.1 3 10�6) (Table S3). In

order to avoid bias in replication rate estimates, we also as-

sessed replication rates for a set of independent SNP-

phenotype associations by limiting the SNP set to those

with the highest EAF in SJLIFE among clusters of SNPs in

high LD (r2 > 0.8, 500-kb window in 1000G EUR) for

each phenotype. The same nine phenotypes continued

to show significant or suggestive replication depletion

whenwe used the pruned SNP-phenotype associations (Ta-

ble S4). We further restricted the set of evaluated SNP-

phenotype associations to those reported from the single

largest meta-analysis (all with n> 100K) for a given pheno-

type, and we continued to observe significantly fewer rep-

lications than expected (overall RER ¼ 0.77, 95% CI: 0.66–

0.90, p ¼ 8.8 3 10�4) (Table S5). Finally, we examined rep-

lications of meta-GWAS hits under strict replication p

value thresholds corrected for multiple testing. Although

replication of �47 SNP-phenotype associations was ex-

pected under Bonferroni-corrected p value thresholds,

only 25 SNP-phenotype associations were replicated

whenwe usedmore stringent p value thresholds (Table S6).

Confirmation of the Limited Generalizability of Meta-

GWAS Hits in a Second Independent Cohort of Survivors

To assess our findings from SJLIFE in an independent

cohort, we conducted a second analysis in survivors from

CCSS. We examined five self-reported phenotypes avail-

able in CCSS that corresponded with our SJLIFE analysis

(height, BMI, CAD, obesity, and T2D) in 4,513 survivors

whose genotype data was available. Descriptive statistics

for the CCSS study sample are provided in Table 2. Similar

to those in the SJLIFE study, most CCSS survivors had

been exposed to at least one type of chemotherapeutic

agent (73.9%) or RT (61.9%). With power calculations

for replication accounting for CCSS sample sizes and

EAFs, we expected to replicate �244 meta-GWAS hits. A

total of 135 SNP-phenotype associations were successfully
n Journal of Human Genetics 107, 636–653, October 1, 2020 643



Figure 1. Plots of Replication Enrichment Ratios and Respective 95% Confidence Intervals by Phenotype in SJLIFE
Replication enrichment ratios (RERs) left of the vertical line corresponding to RER¼ 1 suggest meta-GWAS hit replication depletion, i.e.,
observations of fewer replications ofmeta-GWAS hits than expected. RERs considering adjustment covariates under two differentmodels
are presented for each phenotype: (1) covariates adhering to reference GWAS (‘‘GWAS’’) and (2) GWAS covariates along with covariates
considered in childhood cancer survivor populations (‘‘Survivor’’). Phenotype RERs are color coded based on similarity: anthropometric
(blue), blood pressure (green), lipid (yellow), and cardiometabolic disease (red). The observed numbers of replications included in the
figure are under the ‘‘GWAS’’ model (Table 1). The expected numbers of replications are estimated based on the sum of the power to
replicate each SNP-phenotype association assuming observed SNP effect allele frequencies, the cohort sample size, an additive genetic
inheritance model, a ¼ 0.05, and effect sizes in reference meta-GWAS.
replicated in CCSS survivors with complete genotype,

phenotype, and covariate data (up to n ¼ 4,212) when

we used models adhering to reference GWAS. All five
644 The American Journal of Human Genetics 107, 636–653, Octobe
phenotypes showed significant (p < 0.05) or suggestive

(p < 0.2) meta-GWAS hit replication depletions beyond

what was expected (Figure 2, Table S2), for an overall RER
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Figure 2. Plots of Replication Enrichment Ratios and Respective 95% Confidence Intervals by Phenotype in CCSS
Replication enrichment ratios (RERs) left of the vertical line corresponding to RER¼ 1 suggest meta-GWAS hit replication depletion, i.e.,
observations of fewer replications of meta-GWAS hits than expected. Phenotype RERs are color coded based on similarity: anthropo-
metric (blue) and cardiometabolic disease (red). The observed numbers of replications included in the figure are under the ‘‘GWAS’’
model (Table 1).
of 0.55 (p ¼ 5.6 3 10�15). RERs based on meta-analysis of

SJLIFE and CCSS results revealed similar trends (Table S7).

Comparably Powered General Population Samples

Show Larger Meta-GWAS RERs and Better PRS

Performance Than Survivor Samples Show

To directly compare meta-GWAS hit replication rates

and RER estimates in independent general population

samples against survivor cohort estimates, we used

100 random ‘‘pseudo-survivor’’ general population sub-

samples drawn from the UKBB that: (A) did not overlap

with reference meta-GWAS, (B) had equal sample sizes

and case-control ratios to those of SJLIFE and CCSS

samples, and (C) were evaluated with identical models

and phenotype transformations applied in survivor an-

alyses for four distinct phenotypes (height, obesity,

T2D, and CAD). Excluding T2D associations in

pseudo-SJLIFE samples (where diabetes was clinically

ascertained in SJLIFE versus self-reported in CCSS and

UKBB), we found that the median replication fre-

quency was �1.3–4.5-fold higher in the comparably

powered UKBB samples (Table S8), and corresponding

survivor cohort RERs fell below first-quartile UKBB

RERs for all phenotypes (Figure 3). RER IQRs in UKBB

samples overlapped RER ¼ 1 (indicating observed repli-

cations equal to those expected) for all phenotypes

except obesity.
The America
We also evaluated the predictive performance of PRS

(i.e., mean change in the SD unit or log[OR] per PRS

unit increase) derived from the genome-wide significant

SNPs assessed in our primary analysis in the same set of

UKBB pseudo-survivor samples for height, obesity, T2D,

and CAD. We observed that increases in RER estimates

in UKBB samples, reflecting increasing numbers of meta-

GWAS replications, were strongly associated with

improved PRS performance for all phenotypes (p <

6.1 3 10�6) (Figure S6, Figure S7). Consistent with obser-

vations of smaller phenotype-specific RERs in survivor co-

horts (excluding SJLIFE T2D), PRS performance was worse

in survivor cohorts than in the UKBB samples for all

phenotype comparisons (Figure S6, Figure S7). In partic-

ular, the median predictive performances of a 358-SNP

PRS for height and 52-SNP PRS for CAD across UKBB

pseudo-SJLIFE samples were �1.3-fold and �1.8-fold

greater than in SJLIFE, respectively; in UKBB pseudo-

CCSS samples, the median predictive performances of

phenotype-specific PRS were �1.3 to �2.1-fold greater

compared to those in CCSS.

The Generalizability of Meta-GWAS Hits in Survivors

Differs by Phenotype-Relevant Functional and

Regulatory Genomic Annotations

We speculated that meta-GWAS SNPs with replicated

phenotype associations in survivors could have functional
n Journal of Human Genetics 107, 636–653, October 1, 2020 645



Figure 3. Comparison of Sample Replication Enrichment Ratios for Four Complex Phenotypes in Equivalently Powered General Pop-
ulation Samples
Using comparably powered samples drawn from the UK Biobank (UKBB) with no overlap with original reference GWAS, we tested as-
sociations among the same set of SNPs evaluated in the survivor cohort analyses for four phenotypes: height, obesity, type 2 diabetes
(T2D), and coronary artery disease (CAD). Violin plots show distributions of phenotype-specific sample replication enrichment ratios
(RERs) with power calculations based on the same set of reference GWAS summary statistics for 100 samplings of two general population
sample types: ‘‘pseudo-SJLIFE’’ (A) and ‘‘pseudo-CCSS’’ (B), which observe the same samples sizes and case-control ratios analyzed in the
respective survivor cohorts. Box and whisker plots for sample RER medians (vertical line inside box) and the lower and upper quartiles
(bottom and top of box, respectively) are shown, with whiskers extending to highest and lowest estimates. The dashed horizontal line
representing RER ¼ 1 signifies that observed replications are equal to expected. Blue dots represent RER estimates observed in SJLIFE (A)
and CCSS (B) cohorts.
and/or epigenetic annotation enrichments that may

distinguish them from SNPs with non-replicated associa-

tions. Using publicly available gene expression data from

GTEx47 and REMC chromatin state annotations,46 we

compared the set of 170 SNPs with at least one replicated

association with the 12 phenotypes (‘‘replicated SNPs’’)

against the set of 1,061 SNPs without any replicated associ-

ations (‘‘non-replicated SNPs’’) from our main analysis in

SJLIFE. Similar proportions of replicated and non-repli-

cated SNPs were mapped to RefSeq50 gene bodies (57.1%

versus 58.7%, respectively; p ¼ 0.74). However, replicated

SNPs had greater odds of being a cis-eQTL SNP (FDR %

0.05) in adipose and liver tissues than non-replicated

SNPs had (nominal p < 0.05, Table S9). Top 15-state

ChromHMM46 enhancer and promoter chromatin state

annotation enrichments revealed that replicated SNPs

also had greater odds of overlapping enhancer chromatin

states in cell or tissue types related to the kidney, adipose,

gut, and obesity-linked brain structures (nominal p < 0.05,

Table S10). We also assessed top Reactome48 biological

pathway enrichments for non-overlapping genes mapped

to replicated and non-replicated SNPs against all other

genes in the human genome (Figure S8). For the 79 genes

that corresponded with the replicated SNPs, the lead bio-

logical pathway enrichments (FDR < 0.10) were more spe-

cific to cardiometabolic phenotypes (e.g., plasma lipopro-
646 The American Journal of Human Genetics 107, 636–653, Octobe
tein metabolism is connected to serum lipid traits, elastic

fiber assembly is related to arterial wall formation, and

peroxisome proliferator-activated receptor alpha [PPAR-

alpha]-mediated lipid metabolism is linked to metabolic

phenotypes). In contrast, the vast majority of leading bio-

logical pathway enrichments (FDR < 0.10) for the 466

genes mapped to non-replicated SNPs were related to

signal transduction.

Exposures to Treatments for Pediatric Cancer May

Underlie the Limited Generalizability of Meta-GWAS

Hits in Survivors

We assessed whether risk factors implicated in a range of

late effects in long-term survivors, i.e., exposure to specific

cancer treatments or age at cancer diagnosis (treatment),

could ‘‘disrupt’’ robust genetic associations reported in

the general population. We estimated RERs in SJLIFE survi-

vor subgroups stratified either by treatment exposure

(defined as any exposure to therapeutic agents for pediatric

cancer associated with the phenotype of interest [all ther-

apies described in Table 1]) or by age at diagnosis older or

younger than the median (�7 years). We hypothesized

that if these factors contribute to phenotypic variation

and distort meta-GWAS SNP-phenotype associations in

survivors, the magnitude of replication would be greater

in the survivor subgroup that was more similar to the
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Figure 4. Plots of Phenotype-Specific Replication Enrichment Ratios and Respective 95% Confidence Intervals in SJLIFE Samples Un-
exposed or Exposed to Treatments
Treatments were defined as cancer treatments associated with phenotypes. Phenotypes with any evidence of replication depletion (RER
< 1) in our main analysis that showed either significant (p < 0.05) or suggestive (p < 0.2) replication depletion in SJLIFE treatment-
exposed samples are included in this figure. Sample sizes by exposure strata (NTX-, No Treatment; NTXþ, Treatment) are provided, as
well as likelihood ratio test p values representing treatment associations with phenotypes (PTX) and incremental changes in adjusted
R2 (DRTX

2) after removing treatment variables from clinical models. Phenotypes are ordered based on DRTX
2 values, with larger DRTX

2

values reflecting greater treatment influence on phenotype variation.
general population (i.e., treatment-unexposed and older

age at diagnosis).

We found evidence of replication depletion in treat-

ment-exposed survivor subgroups for seven phenotypes:

the height, BMI, TC, and DBP phenotypes showed signifi-

cant (p< 0.05) replication depletion, while CAD, LDL, and

obesity phenotypes showed suggestive (p < 0.2) replica-

tion depletion. Among these seven phenotypes, CAD,

height, LDL, TC, and DBP showed stronger evidence of

replication depletion than expected in treatment-exposed

subgroups compared to treatment-unexposed subgroups

(Figure 4). For example, whereas replication power in treat-

ment-unexposed subgroups for height, LDL, and TC was
The America
�32%–38% higher compared to replication power in treat-

ment-exposed subgroups, replication frequencies were

�85%–300% higher in the treatment-unexposed sub-

groups. Similarly, CAD meta-GWAS hit replications in the

treatment-unexposed subgroup were equivalent to those

in the treatment-exposed group despite having �45%

lower power for replication. CAD, height, LDL, and TC

also showed the greatest incremental changes in variance

explained (change in adjusted R2 > 1%) when we

compared clinical models with and without treatments

and had the strongest treatment likelihood ratio test p

values (p< 13 10�7). These results suggest that replication

depletions in meta-GWAS hits are exacerbated in survivors
n Journal of Human Genetics 107, 636–653, October 1, 2020 647



when treatments have greater contributions to the pheno-

type risk. In comparison, we found the RERs stratified by

median age at diagnosis to be similar, and replication fre-

quencies were not affected to the same degree (Table S11).

DNAMethylation as a Mechanism for Cancer Treatment

Exposures to Limit the Generalizability of Meta-GWAS

Hits in Survivors

Because BIOS QTL35 includes samples from the Lifelines

Cohort Study (which recently reported a median meta-

GWAS hit replication rate of 84% across 32 phenotypes2),

we used BIOS QTL35 meQTL data as a reference resource

for ancillary DNA methylation analyses. Whole blood

cis-meQTLs from BIOS QTL for any of the 1,231 meta-

GWAS SNPs of interest (FDR< 0.05) were regarded as estab-

lished phenotype-variant-associated cis-meQTLs. Most of

themeta-GWAS SNPs examined in our SJLIFEmain analysis

(87.5%, 1,077 SNPs) were mapped to at least one estab-

lished cis-meQTL (Table S12).

First, we assessed whether established cis-meQTLs in the

general population (BIOS QTL) could be generalized to

childhood cancer survivors by using a subset of SJLIFE sur-

vivors in our main analysis with blood-derived methylome

and genotype data (n ¼ 236). We successfully validated

5,651 established cis-meQTLs for the meta-GWAS SNPs of

interest (40.6%; 13,930 tested), where validation was

defined by associations with p < 0.05 and the same direc-

tions of association as BIOS QTL (all aligned to be consis-

tent with GWAS-reported effect alleles).

Non-replicated SNPs had greater odds of being SJLIFE-

validated cis-meQTLs than replicated SNPs had (OR ¼
1.66, p ¼ 0.02, Table S13). We therefore investigated

whether meta-GWAS hit replications likely to be affected

by childhood cancer treatments were also more likely to

involve cis-meQTL mechanisms. Specifically, we compared

48 ‘‘treatment-sensitive’’ meta-GWAS SNPs that showed

replicated associations only in the treatment-unexposed

subgroup (i.e., meta-GWAS hit replications adversely

affected by cancer treatments) and 66 ‘‘treatment-insensi-

tive’’ meta-GWAS SNPs with robust replications (i.e., repli-

cated in both treatment-unexposed and treatment-

exposed subgroups). We found greater enrichment for

SJLIFE-validated cis-meQTLs among treatment-sensitive

SNPs (38/42, 90.5%) compared to treatment-insensitive

SNPs (37/57, 64.9%; OR ¼ 5.06, p ¼ 4.1 3 10�3, Table

S13); these results indicate that SNPs with phenotype asso-

ciation replications that were perturbed by treatment ex-

posures in survivors were more likely to involve cis-meQTL

mechanisms than were SNPs with robust replications.

Finally, we hypothesized that treatment-associated

changes in the baseline CpG methylation associated with

a meta-GWAS SNP could reduce the likelihood of its repli-

cation in survivors. We first split the 4,153 CpG sites linked

to the 5,561 SJLIFE-validated cis-meQTLs into two mutu-

ally exclusive groups: 549 ‘‘replicated CpGs’’ linked to

replicated meta-GWAS SNPs versus 3,604 ‘‘non-replicated

CpGs’’ linked to non-replicated meta-GWAS SNPs. We
648 The American Journal of Human Genetics 107, 636–653, Octobe
then counted the frequency of discordance between cis-

meQTL effects and the direction of methylation at the

same CpG site associated with specific childhood cancer

treatments. We examined different RT and chemothera-

peutic exposures (Table S14). Non-replicated CpGs were

enriched for directionally discordant cis-meQTL and treat-

ment-methylation associations for multiple treatment

types compared to the replicated CpGs (Table S15). The

non-replicated CpGs showed the strongest enrichment

for directionally discordant methylation associations for

pelvic RT, with �54% of non-replicated CpGs bearing di-

rectionally discordantmethylation associations in contrast

to �29% of replicated CpGs (OR ¼ 2.90, p ¼ 8.7 3 10�4).

The non-replicated CpGs were also significantly enriched

for directionally discordant associations for chest RT (OR

¼ 2.70, p ¼ 5.33 10�4) and modestly enriched for abdom-

inal RT (OR ¼ 1.91, p ¼ 0.06).

We illustrate these results by describing the failed

replication of the T2D risk variant rs1552224

(chr11:72722053, GRCh38) in SJLIFE survivors as an

example. Multiple meta-GWAS have linked the A allele of

rs1552224with increased T2D risk.44,59 However, this asso-

ciation was not replicated among survivors exposed to

abdominal or pelvic RT, but it was replicated in survivors

without these RT exposures (Table S16). Figure 5 demon-

strates how abdominal and/or pelvic RT can obscure the

replication of the rs1552224-T2D risk association in survi-

vors by potentially disrupting cis-meQTL effects on T2D

risk. The strongest cis-meQTL effect for rs1552224 was re-

ported at cg04827223 in BIOS QTL (assessed allele ¼ A, Z

score ¼ 34.8, p ¼ 6.03 10�266) and was validated in SJLIFE

(b¼ 0.12, p¼ 3.73 10�4). Figure 5 shows that increasing A

allele dose for rs1552224 corresponds with increases in

methylation at cg04827223 and T2D risk in survivors

without exposures to abdominal or pelvic RT; this is consis-

tent with the general population. But in survivors with

increasing doses of abdominal or pelvic RT, increasing A

allele dose for rs1552224 does not change methylation at

cg04827223 or T2D risk, reflecting the inverse relation-

ships between methylation levels at cg04827223 and pel-

vic (b ¼ �4.0 3 10�6, p ¼ 0.03) and abdominal RT (b ¼
�3.4 3 10�6, p ¼ 0.06) dose observed in SJLIFE.
Discussion

There is growing interest in leveraging knowledge of estab-

lished meta-GWAS hits though PRS in specialized clinical

populations such as childhood cancer survivors.60 The

suitability of translating this knowledge to such popula-

tions, however, depends on the generalizability of general

population SNP associations to the clinical population of

interest. We evaluated the generalizability of 1,376 SNP as-

sociations reported in 46 selected meta-GWAS for 12

anthropometric and cardiometabolic phenotypes in a large

cohort of adult survivors of pediatric cancer in SJLIFE using

genotypes from whole-genome sequencing and clinically
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Figure 5. DNAMethylation Levels at cg04827223 and Percentage of T2D Cases by Genotype Classes for rs1552224 in SJLIFE Survivor
Subgroups with Differential Exposures to Abdominal or Pelvic Radiation Therapy
No radiation therapy (RT) dose was defined as 0 Gy (column A), low-to-moderate RT dose was defined by >0 to <20 Gy (column B), and
high dose was defined byR20 Gy (column C). The upper panels show the observed methylation level relationships with the SNP at the
cg04827223 CpG site in the SJLIFE subset with methylome and genotype data (n ¼ 236); boxes represent the median and interquartile
range (IQR), with whiskers extending from the first or third quartile to 1.5 times the IQR. Methylation level trend by allele dose is shown
withmedian regression lines. Genotype frequencies in this SJLIFE subset were as follows: 1.8% (C/C), 30.8% (C/A), and 67.4% (A/A). The
lower panels show the percentage (%) of T2D cases by genotype in SJLIFE survivors in the main analysis (n ¼ 2,112), with the following
genotype frequencies: 1.9% (C/C), 26.9% (C/A), and 71.2% (A/A).
ascertained phenotypes. Significantly fewer robust meta-

GWAS hits than expected were replicated in SJLIFE survi-

vors, with an observed-to-expected RER of 0.70 (p ¼
6.2 3 10�8) across all phenotypes. Replication depletion

was also observed in a secondary analysis of five compara-

ble phenotypes in an independent cohort of survivors

from CCSS.

Decreased RER estimates in survivor cohorts may also

reflect sampling variability and Winner’s Curse for some

phenotypes (i.e., inflated power estimates due to overesti-

mates in reported SNP-phenotype associations may artifi-

cially depress RERs). By evaluating comparably powered in-

dependent general population samples (UKBB) across

multiple phenotypes (height, obesity, CAD, and T2D)

with power calculated based on the same set of meta-

GWAS summary statistics, we found: (1) survivor samples

had smaller RERs than UKBB samples, and (2) increases

in RER estimates correspond consistently to improved
The America
PRS predictive performance. It is noteworthy that height

and CAD PRS in SJLIFE (where phenotype ascertainment

was more similar to that in UKBB) and T2D PRS in CCSS

(where phenotype ascertainment was more similar to

that in UKBB) underperformed compared to UKBB samples

with similar sample RERs. This was still the case even for

height PRS, which had relatively strong associations with

phenotypes in survivor cohorts (e.g., PRS p ¼ 2.2 3

10�34 in SJLIFE; p ¼ 7.5 3 10�65 in CCSS). These results

suggest that vulnerable clinical populations like childhood

cancer survivors may not see the same gains in genetic risk

prediction conferred by PRS based on general population

summary statistics relative to non-clinical populations

for some phenotypes, particularly those for which clinical

factors play a substantial role. This is not to say that PRS

will universally have insufficient clinical utility in survi-

vors. Instead, deliberate assessments of the predictive per-

formance and validity of PRS based on population-based
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studies should be undertaken in specific clinical popula-

tions of interest in order to evaluate the extent to which

such PRS are applicable and whether their clinical utility

can be improved upon when they are not.

We discovered that, when cancer treatments had greater

contributions to phenotype risk, greater replication deple-

tions than expected were observed in treatment-exposed

survivor subgroups. Recent studies have demonstrated

that ionizing radiation can induce persistent dose-depen-

dent changes in DNA methylation in cells or tissues tar-

geted by radiation.52–56 Chemotherapies, e.g., cisplatin58

and carboplatin,57 have also been linked to differential

methylation. Therefore, we assessed whether, among survi-

vors, treatment-related DNAmethylation could potentially

‘‘disrupt’’ robust SNP-phenotype relationships that are re-

ported in the general population. We found that non-repli-

cated SNPs were significantly enriched overall for SNPs

with cis-meQTLs reported in BIOS QTL that were also vali-

dated in a subset of SJLIFE survivors. Furthermore, we

discovered a �5-fold enrichment (p ¼ 4.1 3 10�3) of vali-

dated cis-meQTL SNPs among SNPs with replications per-

turbed by cancer treatments in survivors compared to

SNPs that were robustly replicated in survivors. Lastly, we

observed enrichments of ‘‘disruptive’’ or directionally

discordant methylation associations for chest (OR ¼ 2.70,

p ¼ 5.3 3 10�4), pelvic (OR ¼ 2.90, p ¼ 8.7 3 10�4), and

abdominal (OR ¼ 1.91, p ¼ 0.06) RT among CpGs linked

to meta-GWAS SNPs that failed to replicate in survivors.

Notably, chronic hematological toxicity has been well

documented for RT to the chest, pelvic, and abdominal

fields due to the volume of active bone marrow in these re-

gions,61 which suggests that the DNAmethylation patterns

we see in the blood-derived methylome data are plausibly

related to these RT exposures. Taken together, these results

suggest that cancer treatments, particularly RT, may disrupt

DNA methylation patterns at genomic sites linked to some

disease- or trait-associated variants and interfere with their

generalizability to survivors.

The main limitation of this analysis was the relatively

small sample sizes of the survivor cohorts. Given the

limited power to detect some SNP-phenotype replications

(especially those with small effect sizes), we estimated

the expected number of replications for comparison and

replicated these results in a second survivor cohort with

nearly double the sample size. Although we also provide

comparisons of RER estimates in comparably powered gen-

eral population samples, the RER comparisons for height

should be considered cautiously due to potential sample-

specific differences in residual variance after accounting

for adjustment covariates. Interpretations of our analyses

of cis-meQTLs and treatment associations with cross-

sectional whole blood DNA methylation measurements

also have several limitations. We were only able to evaluate

DNA methylation associations in a small sample of survi-

vors (n ¼ 236), and this limited our ability to evaluate

cis-meQTL effects in subsamples stratified based on treat-

ment exposures, age at diagnosis (treatment), and other
650 The American Journal of Human Genetics 107, 636–653, Octobe
factors known to have profound effects on methylation

(e.g., smoking62) or to conduct interaction analyses.

Similar to other analyses of DNAmethylation associations,

we cannot ascertain the extent to which methylation

levels at the selected CpGs associated with allelic variation

at meta-GWAS SNPs truly contribute to phenotype varia-

tion. It is important to note that consideration of methyl-

ation associations with treatments that are discordant with

cis-meQTL associations is a hypothetical indicator for dis-

rupted cis-meQTL effects on phenotypes among survivors.

Alternative mechanisms, e.g., cancer pathology or age at

treatment, may also disrupt cis-meQTL effects on pheno-

types. Examining associations between treatments and

gene expression levels linked to these CpG sites would be

a necessary first step in order to determine how treat-

ment-related changes in DNA methylation disrupt SNP-

phenotype associations.

In summary, we have shown that robust meta-GWAS

SNP hits that were observed in general populations for a

range of cardiometabolic phenotypes are only partially

generalizable to childhood cancer survivor cohorts. Meth-

odologies and applications that rely on established meta-

GWAS hits from the general population to predict or clin-

ically surveil some cardiometabolic outcomes or traits may

have poorer performance in survivors than in the general

population. A plausible explanation for the partial general-

izability of robust meta-GWAS hits in survivors is that can-

cer treatment exposures obscure some genetic associations

through epigenetic alterations such as DNA methylation.

This analysis is among the first to provide evidence toward

a hypothesis described in a recent review of the transfer-

ability of PRS across populations, specifically that the

generalizability of PRS may also be limited in cohorts

with differential environmental exposures.1 This phenom-

enon may also apply to other clinical populations.
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