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Summary
Exome sequencing in diabetes presents a diagnostic challenge because depending on frequency, functional impact, and genomic and envi-

ronmental contexts, HNF1A variants can cause maturity-onset diabetes of the young (MODY), increase type 2 diabetes risk, or be benign.

A correct diagnosis matters as it informs on treatment, progression, and family risk. We describe a multi-dimensional functional dataset of

73 HNF1A missense variants identified in exomes of 12,940 individuals. Our aim was to develop an analytical framework for stratifying

variants along the HNF1A phenotypic continuum to facilitate diagnostic interpretation. HNF1A variant function was determined by

four different molecular assays. Structure of the multi-dimensional dataset was explored using principal component analysis, k-means,

and hierarchical clustering. Weights for tissue-specific isoform expression and functional domain were integrated. Functionally annotated

variant subgroups were used to re-evaluate genetic diagnoses in nationalMODYdiagnostic registries.HNF1A variants demonstrated a range

of behaviors across the assays. The structure of the multi-parametric data was shaped primarily by transactivation. Using unsupervised

learningmethods, we obtainedhigh-resolution functional clusters of the variants that separated known causalMODYvariants frombenign

and type 2 diabetes risk variants and led to reclassification of 4% and 9% of HNF1A variants identified in the UK and Norway MODY diag-

nostic registries, respectively. Our proof-of-principle analyses facilitated informative stratification of HNF1A variants along the continuum,

allowing improved evaluation of clinical significance, management, and precision medicine in diabetes clinics. Transcriptional activity

appears a superior readout supporting pursuit of transactivation-centric experimental designs for high-throughput functional screens.
Introduction

Precision medicine increasingly relies on an accurate inter-

pretation of the consequence of genetic variation. Large-

scale multi-ethnic genetic sequencing studies have chal-

lenged our understanding of the relationship between

coding variants inMendelian disease genes, including those

involved in monogenic forms of diabetes such as HNF1A

(MIM: 142410). Until relatively recently, the consensus

has been that heterozygous highly penetrant loss-of-func-

tion alleles inHNF1A give rise to a clinically distinct diabetes

subtype, characterized by an early age of onset (typically <

25 years), dominant inheritance, sensitivity to sulphonylur-

eas, and non-obesity, and termed HNF1A maturity-onset

diabetes of the young (HNF1A-MODY [MIM: 600496]).1
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While this genotype-phenotype correlation is true for a sub-

set ofHNF1Avariant carriers, it represents one endof abroad

spectrum of HNF1A variant effects.2–4

Genome-wide association and next-generation se-

quencing studies of randomly ascertained individuals

have challengedbinary assumptions andoverinflatedpath-

ogenicity estimates regarding variants inHNF1A (and other

Mendelian disease genes) and identified common coding

variants of low effect associated with increased risk

of type 2 diabetes (MIM: 125853).5–8 Whole-exome

sequencing studies in populations of Mexican American

ancestry have revealed a low-frequency missense variant

(c.1522G>A [p.Glu508Lys]) in HNF1A associated with a 5-

fold increase in type 2 diabetes prevalence.3 These complex

genomic insights warrant a more nuanced understanding
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of the phenotypic manifestation of HNF1A gene variants:

some alleles are sufficient for early-onset sulfonylurea-

responsive diabetes (HNF1A-MODY), although it should

be noted that not all carriers of these alleles get early-onset

diabetes; not even diabetes at all. Moreover, some alleles

modify susceptibility for developing complex multifacto-

rial hyperglycemia later in life (type 2 diabetes), and most

alleles will likely manifest as benign and neutral.

A correct diabetes diagnosis is important because amuta-

tion inHNF1A leads to clinical actions involving diagnosis,

treatment, and genetic counselling. Individuals with rare,

deleterious HNF1A alleles and young-onset diabetes (typi-

cally < 25 years) are sensitive to treatment with oral sulfo-

nylureas and can often avoid insulin injections until late in

life.9,10

The ubiquity of genetic sequencing means that more

novel and incidentally detected variants of uncertain clin-

ical significance (VUS) will be identified in individuals with

less extreme phenotypes.11 The challenge today is in the

ability to map HNF1A sequence-function relationships at

high fidelity, using clinical and molecular characterization

and analytical pipelines with sensitivity to capture the sub-

tleties along the pathophysiological continuum. Rigorous

functional follow-up of rare sequence-identified alleles in

HNF1A is crucial to making correct assignments of patho-

genicity. Indeed, functional data are considered a strong

line of evidence for accurate clinical diagnostic classifica-

tion of variants.12 Furthermore, it has been shown that dia-

betes severity in HNF1A variant carriers is influenced by

allele position in the gene: the transactivation domain is

more tolerant to genetic variation and variants in the latter

exons8–10 are only present in hepatocyte-dominant iso-

forms and would thus not likely translate to a strong

beta-cell phenotype.13,14

To understand the relationship between HNF1A

sequence variation, molecular dysfunction, and clinical

phenotype, we characterized the functional impact of a to-

tal of 73 HNF1A missense variants detected in the exomes

of 12,940 multi-ethnic type 2 diabetes case subjects and

control subjects using standard functional assays. Our

primary objective was to develop an analytical approach

that would enable (1) an unbiased and comprehensive

evaluation of HNF1A variant behavior based on multiple

molecular mechanisms and (2) sensitive mapping of

multi-dimensional in vitro function to HNF1A glycemic

phenotypes in vivo. We hypothesized that severity of mo-

lecular dysfunction in vitro (wild-type/wild-type-like, mod-

erate/intermediate impact, loss-of-function/deleterious)

would correlate positively with the severity of clinical

phenotype (benign, increased type 2 diabetes risk,

young-onset sulfonylurea-responsive hyperglycemia).
Material and Methods

The study was approved by the regional ethical committee in Ber-

gen (#2009/2079). We investigated the function of all rare (MAF<
The America
0.5%) and low-frequency (0.5% < MAF < . 5%) as well as three

common (MAF > 5%) HNF1A nonsynonymous missense variants

(n ¼ 73) identified in an exome sequencing study of 12,940 type 2

diabetes case subjects and control subjects from five different

ancestry groups15 (Figure S1, Table S1). Collectively, the variants

did not enrich for a type 2 diabetes phenotype under any of the

several variant filters used (MAF < 0.1%, conserved and predicted

damaging [PolyPhen: SKAT p value ¼ 0.30, BURDEN p value ¼
0.37]).15

Bioinformatic Prediction
The following four in silico tools were used to evaluate the patho-

genicity of the alleles: SIFT,16 PolyPhen-2,17 MutationTaster,18 and

Combined Annotation Dependent Depletion (CADD).19 A CADD

cut-off score of 15 was used (>15, pathogenic).

Functional Characterization
The individual effects of the 73 HNF1A missense variants were

functionally investigated by two research teams at the Universities

of Oxford (UK) and Bergen (Norway) using four different molecu-

lar assays (see detailed description of assays below). Using two lab-

oratories allowed us to evaluate the robustness of the functional

studies. Each laboratory assessed a unique set of exome-detected

variants (n > 30), a shared subset of exome-detected variants

(n ¼ 5), shared type 2 diabetes risk variants (n ¼ 2), as well as

shared HNF1A-MODY reference variants (positive controls,

n ¼ 6) (Figures S2 and S3). The positive controls were selected

on the basis of previously reported functional data supporting

pathogenicity, clinical evidence for causality (sulfonyurea sensi-

tivity in multiple carriers), and/or genetic (co-segregation) evi-

dence to support their role pathogenesis (Table S2). Plasmid and

HNF-1A variant constructs, transactivation assays, HNF-1A pro-

tein abundance, subcellular localization, and DNA binding are

detailed below.

Plasmid and HNF-1A Variant Constructs
A construct encoding the human HNF1A cDNA (GenBank:

NM_000545.6) in cDNA3.1 His/C plasmid was used as wild-type

and template for introducing HNF1A variants using the

QuikChange XL Site-directed Mutagenesis Kit (Stratagene). The

wild-type sequence used in this study also harbors the common

coding variant c.79A>C (p.Ile27Leu) (MAF ¼ 34.8%) and a com-

mon synonymous variant c.51C>G (p.Leu17¼) (MAF ¼ 46.5%).

All constructs were verified by DNA Sanger sequencing.

For transactivation experiments, two reporter constructs were

used: (1) pGL3-RA, containing the promoter of the rat albumin

gene (nucleotide �170 to þ5) next to the Firefly luciferase gene

in vector pGL3-Basic (Promega) (kindly provided by Prof. Graeme

I. Bell, University of Chicago, Chicago, IL, USA) and (2) pGL3-

HNF4AP2, which contains the human HNF4A (MIM: 600281) P2

promoter (nucleotide �418 to þ13) next to the Firefly luciferase

gene (kindly provided by Prof. Maria Angeles Navas, Madrid Uni-

versity, Madrid, Spain). The pRL-SV40 reporter vector containing

the Renilla luciferase gene was used as internal control in the trans-

activation assay (Promega).

Transactivation Assays
Assessment of variant effects on transcriptional activity (TA) were

performed in the HeLa cell line, representing cells negative for

endogenous HNF-1A expression, and in the INS-1 (rat insulinoma

cell line), representing cells positive for HNF-1A expression.
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HeLa20 and INS-1 cells21 were grown as previously described. Tran-

sient transfection of variant plasmids (wild-type or variant

HNF1A), reporter, and control plasmids was performed using Lip-

ofectamine 2000 (Life Technology), as reported.2 Luciferase activ-

ity was measured 24 h post-transfection with the Dual-Luciferase

Assay System (Promega) in a Chameleon luminometer (Hidex)

or using the Enspire platform (Perkin Elmer). Luciferase activity

was normalized for transfection efficiency by the Renilla luciferase

activity. The Bergen dataset included some variants previously

reported (p.Ile27Leu, c.92G>A [p.Gly31Asp], c.142G>A

[p.Glu48Lys], c.290C>T [p.Ala97Val], c.293C>T [p.Ala98Val],

c.298C>A [p.Gln100Lys], c.341G>A [p.Arg114His], c.392G>A

[p.Arg131Gln], c.965A>G [p.Tyr322Cys], c.1165T>G [p.

Leu389Val], c.1405C>T [p.His469Tyr], c.1460G>A [p.Ser487Asn],

c.1469T>C [p.Met490Thr], c.1541A>G [p.His514Arg], c.1544C>

A [p.Thr515Lys], and c.1729C>G [p.His577Asp]).2
HNF-1A Protein Abundance
The level of wild-type and individual HNF-1A variant protein ex-

pressions in total HeLa cell lysates was determined. For this pur-

pose, the team at Bergen used 20 mL of HeLa cell lysates generated

for transactivation assays as previously described.2 HNF-1A and

actin protein levels were quantified by densitometric analysis us-

ing Quantity One 1-D software (Bio-Rad). The team at Oxford eval-

uated protein expression by transfecting HeLa cells with 5 mg of

wild-type or variants plasmids after culturing for 24 h. Total pro-

tein quantification was carried out using Bradford reagent (Bio-

Rad) and 10 mg of total protein was electrophoresed then immuno-

blotted with antibodies for HNF-1A (Santa Cruz Biotechnology)

and beta-tubulin (Santa Cruz Biotechnology) and visualized using

the ChemiDoc Imaging System (Bio-Rad). Densitometry (for west-

ern blots and EMSA) was carried out using Image Lab Software

(Bio-Rad).
Subcellular Localization
For nuclear translocation assessments, the teams at Bergen and

Oxford examined HNF-1A presence in nuclear versus cytosolic

HeLa cell fractions. Cultured and plated cells were transiently

transfected with wild-type or HNF1A variant plasmids. Sequential

cell fractionation from each transfected sample was performed

24 h post-transfection as described.22 20 mg total protein from

each isolated compartment (nucleus and cytosol) was analyzed

by SDS-PAGE and immunoblotting using an HNF-1A-specific anti-

body (Cell Signaling or Santa Cruz Biotechnology, respective to

the two centers). GAPDH antibody (Santa Cruz Biotechnology)

and Topoisomerase II-alpha antibody (Cell) were used as loading

control for cytosol and nuclear compartments, respectively. The

HNF1A variant c.589_615del (p.Leu197_Leu205del), denoted

p.delB, was included as a positive control for impaired nuclear

localization (cytosolic retention).23
DNA Binding
DNA binding ability test was conducted for HNF1A variants that

were located in DNA binding domain (1–287 aa), and those that

demonstrated transactivation activity < 50%. At Bergen the

HNF-1A proteins were expressed using an in vitro transcription

and translation system (TNT Coupled Reticulocyte Lysate System,

Promega) and equal amounts of synthesized protein were bound

to a [g-32P]-radiolabeled rat albumin oligonucleotide as

described.24 DNA-protein bound complexes were separated by

6% DNA retardation gel electrophoresis (EMSA) (Life Technolo-
672 The American Journal of Human Genetics 107, 670–682, Octobe
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cal System). Level of DNA binding was assessed by quantification

of the intensity of HNF-1A protein-oligonucleotide complexes by

the program Image Gauge 3.12 (Fujifilm Medical Systems). The

two HNF1A-MODY control variants c.335C>T (p.Pro112Leu)

and c.608G>A (p.Arg203His) were included as positive controls

for reduced DNA binding ability.24 DNA binding data for two var-

iants p.Gln100Lys and p.Arg131Gln are the same as published pre-

viously.2 The team at Oxford used 10 mg of the cell lysate used in

the protein abundance western and a CY5 labeled probe of the

same promoter sequence as used by the Bergen team. However,

they used the Odessey Infra-Red EMSA kit (Li-Cor Inc.) to conduct

binding affinity. The percentage of HNF-1A-oligo complexes for

each variant fraction was then calculated compared to wild-type.
Stratification of HNF1A Variants with Unsupervised

Learning Methods
We designed an analytical pipeline to stratify functionally charac-

terized HNF1A variants along the spectrum of glycemic pheno-

types (Figure S3). Briefly, the pipeline begins with preparation of

the dataset for analysis using unsupervised learning tools. This

was followed by the addition of two scores to each variant, one

to account for functional domain and the other for spatial varia-

tion in HNF1A isoform expression (exon location), as there are

well-established correlations between variant position in HNF1A

and clinical phenotype.13,14 The ‘‘polished’’ dataset was then pro-

cessed using principal component analysis, k-means, and hierar-

chical clustering methods (Figure S3).The prcomp (principal compo-

nents analysis) function in R (stats package v.3.5.0) was used to

perform principal component analysis. Polished data matrices

were zero centered and scaled to account for unit variance. We

used the NbClust Package in R for determining the best number

of clusters (distance measure set as ‘‘Euclidean’’) to estimate the

optimal number of k-means clusters in PC space25 (Figures S4A

and S4B). Hierarchical clustering was performed on a Euclidean

distance matrix comprised of PC scores for each allele from total

principal components that explained >85% of data variance (Fig-

ures S4C and S4D) using the hclust (hierarchical clustering) function

in R. The WARD minimum variance hierarchical clustering

method (ward.d2) was selected as it yielded highest resolution

clusters in a comparative analysis against complete, single, and

average linkage methods (data not shown) based on (1) predicted

grouping patterns of wild-type and MODY/type 2 diabetes risk

reference variants and (2) known molecular function of variants

which co-occupied clusters defined by wild-type, type 2 diabetes

risk, andMODY reference variants. To compare the cluster dendro-

grams of variants shared between Oxford and Bergen, we used the

untangle, tanglegram, and entanglement functions in R (part of

the dendextend package) to untangle dendrogram lists and find

the best alignment layout, plot the two dendrograms side by

side, and compute the quality of alignment (entanglement coeffi-

cient), respectively.
Dataset Preparation for Clustering Analysis
The functional datasets were prepared for PCA and clustering

analysis by harmonizing the number of variables across tested

variants. DNA binding ability was interrogated for only a small

subset of variants, so EMSA data were excluded. Functional data

were available in three different formats: raw instrument data,

data normalized to internal assay controls (renilla luciferase for

TA assay, beta-tubulin/actin antibody for protein abundance
r 1, 2020



assay, and nuclear:cytosolic ratio of raw protein abundance reads

for nuclear localization) expressed as biological replicates, and

fully processed summary data normalized to wild-type values.

The most statistically suitable input format for PCA and unsuper-

vised clustering is functional data normalized to internal assay

controls (semi-processed) as intra-assay measurements are harmo-

nized (versus raw instrument data) and the organic structure of

the data is retained and uninfluenced by assumptions (versus

wild-type normalized data). Further, this format yielded the

most robust clustering trends based on distribution quality in

multivariate space and known and expected sequence-function

relationships. Scores for tissue-specific expression of HNF1A iso-

forms (implications for clinical phenotypic manifestation) and

functional domain (varied levels of mutation tolerance) were as-

signed to each variant (Table S3). For stratification of HNF1A var-

iants with unsupervised learning methods, see Figure S4 and

Material and Methods.

Variant-Phenotype Mapping
We surveyed the UKMODY Diagnostic Registry (Royal Devon and

Exeter NHS Foundation Trust, Exeter, UK) and the Norwegian

MODY Registry (Haukeland University Hospital, Bergen, Norway)

for functionally annotated HNF1A missense variants. A total of

162 and 53 HNF1A missense variants were documented in the

UK and Norwegian diagnostic registries, respectively. Tables S4

and S5 show the list of clinical features that were available from

the database for alleles which overlapped with the Oxford-Bergen

dataset (not all features available for each variant). Sequence vari-

ants in the Norwegian MODY Registry were classified prior to the

incorporation of the ACMG/AMP guidelines,12 as described26 us-

ing a 5-tier score system.27 Sequence variants in the Exeter

MODY Registry had been classified using the ACGS guidelines

from 2013 (see Web Resources), a 5-tier system used in the UK

prior to the advent of the ExAC database and publication of the

ACMG/AMP guidelines.12 Original clinical reports of carriers

were accessed for additional details, particularly where clinical fea-

tures were sparse—such as extra-pancreatic features, vascular com-

plications, additional family history data, and whether, for

example, other MODY genes were next-generation sequenced as

part of a MODY gene panel.28 The classification system adopted

by each center was used for reclassification of variants from its

database.

Role of the Funding Source
The funders of the study had no role in study design, data collec-

tion, data analysis, data interpretation, or writing of the report.

The corresponding author had full access to all the data in the

study and had final responsibility for the decision to submit for

publication.
Results

In Silico and In Vitro Functional Characterization of

Variants

To resolve HNF1A genotype-phenotype complexity, we

sought to evaluate the function of 73 HNF1A missense al-

leles which were observed almost 26K times in the exomes

of �13K multi-ethnic type 2 diabetes case subjects and

control subjects. The majority of HNF1A variants were

identified in both type 2 diabetes case subjects and control
The America
subjects, and for the few observed exclusively in type 2 dia-

betes case subjects, they were identified with a frequency

of either one or two case subjects per variant (Table S1).

Although there was no evidence for HNF1A association

with type 2 diabetes susceptibility in the study either at

the single variant or at the gene level, there was a marginal

aggregate association with type 2 diabetes risk in a multi-

gene test (p ¼ 0.023) which included rare coding alleles

in a set of genes implicated in monogenic/syndromic dia-

betes or related glycemic traits.15 Consensus across multi-

ple in silico tools for predicting pathogenicity was observed

in only 38 of the 73 variants (53%) (Table S1). Based on

CADD scores (suggested pathogenicity cut-off > 15),

�70% of the missense variants would be bioinformatically

classified as disease causing (i.e., sufficient to cause

MODY).19

The 73 HNF1A variants were divided between the two

centers (Oxford and Bergen) and individually evaluated

in terms of functional effect using a common pipeline

including assays measuring variant effect on HNF-1A

transcriptional activity, subcellular localization, protein

expression level, and DNA binding ability (Figures S1–

S3). The Oxford laboratory investigated variants pre-

dominantly of South-East Asian etiology, while the Ber-

gen laboratory studied variants mainly of European

etiology.

The variants demonstrated a wide range of functional ef-

fects from benign to damaging across assays and labora-

tories with highest variability in transactivation assess-

ments, particularly through regulation of the rat albumin

promoter in HeLa cells (activity range 30%–110% in

Bergen data [Figure S5A], 52%–114% in Oxford data

[Figure S6A]). Transcriptional activity was consistently

higher for variants usingHNF4A P2 promoter in INS-1 cells

(versus rat albumin promoter in HeLa cells) (activity range

40%–90% Bergen data, 77%–158% Oxford data), and most

likely due to interference of endogenous HNF-1A in INS-1

cells (2- to 4-fold higher basal promoter activity, Figures

S5B and S6B). In assessments of protein abundance,

>85% of all variants displayed adequate HNF-1A protein

levels (>60%, Figures S5C and S6C). Similarly, in nuclear

translocation assays, most variants were predominantly

detected in the nucleus (level > 60%), the exception being

five variants from the Bergen dataset (c.827C>A

[p.Ala276Asp], p.Ser487Asn, c.1812C>G [p.Ser604Arg],

c.1322C>A [p.Thr441Lys], p.Arg131Gln) (Figures S5D

and S6D) from the Oxford dataset (c.185A>G

[p.Asn62Ser], c.1552C>T [p.Leu518Phe], c.1605C>A

[p.Ser535Arg], c.1610C>T [p.Thr537Met], c.1748C>A

[p.Arg583Gln]) displaying < 50% level. The subsets

of variants investigated by EMSA demonstrated overall

normal DNA binding ability (�95% of variants > 60%),

with the exception of one variant from the Bergen

dataset (p.Arg131Gln < 50%) and five from Oxford

dataset (p.Asn62Ser, c.340C>T [p.Arg114Cys], c.467C>T

[p.Thr156Met], c.481G>A [p.Ala161Thr], p.Ser535Arg <

50%) (Figures S5E and S6E).
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Figure 1. Eigendecomposition of Principal
Components Explaining > 85% of Variance
Shown are (A) Oxford and (B) Bergen data-
sets. TA INS1_P2 and TA HeLa_ALB are tran-
scriptional activity data from INS-1 cells
using HNF4A P2 promoter and from HeLa
cells using rat albumin promoter, respec-
tively. PE, protein expression; nuc loc, nu-
clear localization data.
Multi-Dimensional Data Analysis

We performed unsupervised stratification of the HNF1A

variants using the multi-dimensional in vitro functional

data (semi-processed data normalized to internal technical

controls in each assay) supplemented with scores for iso-

form expression and functional domain, with the aim of

mapping molecular dysfunction to clinical phenotype.

Each of the two datasets were analyzed independently to

minimize the interference of inter-laboratory variability

with true biological signal. We used principal component

analysis to facilitate informative dissection and visualiza-

tion of multi-parametric functional data. Eigendecomposi-

tion of the datamatrices revealed transcriptional activity as

the greatest contributor to data variance and structure

(Figure 1). To enable variant subgroup discovery for func-

tion-phenotype mapping, data were partitioned using (1)

k-means clustering in PC space (Figure 2) and (2) hierarchi-

cal clustering using data coordinates from the total num-

ber of informative principal components for each dataset

(Figure 3). The analysis yielded variant clusters neatly orga-

nized along the spectrum ofHNF1Amolecular dysfunction

ranging from neutral/benign to intermediate to damaging.

As such, we broadly annotated the known HNF1A in vivo

spectrum, from benign to type 2 diabetes risk-modifying

to HNF1A-MODY (inherited early-onset hyperglycemia,

likely to be sulfonylurea-responsive based on MODY regis-

try data), onto the principal components plots and den-

drograms based on the spatial distribution of the variants

along the in vitro data-derived functional spectrum, from

wild-type/wild-type-like to intermediate to damaging (Fig-

ures 2 and 3). To understand (mis)alignment ofHNF1A var-

iants shared between the two centers, we visually

compared the cluster dendrograms of shared variants

only (Figure S7). We computed an entanglement coeffi-

cient (the quality of the alignment of the two dendrograms

expressed as a value from 0 to 1 where lower values corre-

spond to higher quality alignment) of 0.055 which indi-

cated good high-quality alignment of shared variants

(Figure S7).
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Clinical Interpretation of HNF1A

Variants

To assess the medical diagnostic utility

of multi-tiered HNF1A sequence-func-

tion annotations, we examined their

mapability to HNF1A clinical pheno-

type using clinical data from overlap-

ping HNF1A missense variants in the
UK and Norway MODY diagnostic registries (Tables S4

and S5).

Of the 31 total overlapping variants between our func-

tional effort and the UK registry, 19 were originally classi-

fied as pathogenic/likely pathogenic and 15 as VUS/likely

benign in the diagnostic registry. Three of the 31 overlap-

ping variants (c.1816G>A [p.Gly606Ser], p.His469Tyr,

c.871C>T [p.Pro291Ser]) were present under both patho-

genic/likely pathogenic (where they were considered the

MODY-causal variant in the case subjects) and VUS/likely

benign (cases of co-occurrence with a pathogenic variant

in HNF1A or another MODY gene) original clinical classifi-

cations. All 15 missense variants categorized as VUS/likely

benign in the UK database demonstrated benign clustering

patterns in our analysis (i.e., did not form subgroups

with variants which exhibited impaired function). How-

ever, for 10 of the 19 variants clinically categorized as

pathogenic/likely pathogenic in the UK diagnostic data-

base (p.Ala161Thr, c.521C>T [p.Ala174Val], c.139G>C

[p.Gly47Arg], p.Gly606Ser, p.His469Tyr, c.1235T>C

[p.Met412Thr], p.Asn62Ser, p.Pro291Ser, p.Arg131Gln,

c.29C>T [p.Thr10Met]), patterns of in vitro functional clus-

tering patterns did not match clinical diagnostic variant

interpretation. The variants co-occupied clusters either

with known type 2 diabetes risk modifiers (some moder-

ately impacted in functional assays) or with wild-type/

neutral variants. Discordance between functional geno-

type and clinical variant interpretation prompted a thor-

ough reassessment of variant pathogenicity.

The missense variant p.Asn62Ser (gnomAD allele count

n ¼ 33) was consistently dissimilar to dysfunctional vari-

ants in dendrograms and k-means derived clusters from

both Bergen and Oxford datasets (Figures 2 and 3). In the

UK MODY registry, it was identified in an obese individual

whowas diagnosed with diabetes at age 36 years (Table S6).

The patient suffered from microvascular complications

(MIM: 603933) (nephropathy and retinopathy) (Table

S6). These features are inconsistent with neither HNF1A-

MODY nor a type 2 diabetes phenotype (which might be



Figure 2. K-Means Clustering
HNF1A missense alleles characterized at Ox-
ford (A) and Bergen (B) in principal compo-
nent (PC) space. Blue and green k clusters
represent alleles with benign and benign-
to-intermediate effects on function, respec-
tively; purple k clusters represent alleles
with intermediate functional impact; red k
clusters indicate intermediate-to-damaging
or functionally damaging alleles.
familial considering the number of affected individuals in

the carrier’s pedigree). HNF1A was the only MODY gene

sequenced in this individual as genetic testing was per-

formed before the advent of the targeted MODY gene

exome sequencing panel which is the current diagnostic

procedure. Alone, p.Asn62Ser allele frequency values are

sufficient to confidently re-categorize the variant as VUS/

likely benign in the context of MODY (Figure 4).

The variants p.Ala174Val and p.Pro291Ser, characterized

by both laboratories, weremore difficult to interpret. In the

Oxford dataset, these variants formed a separate outlying

k-means-derived cluster (Figure 2). They also occupied an

independent subgroup in hierarchical clustering which
The American Journal of Human G
branches high on the height scale

away from the larger cluster defined

by wild-type and other neutral variants

(Figure 3). Atypically high luciferase re-

nilla values (internal luciferase reporter

gene assay control used for normaliza-

tion) were reported for these variants

as well as for p.Ser535Arg, which have

resulted in a potentially exaggerated

reduction in transactivation values for

these variants upon normalization to

the internal assay reference in the Ox-

ford dataset (Figure S6). In the Bergen

dataset, these variants also consistently

lie in the type 2 diabetes risk modifier

zone (not pathogenic for MODY) (Fig-

ures S2 and S4). Not only are the

activity profiles of p.Ala174Val and

p.Pro291Ser dissimilar to those of path-

ogenic MODY variants, they also occur

at a much higher frequency in the gen-

eral population (Figure 4). In terms of

clinical profiles, p.Ala174Val was de-

tected in an individual with diet-

controlled diabetes, which was diag-

nosed at age 25 years (Table S6). The

p.Pro291Ser variant was detected in an

overweight individual who was diag-

nosed with diabetes at age 42 years

when it was classified as likely patho-

genic/pathogenic (Table S6). In another

unrelated individual, p.Pro291Ser was

co-expressed with p.Gly31Asp and
both were annotated as VUS/likely benign in the diag-

nostic database.

The clinical diagnostic classifications of p.Gly606Ser and

p.Ala161Thr did notmatch clustering patterns inmultivar-

iate space (Figures 2 and 3). The variants did not impact

HNF-1A function in the in vitro assays tested. The fre-

quency associated with these variants (n ¼ 12 alleles in

gnomAD and n ¼ 2 in the Exeter diagnostic clinic) are

inconsistent with those of rare MODY-causing variants.

The p.Gly606Ser variant has also been found in a single

case of hyperinsulinemic hypoglycemia (on diazoxide

treatment; MIM: 256450) in the UK registry and in this

case was classified as VUS/likely benign.
enetics 107, 670–682, October 1, 2020 675



Figure 3. Hierarchical Clustering Analysis
HNF1Amissense alleles characterized at Ox-
ford (A) and Bergen (B). WARD minimum
variance method was used and analysis per-
formed using orthogonally transformed
functional data from PC1-PC4 (>85% ex-
plained variance) from Oxford dataset and
PC1-PC5 (>85% explained variance) form
Bergen dataset. To optimize visualization
of the function phenotype gradient, some
branches were rotated. The numbers of
the y axes of (A) and (B) refer to clustering
height calculated as by Ward’s criterion
(total within-cluster variance).
In clustering analysis, p.His469Tyr occupied either the

same or highly similar (adjacent) subgroups as wild-type

(Leu27 and Ile27) (Figure 3). The clinical features of the

variant carrier described in Table S6 are consistent with se-

vere young-onset familial diabetes; however, the allele

high frequency in gnomAD is 32. Another variant in

HNF1A, c.620G>A (p.Gly207Asp) (not present in gno-

mAD), was, however, detected in the same individual. It

was identified in three other case subjects (including co-

occurrence with p.His469Tyr) and was classified as patho-

genic/likely pathogenic each time it was identified in the

UK MODY Registry. Thus, it is likely that p.Gly207Asp is

the MODY-causal variant and that p.His469Tyr is either

benign or potentially type 2 diabetes risk-modifying.

Despite alignment between clustering pattern and

clinical diagnostic interpretation (Figures 2 and 3),

c.1576G>A (p.Asp526Asn) was reclassified from patho-

genic/likely pathogenic to VUS/likely benign. In transacti-

vation assays, HNF1A-p.Asp526Asn was the most impaired

of all tested exome-identified variants in the Oxford data-

set (�50% in HeLa and �80% in INS-1 cells; MODY refer-

ence variants exhibited transactivation range of 20%–
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40% in HeLa cells and 30%–50% in

INS-1 cells in Oxford, with the excep-

tion of p.Arg203His and c.347C>T

[p.Ala116Val], which yielded transacti-

vation values of 40% and �60% in

HeLa and �50 and �100% in INS-1 as-

says, respectively). The variant is

observed only five times in gnomAD,

which suggests it might not be causal

for MODY (Figure 4). The clinical pro-

file of the p.Asp526Asn carrier did not

appear to be consistent with HNF1A-

MODY, besides presence of diabetes

in three generations of the carrier’s

family. The variant carrier had BMI

32.4 kg/m2 and was diagnosed with

diabetes at age 33 years. Other clinical

features included dyslipidemia (MIM:

144250), polycystic ovary syndrome

(MIM: 184700), insulin resistance

(MIM: 610549), and hypertension
(MIM: 145500). The variant was also found in a patient

in the Norwegian MODY registry. This patient, diagnosed

at 19 years of age, had normal BMI and C-peptide levels.

Type 1 diabetes (MIM: 222100) autoantibody status and

type 1 diabetes risk score were not known. The carrier

was treated with metformin. His mother and the mother’s

brother also have diabetes (treated with diet and insulin,

respectively). Moreover, the patient was diagnosed with

Crohn disease (MIM: 266600). Altogether, this suggests

that the carriers might have a combination of type 2 dia-

betes and HNF1A-MODY, which is not uncommon, or a

phenotype representing a possible continuum of diabetes

sub-phenotypes from MODY to type 2 diabetes.5 Further,

the variant is expressed in the hepatocyte-dominant iso-

form and is thus unlikely to manifest in a strong beta-cell

phenotype despite its poor functionality.

Of the 19HNF1Amissense variants that overlapped with

the Norwegian MODY Registry, 18 were originally classi-

fied as benign (class 1), likely benign (class 2), or VUS (class

3), and 1 (p.Ala276Asp) as likely pathogenic (class 4) in the

diagnostic registry. The variant p.Ala276Asp consistently

demonstrated impaired HNF-1A function in in vitro assays



Figure 4. Distribution of Functionally Annotated HNF1A Missense Alleles
(A and B) As a function of frequency in the (A) UKMODY diagnostic registry and (B) NorwayMODY diagnostic registry on the x axis and
reported frequency in the genome aggregation database (gnomAD) on the y axis. Alleles are colored on the basis of the (re)classification
scheme on the top right.
(C) Frequency of functionally characterized exome-detected HNF1Amissense alleles in gnomAD. The red and orange dashed lines mark
known ultra-rare, MODYpathogenic (allele count% 2, AF< 0.0008%) and low frequency type 2 diabetes predisposing allele frequencies
(allele count % 121, AF < 0.04%) respectively.
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and clustered with the MODY reference variants in the un-

supervised clustering analyses, supporting the clinical

interpretation of this variant as pathogenic (Figures 2

and 3). It was also clinically classified as likely patho-

genic/pathogenic in the UK MODY registry (Figure 4). All

variants originally classified as benign/likely benign/VUS

(class 1–3) in the Norwegian registry clustered in the

benign or intermediate type 2 diabetes risk modifier

zones, with the exception of four variants (c.1016C>T

[p.Thr354Met], p.Thr441Lys, c.1745A>G [p.His582Arg],

c.1756G>A [p.Ala586Thr]), which demonstrated variable

trends across clustering methods (Figures 2 and 3).

In k-means clustering along principal component 1 and

principal component 2, these variants co-occupy a hard

cluster with MODY reference variants and variants which

exhibited damaging in vitro function. This is not entirely

unexpected for HNF1A-p.Thr441Lys which displayed

reduced activity (�50% on both promoters in INS-1 and

HeLa cells) and with reduced (<40%) nuclear localization.

Although, in hierarchical clustering, where (dis)similarity

between variants was determined using principal compo-

nent scores from all principal components contributing

to >85% of overall variance, the trends were more consis-

tent with clinical features and classification; p.Thr441Lys

and p.Thr354Met are in the type 2 diabetes risk modifier

space of the in vivo continuum, hierarchically distanced

from the sub-cluster defined by the majority of MODY

reference variants and pathogenic damaging variants

p.Ala276Asp and c.1135C>A (p.Pro379Thr). The clinical

phenotypic data of the p.Thr354Met variant carriers seems

more consistent with type 1 diabetes. The p.Thr354Met

variant was identified in two unrelated individuals. Upon

revisiting clinical data on these two allele carriers, it was

found that one of the carriers with insulin-treated diabetes

from age 14 years was positive for GAD and IA2 autoanti-

bodies. A sister of the proband had diabetes, but the par-

ents were apparently unaffected. The other p.Thr354Met

variant carrier had autoantibody-negative diabetes from

age 12 years without strong family history of diabetes

(grandmother only). Moreover, the population frequency

(n ¼ 18 in gnomAD) associated with this variant allele is

inconsistent with rare, causal MODYalleles. Thus, the clin-

ical phenotypic data of the p.Thr354Met variant carriers

seem more consistent with type 1 diabetes. In the

p.Thr441Lys variant carrier, another variant in HNF1A

c.872dup (p.Gly292Argfs*25) was considered the patho-

genic MODY variant (Table S7). Moreover, the population

frequency values of p.Thr441Lys (gnomAD allele count n

¼ 18) and p.Thr354Met (gnomAD allele count n ¼ 7) are

slightly higher than expected for rare disease-causing vari-

ants (Figure 4). As for p.His582Arg (gnomAD allele count n

¼ 14) and p.Ala586Thr (gnomAD allele count n ¼ 20), in

hierarchical clustering, these variants form a subgroup

defined by liver isoform variants which demonstrated sub-

optimal function in one or more in vitro assays. Much like

p.Asp526Asn, these variants are likely to be strong type 2

diabetes risk modifiers. The p.His582Arg variant carrier
678 The American Journal of Human Genetics 107, 670–682, Octobe
was diagnosed with diabetes age 11 years, she had a BMI

of 29 at referral one year later, and C-peptide was measured

to 1,000 pmol/L (Table S7). The p.Ala586Thr variant carrier

was diagnosed at age 11, C-peptide positive (78 pmol/L),

negative GADA, IA2A, ZnT8A, with no known family his-

tory of diabetes, and treated with insulin (Table S7).

Based on this comprehensive variant re-assessment

effort, we changed the classification of 7 out of 31 vari-

ants shared with the UK MODY diagnostic database

(p.Ala161Thr, p.Ala174Val, p.Gly606Ser, p.His469Tyr,

p.Asn62Ser, Pro291Ser, p.Asp526Asn) from likely patho-

genic to VUS/likely benign (Figure 4) and all five variants

categorized as VUS (class 3) or VUS/likely benign (class

3�) in the Norway MODY registry (p.Tyr322Cys,

p.Thr354Met, p.Thr441Lys, p.Asp526Asn, and p.Hi-

s582Arg) to likely benign (class 2) (Figure 4). This repre-

sents �23% and �26% of total HNF1A missense variants

in the UK and Norway MODY registries, respectively,

that overlap with the functionally interrogated HNF1A

missense variants detected in the exomes of �13K multi-

ethnic type 2 diabetes cases and controls.
Discussion

In this study, we investigated the functional impact of

73 missense variants in HNF1A, detected by exome

sequencing of a multi-ethnic type 2 diabetes case-control

cohort from four different mechanistic angles (Figures S1

and S3). We developed an approach for the analysis of

multi-parametric functional data which, in the context of

HNF1A, has enabled (1) a holistic assessment of variant

behavior by combining as many mechanistic dimensions

as possible, (2) unbiased stratification along the spectrum

of glycemic phenotypes ranging from neutral/benign ef-

fects, to modification of multifactorial polygenic diabetes

risk, to deleterious and causal for early-onset sulfonylurea-

responsive diabetes, (3) an assessment of the relative

contributions of each functional parameter to molecular

variability, and (4) rigorous phenotypemapping and a thor-

ough re-evaluation of the clinical classifications of overlap-

ping variants in two national MODY diagnostic registries.

Revisiting clinical variant classifications using HNF1A

functional clusters led to the reclassification of �4% (7/

162) and �9% (5/53) of all HNF1A missense variants in

the UK and NorwegianMODY diagnostic registries, respec-

tively. Decisions on variant reclassification were primarily

motivated by the juxtaposition of allele frequency values

in the general population (based on gnomAD allele counts)

against their frequency in the MODY diagnostic registries

(highest frequency values belonged to bona fide loss-of-

function alleles used as MODY reference controls in this

study) (Figure 4). This is based on the rules given by the

ACMG guidelines for variant interpretation: ‘‘an allele fre-

quency in a control population that is greater than expected

for the disorder is considered strong support for a benign inter-

pretation for a rare Mendelian disorder’’ (BS1).12 Information
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from other layers of variant annotation such as in vitro

function (in the tested assays), clinical features, family his-

tory, ethnicity, and in silico prediction all helped to support

reclassification decisions.

Dissection of the individual principal components re-

vealed transactivation to be the primary contributor to

the spatial distribution of multi-parametric data. This sug-

gests that it might be a superior functional readout and

potentially more informative than other molecular assays

for assessing HNF1A variant pathogenicity, and in line

with our previous experience on various functional assays

of HNF1A variants.2 Since transactivation is a relatively all-

encompassing measure of transcription factor protein

function, we assumed defects in transcriptional activity

would capture defects in its biochemical prerequisites (pro-

tein expression, nuclear transport, DNA binding). While

this may have been the case for the majority of function-

ally interrogated HNF1A variants, p.Arg203His and

p.Ala116Val highlight the limitations of this assumption.

For these variants, severely impaired DNA binding ability

was not adequately captured by transactivation. This

might explain clustering of p.Ala116Val and p.Arg203His

in the intermediate zones among type 2 diabetes risk mod-

ifiers, and not directly among MODY reference alleles, in

both k-means and hierarchical clustering for both centers

(Figure 3).

We were able to mitigate error associated with handling

data from two centers with methodological differences by

benchmarking several HNF-1A variants (benign, type 2 dia-

betes risk, and MODY) in both laboratories. Discrepancies

between the two centers with respect to shared variants

can be explained in part by variability in technical proto-

cols between laboratories and the handling of samples by

various individuals over the course of the study. The rela-

tive clustering position of the shared variants is impacted

by the function trends observed in each dataset; while

the majority of Oxford variants behaved wild-type-like,

the Bergen dataset was more complex as variants demon-

strated a wider range of effects. For instance, for an inter-

mediate variant and a known type 2 diabetes risk modifier

such as p.Glu508Lys, the dissimilarity to MODY reference

alleles is more pronounced in the Bergen dataset where

there are more data points between moderately impaired

and damaging function (Figure S7).

While important, informative, and powerful first lines of

evidence, functional annotations should not be treated as

superior or stand-alone determinants of variant pathoge-

nicity, which they have not in this study. Indeed, the

same variant in a MODY gene can give rise to a spectrum

of clinical phenotypes and exhibit variable penetrance de-

pending on genomic (regulatory variants in cis or trans, or

haplotype epistasis) and environmental (epigenomic)

context which are difficult to capture in functional assess-

ments.29–33 It is also entirely possible that some of the

noise in functional-clinical mapping is a reflection of the

heterogeneity in the clinical phenotypic manifestation of

HNF1A variants.5 The same variant which has a mild effect
The America
onHNF1A function, and thus beta-cell function and ability

to respond appropriately to a given level of glycemia, could

play out differently in individuals who are already strug-

gling to meet the insulin demand through insulin resis-

tance and/or other genetically driven defects in their

beta-cells.34Another aspect to consider is the expected vari-

ation in clinical practice between the two centers in the UK

and Norway to which diabetes patients have been referred.

It would thus be naive to attempt to draw conclusions

regarding variant effects in vivo from, for example, a single

registry observation. The reality of phenotypic variant

manifestation is often complex, context dependent, non-

linear, and spectrum based. Developing a contextual and

thorough understanding of variant behavior from diverse

functional, clinical, biochemical, and demographic data-

sets is necessary to facilitate highly accurate interpretation.

The p.Asp526Asn variant in HNF1A is a perfect example

that illustrates the need for nuanced evaluations of variant

effects despite the availability of multiple layers of func-

tional annotation from various cell systems. The variant

was clinically classified as pathogenic/likely pathogenic

and exhibited impaired in vitro functional activity (shared

a cluster with knownMODY-causal variants). Its impact on

molecular function would be consistent with biomarker

profiles (hsCRP and glycans) suggestive of HNF1A-

MODY. Yet, re-evaluation of the clinical features of variant

carriers in UK and Norway diabetes registries and the fact

that it is present only in the longest HNF1A transcript iso-

form expressed predominantly in liver suggest that it is

more likely to be a contributing factor to common multi-

factorial diabetes rather than a primary driver of early-

onset sulfonylurea-responsive familial hyperglycemia.

Integration of isoform weights into the unsupervised clus-

tering model helped separate bona fide loss-of-function

MODY variants from functional variants expressed in

exons 8–10 at the lowest level of hierarchical clustering.

The recent advent of multiplexed assays of variant ef-

fects (MAVEs) has made it possible to interrogate the func-

tion of every possible sequence perturbation in a single

experimental system.35 Successful and productive imple-

mentation of these technologies requires overcoming the

technical and analytical complexities associated with

scaling up, which represent the most significant barrier

in the face of closing the chasm between variant resolution

and variant interpretation. A meticulously designed MAVE

for HNF1A would enable functional annotation of all

possible missense variants (>12,000) in a single assay. A

high-performance variant classifier built using MAVE-

based data can then be used to generate an exhaustive

catalog of variant effects which researchers and clinicians

can consult upon sequence-identification of an HNF1A

variant.

The performance and predictive utility of any model

built using HNF1A MAVE-derived function scores would

be enhanced immeasurably upon calibration against

these multi-layered data and comprehensively annotated

function-clusters. These data can also improve existing
n Journal of Human Genetics 107, 670–682, October 1, 2020 679



prediction algorithms which operate on the basis of multi-

factorial probability and multi-data integration such as

CADD (Combined Annotation-Dependent Depletion),

MutationTaster, FitCons (fitness consequence), and

VAAST (Variant Annotation, Analysis and Search Tool).

Further, they can be incorporated into rigorous and

collaborative multi-level annotation efforts led by the

Clinical Genome Resource (ClinGen) program and evi-

dence-based disease-specific variant classification data-

bases. Lastly, our approach can assist in filtering HNF1A

missense variants for gene burden testing of rare variants.

An immediate example is its application to the �50K

exomes in the UK Biobank not ascertained on the basis

of diabetes. At present, in the UK Biobank dataset, the

number of carriers of HNF1A variants that overlap with

variants functionally investigated in our effort are insuffi-

cient to conduct a robust gene burden analysis. However,

we have observed that seven variants present in the UK

biobank and predicted by our functional data to be likely

damaging (p.Asp526Asn, p.Arg171Gln, p.Thr354Met,

p.Gly288Arg, p.His582Arg, p.Pro379Thr, p.Ser592Pro)

were not identified in patients with diabetes; it is possible

that these alleles represent very rare pathogenic variants

causing MODY with reduced penetrance or are type 2 dia-

betes risk variants.

In conclusion, we have developed an analytical frame-

work for robust and unbiased variant stratification using

multi-dimensional functional follow-up data from the

largest number of exome-identified missense variants in

HNF1A ever studied. This allowed us to annotate func-

tional clusters with clinical knowledge and identify discor-

dant classifications between functional genotype and

clinical phenotype. We believe our pipeline is an impor-

tant proof-of-principle technical contribution on the

path toward more reliable, scalable, and comprehensive

mapping of sequence-function relationships: a significant

factor in making well-informed initial judgements of allele

pathogenicity in the context of individual phenotypic

presentations.
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