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Summary
More than 100 genetic etiologies have been identified in developmental and epileptic encephalopathies (DEEs), but correlating genetic

findings with clinical features at scale has remained a hurdle because of a lack of frameworks for analyzing heterogenous clinical data.

Here, we analyzed 31,742 Human Phenotype Ontology (HPO) terms in 846 individuals with existing whole-exome trio data and assessed

associated clinical features and phenotypic relatedness by using HPO-based semantic similarity analysis for individuals with de novo var-

iants in the same gene. Gene-specific phenotypic signatures included associations of SCN1A with ‘‘complex febrile seizures’’ (HP:

0011172; p ¼ 2.1 3 10�5) and ‘‘focal clonic seizures’’ (HP: 0002266; p ¼ 8.9 3 10�6), STXBP1 with ‘‘absent speech’’ (HP: 0001344; p

¼ 1.3 3 10�11), and SLC6A1 with ‘‘EEG with generalized slow activity’’ (HP: 0010845; p ¼ 0.018). Of 41 genes with de novo variants

in two or more individuals, 11 genes showed significant phenotypic similarity, including SCN1A (n ¼ 16, p < 0.0001), STXBP1 (n ¼
14, p ¼ 0.0021), and KCNB1 (n ¼ 6, p ¼ 0.011). Including genetic and phenotypic data of control subjects increased phenotypic sim-

ilarity for all genetic etiologies, whereas the probability of observing de novo variants decreased, emphasizing the conceptual differences

between semantic similarity analysis and approaches based on the expected number of de novo events. We demonstrate that HPO-based

phenotype analysis captures unique profiles for distinct genetic etiologies, reflecting the breadth of the phenotypic spectrum in genetic

epilepsies. Semantic similarity can be used to generate statistical evidence for disease causation analogous to the traditional approach of

primarily defining disease entities through similar clinical features.
Introduction

In 1954, Dr. Andreas Rett, a pediatrician in Vienna, Austria,

noticed two girls with unusual repetitive hand-washing

motions in his waiting room. Rett concluded that these un-

usual features may be the presentation of a new disease en-

tity and subsequently identified additional girls with

similar features and related developmental trajectories.

This initial observation laid the foundation for recognizing

a neurodevelopmental disorder that came to bear Dr. Rett’s

name.1,2 In 1999, MECP2 (MIM: 300005) was eventually

discovered as the causative genetic etiology for Rett syn-

drome (MIM: 312750), which is thought to affect 1 in

10,000 girls worldwide.3–5 Similar observations on related

clinical features led to discoveries of other genetic neurode-

velopmental disorders and childhood developmental and

epileptic encephalopathies, including Dravet syndrome
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(MIM: 607208) and epilepsy of infancy with migrating

focal seizures (MIM: 614959).6,7

Although the syndrome-based approach is the time-

proven, established method of defining disease entities

in the epilepsies, it has several shortcomings that are

particularly relevant in the era of large-scale genomics.8,9

First, the recognition of clinical symptoms is often fortu-

itous, depending on individuals with shared features to

be seen by the same clinician or at the same center. Sec-

ond, only a subset of clinical syndromes is linked to

unique genetic etiologies, whereas many clinical entities,

such as infantile spasms or Lennox-Gastaut syndrome,

are associated with a wide range of underlying genetic

causes.10–16 Third, the recognition, documentation, and

comparison of clinical features is a manual, non-scalable

process requiring significant human resources in contrast

to the industrial scale of massive parallel sequencing that
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can be performed on DNA from tens of thousands of in-

dividuals.17

Large collaborative studies that are designed primarily

for genetic discovery also collect descriptive clinical data,

and these phenotypic data can be exploited for clinical dis-

covery.18,19 Following the logic of primarily defining dis-

ease entities through shared clinical features, we reasoned

that applying computational algorithms to available

phenotype datasets might detect disease entities by identi-

fying individuals with rare, overlapping phenotypic fea-

tures that share the same genetic etiology. However,

phenotype data is typically sparse and unstructured, which

impedes the comparison of clinical features between

individuals.

The Human Phenotype Ontology (HPO) is a standard-

ized biomedical representation of the semantic relation-

ships among over 14,000 phenotypic terms with defined

relationships, enabling the mapping of heterogeneous

clinical features to a common framework.20–22 Conse-

quently, the value of a phenotypic feature can be weighted

on the basis of its position in the ontological tree and fre-

quency in the overall cohort. We and others have previ-

ously developed algorithms to identify individuals with

significant phenotypic similarities on the basis of HPO

terms within patient cohorts.18,23

Here, we translated clinical findings in 846 individuals

with developmental and epileptic encephalopathies

(DEEs) with available trio whole-exome data to 31,742

HPO terms. We then assessed whether individuals with

de novo variants in the same genetic etiology had pheno-

typic features that were more similar than expected by

chance and identified 11 genetic etiologies with significant

phenotypic similarity. Our results demonstrate that

phenotype data in HPO format represents a valuable

resource in providing statistical evidence in gene-disease

relationships and reconstructs meaningful disease patterns

from sparse clinical data.
Material and Methods

Participant Recruitment
Clinical and phenotypic data included in this study were derived

through local studies and data obtained through dbGaP (dbGaP

Study Accession: phs000653.v1.p1, n ¼ 335). For local cohorts,

informed consent for participation in this study was obtained

from parents of all probands in agreement with the Declaration

of Helsinki and completed per protocol with local approval by

the respective institutional review boards (IRBs). These cohorts

included individuals from the EuroEPINOMICS-RES cohort (RES,

n ¼ 319), Epi4K cohort (EPGP, n ¼ 335), and a cohort of individ-

uals recruited through the Epilepsy Genetics Research Project at

the Children’s Hospital of Philadelphia (EGRP, n ¼ 192). A sub-

cohort of 320 individuals from the RES and EGRP populations

were included in a previous study.18 Phenotypes for these cohorts

were collected through standardized phenotyping and question-

naires to physicians and healthcare providers. Description of the

recruitment and phenotyping of the Epi4K dbGaP cohort

(phs000653.v1.p1) has been reported previously.24,25
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Translation to HPO Terms, Information Content (IC)
For the various phenotyping forms and databases provided for the

individuals included in this project, wemanually generated dictio-

naries to map phenotyping terms to HPO terms (HPO version 1.2;

release format-version: 1.2; data-version: releases/2019-11-08;

downloaded on 1/23/20). The phenotype of each individual

from the EGRP dataset was manually coded by expert reviewers.

Phenotypes were first extracted by research staff with clinical

and biomedical knowledge and experience with the HPO by using

all available clinical and research notes for an individual and by us-

ing the most specific HPO terms applicable. These assigned terms

were then reviewed and verified by domain experts in the field of

epilepsy, i.e., either epilepsy genetic counselors or specialist physi-

cians. In cases of ambiguity and uncertainty, the higher level HPO

term was coded (e.g., if autism spectrum disorder was not clearly

diagnosed but mentioned, we assigned the higher level ‘‘autistic

behavior’’ [HP: 0000729]).

For each individual, all higher-level (ancestral) HPO terms were

derived, followed by de-duplication of HPO terms for each individ-

ual. We refer to this method as ‘‘propagation,’’ resulting in a base

and propagated set of HPO terms for each individual. The propa-

gated HPO dataset from the entire cohort was used to generate

baseline frequencies f for all HPO terms. Information content

(IC) of each term was defined as the �log2(f) with a higher IC

value, reflecting a more specific and less frequently encountered

HPO term in the cohort. In the current manuscript, we use a

compact internationalized resource identifier (CURIE) to refer to

HPO terms, i.e., ‘‘HP: 0001250’’ (‘‘seizures’’) abbreviates ‘‘https://

hpo.jax.org/app/browse/term/HP:0001250’’ in accordance with

the Open Biological and Biomedical Ontologies (OBO) Citation

and Attribution Policy.
Genetic Analysis
Trio-based whole-exome sequencing was performed as previously

described,18,26 including research sequencing within the EuroEPI-

NOMICS-RES project (n ¼ 335) performed at the Wellcome Trust

Sanger Institute (Hinxton, UK) with the Illumina TruSeq DNA

Sample Preparation Kit, the Agilent Technologies SureSelect Hu-

man All Exon 50 Mb Kit, and the Illumina HiSeq2000 per manu-

facturer’s protocols;11,26,27 research sequencing at the Institute of

Clinical Molecular Biology at the University of Kiel and the Co-

logne Center for Genomics with NimbleGen SeqCap EZ Human

Exome Library v2.0, Nextera Rapid Capture Exome, Nextera Rapid

Capture Expanded Exome, Agilent SureSelect Human All Exon V5,

and Agilent SureSelect Human All Exon 50 Mb; research

sequencing at the Broad Institute with Nextera Rapid Capture

Exome kit; sequencing in a diagnostic setting at GeneDx (n ¼
69) with SureSelect Human All Exon V4 (50Mb) kit; and

sequencing at the Division of Genomic Diagnostics at the Chil-

dren’s Hospital of Philadelphia (n ¼ 49) with SureSelect Clinical

Research Exome kits.

All genetic data on individuals included in the overall cohort

were re-analyzed via a standardized pipeline as previously

described.18,26 The Burrows Wheeler Alignment (v 0.7.12) MEM

algorithm was used to align the raw data to the HS37d5 human

reference genome, and Samblaster (v 0.1.20) was used to add

mate tags (MC and MQ) to the paired-end lines. Base quality score

recalibration (BQSR) was performed with GATK tools (v4.0.0.0),

followed by SNP and indel calling via HaplotypeCaller with inter-

val lists specific to the exome enrichment kit used for each sample.

GVCF files for each trio were combined with PICARD tools
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(v2.0.1), and genotyping was performed with the GATK genotype

GVCF tool. GATK tools was used for variant selection and filtra-

tion, and the PICARD tools MergeVcfs functionality was used to

generate merged variant files (VCFs). A customized version of AN-

NOVAR was used to annotate the VCF file. De novo, homozygous,

and compound heterozygous variants were derived from the an-

notated file. The following quality criteria were used for variant

filtration: (1) read depth in proband and parents 3103; (2)

genotype quality in proband and parents 320, (3) absent in all pop-

ulation databases including 1000G, EVS, and ExAC, (4) RVIS

percentile <70, and (5) read ratio 30.25 and »0.75 of the alternate

alleles in the proband. All de novo variants were visually inspected

with the Integrative Genomics Viewer (IGV, 2.4.14), and a subset

of genes were excluded due to inconsistency of calls. A subset of

de novo variants was validated via Sanger sequencing in previous

studies, confirmed clinically, or had been reported as causative ge-

netic etiologies by diagnostic laboratories.10,11,18 The probability

of n de novo variants in a given gene was determined with ‘‘deno-

volyzer.’’28
Phenotypic Similarity Analysis
We used two similarity measures to determine phenotypic similar-

ity (sim score): the previously reported simmax algorithm18 and a

novel simcm algorithm (Figure S1). The simmax was used as the

primary algorithm for this study. The basic concept of both pheno-

typic similarity algorithms is the generation of symmetric pheno-

typic similarity scores between two individuals on the basis of the

similarity between the phenotypic concepts represented by their

HPO terms. The greater the similarity score, the more similar the

individuals’ phenotypes. This similarity score of a pair of individ-

uals is derived from the summation of the IC of the most informa-

tive common ancestor (MICA) terms of all pairwise comparisons

of the base HPO terms of the two individuals.29

simmaxðP1; P2Þ¼1

2

�Xm

i¼1
maxi%j%nSij þ

Xn

j¼1
maxi%i%mSji

�
:

(Equation 1)

A matrix is formed with them base HPO terms, i of individual P1
as rows, and the n base HPO terms, j of individual P2 as columns.

Each sij corresponds to the IC of the MICA of HPO terms i and j,

that is the maximum information content within the set of prop-

agated terms shared by i and j. In summary, the simmax algorithm

sums over all rows and columns of a matrix that holds all base

HPO terms in individual P1 (n terms as rows) and all HPO terms

in individual P2 (m terms as columns; Equation 1).

The faster simcm algorithm operates on the propagated HPO

terms of each individual and determines the intersect of

propagated HPO terms between individual P1 and individual P2,

summing up the IC of all ancestral HPO terms shared by both in-

dividuals. All computations were performed with the R Statistical

Package.30

Although more computationally costly, this study used simmax

as the primary similarity measure because this algorithm has

been successfully utilized previously.18 However, results from

both similarity measures are highly correlated (Figure S1).
Expected Phenotypic Similarity Score per Gene
All genetic etiologies with de novo variants in two or more individ-

uals were included in the primary analysis. The expected pheno-

typic similarity per gene with n individuals was determined by

comparing distribution of the median similarities of n individuals
The America
that were randomly selected with 100,000 permutations from the

overall cohort, resulting in an exact p value via the comparison of

observed versus expected phenotypic similarity. For example, only

10 out of 100,000 permutations of 16 randomly selected individ-

uals showed a median sim score that was greater than or equal

to the observed median phenotypic similarity in the 16 individ-

uals with de novo variants in SCN1A (MIM: 182389), resulting in

an exact p value of <1.0 3 10�5 for SCN1A (median sim score ¼
17.69).
Phenograms and Analysis of Gene-Specific Phenotypic

Signals
For each genetic etiology, the frequency of all assigned and derived

(propagated) HPO terms in patients was identified and compared

to the frequency in individuals without the genetic etiology

deriving a p value via Fisher’s tests. We refer to the display of these

frequencies as ‘‘phenograms,’’ which provide a visual intuition of

the phenotypic spectrum of each disease. Phenograms were gener-

ated for all genes included in the analysis.We compiled p values by

comparing the observed versus expected contribution for all HPO

terms across all genes.
Assessment of Positive Predictive Value of HPO Term

Combinations
In order assess the predictive power of the combination of HPO

terms for the presence of a specific genetic etiology, we selected

HPO terms associated with each genetic etiology that were more

frequent in gene-positive individuals compared to gene-negative

individuals by using the propagated HPO dataset. ‘‘Gene-positive

individuals’’ refers to individuals with de novo variants in a given

genetic etiology, whereas ‘‘gene-negative individuals’’ refers to in-

dividuals without de novo variants in a given genetic etiology. We

then selected HPOs present in at least 10% of individuals of gene-

negative individuals to prevent the effect of very rare HPO terms.

We then used HPO term frequency in gene-positive and gene-

negative individuals to assess the combined frequency of n HPO

terms. For example, if three HPO terms have a frequency of 0.9,

0.85, and 0.7, the combined frequency would be 0.9 3 0.85 3

0.7 ¼ 0.54. Ranking HPO terms by strength of association with a

given genetic etiology, we then assessed the positive predictive

value (PPV) of the combination of HPO terms when successively

including additional HPO terms. We used this method to deter-

mine the number of HPO terms needed for a PPV of 0.8.
Results

Phenotypic Information Translated to HPO Is Sparse

with a Wide Range of Phenotypic Depth

After translation to HPO terms, the 846 individuals

included in the study were coded with a total of 31,742

HPO terms, including 1,616 unique HPO terms. The over-

all number of HPO terms differed widely between individ-

uals, ranging from 12 terms to 181 terms with a median of

30 terms per individual. The cohorts included in the study

showed significant differences: the Epi4K cohort (median

of 22 terms) demonstrated a lower number of HPO terms

per individual than the remaining cohort (median of 38

terms). The distribution of HPO terms in the cohort was

sparse: only 29 terms were present in 100 or more
n Journal of Human Genetics 107, 683–697, October 1, 2020 685
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Figure 1. Heterogenous Distribution of HPO Terms
(A) Heatmap of all 846 individuals in the cohort with all 31,742 HPO terms. A yellow dot signifies that an HPO term is present in an
individual. The heatmap displays the overall sparsity and heterogeneity of the cohort and indicates that only a small subset of the
1,616 unique HPO terms are shared between individuals.
(B) Distributions of number of HPO terms per patient in the three sub-cohorts (EGRP, EPGP/Epi4K, and EuroEPINOMICS-RES), indi-
cating the varying depth of phenotyping across these cohorts. Base terms refer to the explicitly assigned terms in each cohort, and prop-
agated terms refer to the assigned terms including all higher-level terms in the ontology.
individuals (Figure 1). ‘‘Seizures’’ (HP: 0001250), ‘‘infantile

spasms’’ (HP: 0012469), and ‘‘hypsarrhythmia’’ (HP:

0002521) were the most common explicitly assigned

HPO terms. Only 15% of all HPO terms were found in

two or more individuals, and 50.1% of all HPO terms

were only coded in a single individual.
Propagation of HPO Terms Enables an Accurate

Assessment of Term Frequencies

Because HPO terms are interrelated within the tree-like

structure of the HPO, assessing the baseline frequency of

HPO terms provides a misleading estimate of the general

frequencies of disease features in the cohort. For example,

the higher-level term ‘‘neurodevelopmental abnormality’’

(HP: 0012759) was coded as an explicit term in only one

individual. However, a much greater number of individ-

uals had developmental differences consistent with ‘‘neu-

rodevelopmental abnormality’’ (HP: 0012759) but had

been assigned more specific terms. For example, ‘‘global

developmental delay’’ (HP: 0001263) was coded in 272 in-

dividuals and ‘‘intellectual disability’’ (HP: 0001249) was

coded in 62 individuals. We therefore generated the true

frequency of all HPO terms by a process we referred to as

‘‘propagation.’’ In brief, for each individual, all higher-level

HPO termswere added for the baseline HPO terms assigned

to each individual, followed by de-duplication of HPO

terms per individual. This method ensures that each indi-
686 The American Journal of Human Genetics 107, 683–697, Octobe
vidual coded with ‘‘global developmental delay’’ (HP:

0001263) was also coded with all higher-level, less specific

ancestral terms, including ‘‘neurodevelopmental abnor-

mality’’ (HP: 0012759) and ‘‘abnormality of the nervous

system’’ (HP: 0012638). The propagated HPO terms allow

for a meaningful estimate of the frequencies of clinical fea-

tures in the cohort (Table S4). The frequencies of high-level

HPO terms were particularly affected by the propagation

(Figure S2), indicating that estimates derived from baseline

HPO terms generally underestimate the frequency of

higher-level, less specific terms for phenotypic features.

In brief, when we used the propagated HPO terms, 803/

846 individuals had seizures (HP: 0001250 and child

terms), 227/846 had intellectual disability (HP: 0001249

and child terms), 254/846 had movement disorders or ‘‘ab-

normality of central motor function’’ (HP: 0011442 and

child terms), and 97/846 individuals had autistic behavior

(HP: 0000729 and child terms).
Genetic Analysis Identifies 41 Genetic Etiologies Shared

by Two or More Individuals

Using a standardized pipeline across all samples for variant

calling, annotation, and inheritance models, we identified

41 genetic etiologies with de novo variants in two or more

individuals (Table S6). The most common genetic etiol-

ogies in our cohort were SCN1A (n ¼ 16), STXBP1 (MIM:

602926) (n ¼ 14), KCNQ2 (MIM: 602235) (n ¼ 9), SCN2A
r 1, 2020



Figure 2. Overview of Genetic Etiologies and Associations in the Current Study
Overview of the genetic etiologies with de novo variants in the cohort of 846 individuals included in the current study, sorted by signif-
icance of phenotypic similarity (p value phenotype). The number of individuals per sub-cohort (cohort), variant type (variant), and
broad phenotypes (phenotypes) is shown. The number reflects the number of individuals with a certain feature, and the size and color
of a bubble reflects relative frequency within the specific column. The cohort columns list the number of individuals with de novo var-
iants in the EGRP, EPGP/Epi4K, and RES cohorts. The variant column lists the total number of individuals with missense (miss.) and

(legend continued on next page)
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(MIM: 182390) (n¼ 8), and KCNB1 (MIM: 600397) (n¼ 6).

When we used denovolyzer to estimate the probability of n

de novo variants expected to occur in a given cohort of 846

individuals,28 19/41 genes with two or more de novo vari-

ants had a nominal p value of »0.05, suggesting that the

observed number of de novo variants in these genes was

higher than expected by chance (Figure 2).
Genetic Etiologies Implicated in DEE Have Distinct HPO

Signatures

To determine the specific HPO terms driving phenotypic

similarity for distinct genetic etiologies, we determined

the relative contribution of specific HPO terms to each

gene-specific similarity, comparing the observed and ex-

pected contribution of each HPO term (Figures 3 and 4).

In summary, we identified 882 nominally significant

gene-HPO associations (Table S3), and the comparison of

observed and expected HPO terms resulted in gene-specific

patterns (Figures 3, 4, and S7). The significant HPO terms

reflect known phenotypic features associated with each

genetic etiology, such as ‘‘febrile seizures’’ (HP: 0002373;

p ¼ 2.0 3 10�10) and ‘‘hemiclonic seizures’’ (HP:

0006813; p ¼ 3.4 3 10�5) with SCN1A, ‘‘abnormality of

central motor function’’ (HP: 0011442; p ¼ 0.0015) with

STXBP1, and ‘‘developmental regression’’ (HP: 0002376;

p ¼ 0.019) with SLC6A1 (MIM: 137165).
Phenotypic Similarity Analysis Provides Statistical

Evidence in 11 Genetic Etiologies

We next assessed whether genetic etiologies shared by two

or more individuals have phenotypic similarities that were

higher than expected by chance (Figures 2 and 5). We

determined the median phenotypic similarity between in-

dividuals with each of the 41 genetic etiologies with two or

more de novo variants and compared the observed median

similarity score to the expected similarity score derived

through 100,000 permutations. We identified 11 genetic

etiologies with nominally significant phenotypic similar-

ities (Figure 2). The significance for each of these genetic

etiologies emerges consistently when adding individuals

to the overall cohort and is not dependent on a single

sub-cohort in this study (Figure 6). Comparing the statisti-

cal evidence for disease causation based on phenotypic

evidence (phenotypic similarity) to genetic evidence (fre-

quency of de novo variants) shows that the statistical evi-

dence from the frequency of de novo variants is typically

higher than the evidence derived from phenotypic similar-

ity. However, both lines of evidence are independent.

Some genetic etiologies with strong evidence based on

the frequency of de novo variants are not significant based

on phenotypic similarity, such as IQSEC2 (MIM: 300522)
protein-truncating variants (PTV). Genotype p values were calculat
observed number of de novo variants in a given cohort. Phenotype
the simmax method. In the phenotype column, the total number of
focal-onset seizures (focal; HP: 0007359), and generalized-onset seiz
harmonized and propagated HPO dataset.
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and PCDH19 (MIM: 300460). Other genetic etiologies,

including DNM1 (MIM: 602377), SCN8A (MIM: 600702),

and AP2M1 (MIM: 601024), have a relatively high pheno-

typic similarity compared to the significance based on the

frequency of de novo variants. In addition, SCN1A and

STXBP1 demonstrate a high degree of phenotypic similar-

ity and statistical significance based on the frequency of de

novo variants. The simcm and simmax algorithms showed

some degree of variation between the statistical evidence

for distinct genetic etiologies, but results from both algo-

rithms were highly correlated (Figure S1).

The correlation between both algorithms is intriguing

because both techniques emphasize slightly different as-

pects of the assigned phenotypes: the simmax generates a

higher degree of similarity when multiple related pheno-

types were assigned, e.g., ‘‘focal clonic seizures’’ (HP:

0002266) in addition to ‘‘focal aware seizure’’ (HP:

0002349), whereas the simcm algorithm would only assign

similarity on the basis of the shared ancestral terms. In

summary, the simmax algorithm is affected by the density

of the assigned HPO terms within a specific sub-branch,

whereas the simcm algorithm is dependent on the granu-

larity of the HPO framework (Supplemental Notes).

In our study, we used a uniformbioinformatic pipeline for

variant filtration. Because our pipeline processed heteroge-

neous exome data with varying quality, we decided to

implement conservative thresholds for variant filtration,

requiring at least 10 reads of the alternate allele to be present

for the de novo analysis. We compared our results with the

previously reported data from the Epi4K study and found

that the threshold used in our study reliably identified all

previously reported de novo variants.10 In addition, several

individuals from the Epi4K cohort and EuroEPINOMICS-

RES cohort had been found to carry de novo copy number

variants, including known disease genes such as SCN1A,

SCN2A, and GABRB3 (MIM: 137192).31 We subsequently

repeated the phenotypic similarity analysis including the

previously reported copy number variants (Tables S1 and

S2). Neither analysis resulted in significant changes to the

phenotypic similarities generated for each genetic etiology.
HPO Term Combinations Result in Unique Phenotype

Profiles

In order to assess whether HPO terms can yield unique pro-

files that are predictive of the presence of a genetic etiol-

ogy, we assessed the positive predictive value (PPV) of the

combination of HPO terms that showed the strongest asso-

ciations with genetic etiologies. As expected, we found that

PPV increases with the addition of more HPO terms

(Figure S3) but that the predicted frequency of individuals

with the combination of HPO terms decreased. We then
ed with denovolyzer and reflect the probability of identifying the
p values were derived through a semantic similarity analysis via
individuals with neurodevelopmental delay (DD; HP: 0012758),
ures (gen.; HP: 0002197) are listed; these were derived from the
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Figure 3. Phenotype Association with Four Epilepsy Genes Shown as Phenotrees
(A–D) Each graph (phenotree) displays the branches of the Human Phenotype Ontology (HPO) beginning under the subbranch ‘‘abnor-
mality of the nervous system’’ (HP: 0000707) for SCN1A, STXBP1, KCNQ2, and SCN2A. The size of each node indicates the frequency of
eachHPO term in the group of individuals with de novo variants with this gene, and the color indicates the level of statistical significance.
The overall structure of the HPO tree is identical for each graph, which enables the visualization of phenotypic associations within the
HPO tree. For example, for SCN1A, ‘‘generalized-onset seizure’’ (HP: 0002197) is present in 100% of individuals (n¼ 16) with a p value of
0.005. The more specific term ‘‘generalized tonic-clonic seizures’’ (HP: 0002069) is present in less individuals (n ¼ 15, f ¼ 0.94), but
the association with the gene is stronger (p < 0.0001). The even more specific term ‘‘generalized tonic-clonic seizures with focal onset’’
(HP: 0007334) is less common (n ¼ 4, f ¼ 0.25) but is still associated with SCN1A (p ¼ 0.01).
assessed the number of HPO terms per genetic etiology

required to yield a PPV of 0.8 (Table 1). These term combi-

nations, although only estimated to be present in a subset

of individuals, have a probability of at least 80% for a de

novo variant in the gene to be present. For some genetic eti-

ologies, the combination of HPO terms required for a PPV

of 0.8 is expected to be present in a significant number of

individuals. For example, for DNM1, the combination of

four HPO terms, including ‘‘brain atrophy’’ (HP:

0012444), ‘‘atrophy/degeneration affecting the central

nervous system’’ (HP: 0007367), ‘‘aplasia/hypoplasia

involving the central nervous system’’ (HP: 0002977),

and ‘‘EEG with spike-wave complexes (<2.5 Hz)’’ (HP:

0010847), is expected in 41% of individuals with de novo

variants in the gene, compared to 0.06% of individuals

in the remainder of the cohort, resulting in a PPV of 0.8

for this combination of terms.
The America
Phenotypic Similarity Increases with the Inclusion of

Unaffected Population Controls

In our current cohort of 846 individuals, the genetic

evidence based on the probability of de novo variants in

identified genetic etiologies was stronger than the statisti-

cal evidence derived from phenotypic similarity associated

with that etiology. We reason that both parameters are

driven by different factors in the overall cohort. The statis-

tical significance of the frequency of de novo variants is

greatest when the study cohort consists of a large number

of affected individuals with a single underlying genetic eti-

ology. Accordingly, inclusion of additional individuals

with heterogeneous or unselected phenotypes will reduce

the frequency of de novo variants for a specific genetic

etiology in the larger cohort. In contrast, the phenotypic

similarity associated with a given etiology is artificially

diminished in cohorts of individuals with homogeneous
n Journal of Human Genetics 107, 683–697, October 1, 2020 689
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Figure 4. Phenotype Association with Four Epilepsy Genes Shown as Phenograms
(A–D) Each graph (phenogram) displays the frequencies of HPO terms in SCN1A, STXBP1, KCNQ2, and SCN2A compared to the fre-
quency in the overall cohort. The information contained reflects the associations shown in Figure 3 but allows for an alternative
view of the gene-phenotype associations that includes the comparison to the wider cohort. Red dots indicate significant associations
(p < 0.05) between HPO terms and specific genes. The size of the dot denotes the degree of significance displayed as �log10(p value).
Because there are 1,616 unique HPO terms, rare and redundant terms were removed, e.g., ‘‘morphological abnormality of the central
nervous system’’ (HP: 0002011) was removed when the more specific term ‘‘abnormality of brain morphology’’ (HP: 0012443) was pre-
sent. For example, for SCN1A, ‘‘generalized tonic-clonic seizures’’ (HP: 0002069) are present in 94% of individuals with de novo variants
compared to 34% in the remaining cohort. Accordingly, ‘‘generalized tonic-clonic seizures’’ (HP: 0002069) is located in the upper left
corner of the phenogram and this association is significant (p¼ 1.53 10�6), as indicated by the color and size of the dot. In comparison,
as can be seen from the relative positioning on the phenogram, ‘‘febrile seizures’’ (HP: 0002373) are less common in individuals with
SCN1A than ‘‘generalized tonic-clonic seizures’’ (HP: 0002069). However, as indicated by the size of the dot, the association with
SCN1A is stronger (p ¼ 2 3 10�10) because the frequency in the overall cohort is very low.
phenotypes because the information content of terms de-

pends upon its frequency in the cohort and, consequently,

variation in phenotypic features is necessary for pheno-

typic similarity analysis to distinguish individuals who

share a particular genetic etiology from those who do
690 The American Journal of Human Genetics 107, 683–697, Octobe
not. This is exemplified by the relatively low IC of ‘‘sei-

zures’’ (HP: 0001250, IC ¼ 0.075). In contrast to the

diluting effect on the frequency of de novo variants, inclu-

sion of individuals with heterogeneous phenotypes is

likely to increase the phenotypic similarity of individuals
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Figure 5. Comparison of Statistical Significance for the Frequency of Observed De Novo Variants and Phenotypic Similarity in 41
Genes
The graph compares the statistical significance for 41 genetic etiologies for genetic and phenotypic evidence. The point size indicates the
number of individuals with de novo variants in each gene, and dashed blue lines represent�log10(0.05). Genetic evidence (x axis) reflects
the significance, which was assessed with denovolyzer, for observed de novo variants. Phenotypic evidence reflects phenotypic similarity
generated with simmax followed by permutation analysis (y axis). Contrasting genetic and phenotypic evidence allows for the compar-
ison of both approaches and identification where one method deviates from the expected correlation. For example, de novo variants in
KCNQ2 are present in nine individuals, but the phenotypic evidence is less thanwould be expected for genes with the same number of de
novo variants. This discrepancy might be due to incomplete phenotyping or the inability of the HPO to capture the defining features of
the disease correctly.
with the same underlying genetic etiology because gene-

related phenotypic features would become less frequent

and therefore more informative. We tested this hypothesis

by expanding our cohort to include 1,548 population con-

trols that were sequenced for de novo variants and not as-

signed HPO terms (Figure 6).32

We observed the expected reduction in statistical signif-

icance for de novo variants, whereas the statistical evidence

for phenotypic similarity increased. The trend continued

when we subsequently added simulated population con-

trols without de novo variants or phenotypic features.

These results indicate that methods assessing phenotypic

similarity may have an advantage in cohorts with hetero-

geneous phenotypes where genetic evidence based on

the frequency of de novo variants may be insufficient to

identify gene-disease associations. In these cohorts, the

statistical evidence derived from phenotypic similarity

may exceed the genetic evidence, particularly if future

studies can exploit deeper phenotype data.
The America
Discussion

In our study we assessed whether harmonization of sparse

and heterogeneous phenotypic data via the HPO is capable

of capturing associated clinical features and phenotypic

similarities. Our aim was to model the cognitive process

of recognizing gene-disease relationships through compu-

tational algorithms, providing a scalable method for

phenotype analysis in large datasets. We reasoned that

clinical features associated with distinct genetic etiologies

may be prominent enough to stand out from the pheno-

types in the larger cohort. We identified gene-specific

phenotypic signatures and found that, for 11 genetic

etiologies with de novo variants, the associated phenotypic

similarities were greater than expected by chance.

Because of a lack of consistent frameworks and tech-

niques, correlating clinical and genetic findings at scale re-

mains a major hurdle in biomedical research33 and, despite

attempts at standardization, phenotypic terminology
n Journal of Human Genetics 107, 683–697, October 1, 2020 691
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Figure 6. Addition of Controls Results in Increased Phenotype-Based Significance and Reduced Genotype-Based Significance
(A) On the basis of the initial cohort of 846 individuals with DEE, subsequent addition of 1,548 population controls sequenced for de
novo variants and without HPO terms results in a steady increase in the statistical significance of gene-based phenotypic similarity.
Inversely, statistical significance based on the frequency of observed de novo variants steadily decreases with the addition of controls.
(B and C) With additional simulated controls, significance based on phenotypic similarity eventually exceeds significance based on fre-
quency of de novo variants for CHD2 (B) and GRIN1 (C). The gray line indicates the critical cohort size when phenotypic significance
becomes more significant than genotype-based significance.
remains heterogenous. Concepts to harmonize clinical

phenotypic descriptions and to provide defined relation-

ships between individual terms attempt to address this

issue, and the HPO is one of the most frequently used

frameworks. We demonstrate that the structure of the

HPO can be used to harmonize phenotypic data across co-

horts, including all major studies in the field of epilepsy

research where trio exome data has been generated and

where phenotypic features have been systematically

captured. We further demonstrate that this conceptual

framework can be used to operationalize previously vague

concepts, such as phenotypic depth. For example, we find

that the EPGP/Epi4K cohort only has a median of nine

assigned phenotypic terms compared to themanually phe-

notyped EGRP cohort, which has a median of 13.5 pheno-

typic terms, translating into a median difference in IC of

131.9 (Figure 1, inset). Such concepts may help advance

the understanding on how quality and quantity of pheno-

typic data associated with large genomic datasets can be

measured and evaluated.

We find that the gene-phenotype associations identified

in the harmonized clinical data correspond to the known

phenotypic features in many of the genetic etiologies

that are included in our study. For example, the most sig-

nificant HPO terms associated with SCN1A accurately

reflect the clinical spectrum of Dravet syndrome34–36

even though none of the individuals included in the study

were primarily diagnosed with this condition given that
692 The American Journal of Human Genetics 107, 683–697, Octobe
the included data resources (EPGP/Epi4K and EuroEPI-

NOMICS) were gene-discovery studies that excluded indi-

viduals with known genetic diagnoses.24 Likewise, the

phenotypic spectrum linked to STXBP1 with ‘‘absent

speech’’ (HP: 0001344; p ¼ 1.31 3 10�11) and ‘‘truncal

ataxia’’ (HP: 0002078; p ¼ 7.03 3 10�5) reflects known

phenotypic associations,37 as does the association of

SCN2A with ‘‘autistic behavior’’ (HP: 0000729; p ¼
0.0079),38–41 DNM1 with ‘‘obtundation status’’ (HP:

0011151; p ¼ 0.00058),11,42 and KCNQ2 with ‘‘neonatal

onset’’ (HP: 0003623; p ¼ 1.39 3 10�6).43–45

We next evaluated whether the phenotypic terms linked

to specific genetic etiologies were sufficiently strong for a

gene-specific phenotypic signature to emerge. We applied

two algorithms based on the MICA concept, assessing pair-

wise phenotypic similarities between individuals through

the combination of the most specific terms shared by

both individuals.29 Although both our algorithms are based

on slightly different strategies, we find convergence for both

concepts—both our simmax and simcm measures identify at

least ten distinct genes associated with phenotype features

more similar than expected by chance. Given that all indi-

viduals included in our study had epilepsy or neurodevelop-

mental disorders, we conclude that phenotypic features

associated with genetic etiologies, including SCN1A,

STXBP1, SLC6A1, AP2M1, and KCNB1, are not only similar

per se, but they are also sufficiently similar to be identified

within a cohort of individuals with related phenotypes.
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Table 1. HPO Terms Required to Reach a PPV of at Least 80% for Genetic Etiologies in the Cohort

Gene PPV
Number
of Terms

Cumulative
Frequency

Individuals
with Etiology HPO ID HPO Term Frequency

DNM1 0.80 4 0.41 5 HP: 0012444 brain atrophy 0.80

HP: 0007367 atrophy/degeneration affecting the CNS 0.80

HP: 0002977 aplasia/hypoplasia involving the CNS 0.80

HP: 0010847 EEG with spike-wave complexes (<2.5 Hz) 0.80

KCNB1 0.81 5 0.070 6 HP: 0011442 abnormality of central motor function 0.83

HP: 0011443 abnormality of coordination 0.50

HP: 0000729 autistic behavior 0.50

HP: 0000708 behavioral abnormality 0.67

HP: 0000234 abnormality of the head 0.50

SCN1A 0.90 5 0.23 16 HP: 0002373 febrile seizures 0.81

HP: 0002069 generalized tonic-clonic seizures 0.94

HP: 0003593 infantile onset 0.81

HP: 0010850 EEG with spike-wave complexes 0.75

HP: 0011153 focal motor seizure 0.50

STXBP1 0.87 5 0.63 14 HP: 0002167 neurological speech impairment 0.86

HP: 0000750 delayed speech and language development 0.86

HP: 0001263 global developmental delay 1.00

HP: 0011446 abnormality of higher mental function 0.86

HP: 0012758 neurodevelopmental delay 1.00

AP2M1 0.86 6 0.18 4 HP: 0001252 muscular hypotonia 0.75

HP: 0000750 delayed speech and language development 0.75

HP: 0011463 childhood onset 0.75

HP: 0010819 atonic seizures 0.75

HP: 0000708 behavioral abnormality 0.75

HP: 0003808 abnormal muscle tone 0.75

CHD2 0.84 6 0.12 4 HP: 0002133 status epilepticus 0.75

HP: 0011463 childhood onset 0.75

HP: 0000708 behavioral abnormality 0.75

HP: 0001249 intellectual disability 0.75

HP: 0002373 febrile seizures 0.50

HP: 0002123 generalized myoclonic seizures 0.75

For each genetic etiology in the cohort, the number of terms needed to reach a positive predictive value (PPV) of at least 80% was calculated. Displayed are all
etiologies that required 6 terms or less to reach this threshold. HPO terms and their frequency within each genetic etiology are displayed.
Given that we used the example of Rett Syndrome as an

introduction to the conceptual framework of phenotypic

similarity, we performed a simulation to test whether the

phenotypic similarity between six individuals with Rett

Syndrome would appear significant if they were added to

our existing dataset (Figure S3 and Supplemental Notes).

In our simulation, although these four individuals with

hypothetical MECP2 de novo variants would not be signifi-

cantly similar if only a single term is added (‘‘stereotypical
The America
hand wringing’’ [HP: 001217]), these individuals will have

significant phenotypic similarity when two phenotypic

terms are assigned (‘‘stereotypical hand wringing’’ [HP:

0012171] and ‘‘developmental regression’’ [HP: 0002376],

p ¼ 0.05) or when four phenotypic terms are assigned

(‘‘stereotypical hand wringing’’ [HP: 0012171], ‘‘develop-

mental regression’’ [HP: 0002376], ‘‘absent speech’’

[HP:0001344], and ‘‘apraxia’’ [HP:0002186], p ¼ 0.002).

This hypothetical example highlights that our approach
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can recapitulate the clinical recognition of specific pheno-

types, such as Rett Syndrome.

To demonstrate the role of phenotypic homogeneity on

the results of our study, we assessed how the inclusion of

actual and simulated control individuals would affect the

results of our study. We find that the phenotypic distinc-

tiveness of all genetic etiologies increases with the

inclusion of controls, whereas the probability of n de

novo variants decreases. We further demonstrate that,

with sufficient numbers of controls, the significance

derived from our phenotypic similarity analysis will sur-

pass the significance derived on the basis of the probability

of de novo variants, evenwhen using sparse phenotypic fea-

tures. This emphasizes the utility of methods based on

phenotypic similarity when assessing the causative role

of rare genetic changes in large cohorts. Such methods

may be useful for identifying individuals with extremely

rare monogenic causes when analyzing population-based

studies or entire healthcare systems.

Our phenotypic similarity analysis also showed several

unexpected findings. Several genetic etiologies with rela-

tively homogeneous phenotypes did not demonstrate the

degree of phenotypic similarity that would have been ex-

pected. Most prominently, individuals carrying de novo var-

iants in KCNQ2 did not show more phenotypic similarity

than expected by chance. This finding is surprising given

that clinical features in individuals with KCNQ2-related dis-

orders are strikingly similar given the almost universal

seizure onset in the neonatal period. A total of 45 HPO

terms, including ‘‘neonatal onset’’ (HP: 0003623), ‘‘EEG

with burst suppression’’ (HP: 0010851), ‘‘epileptic encepha-

lopathy’’ (HP: 0200134), ‘‘encephalopathy’’ (HP: 0001298),

and ‘‘gastroesophageal reflux’’ (HP: 0002020), were nomi-

nally associated with KCNQ2. We reviewed the phenotypic

terms contributing to the nine individuals with KCNQ2-

related disorders and found that the ten most strongly asso-

ciated phenotypic terms were absent in three individuals

(EIEE49, EPGP011188, and EPGP015469). In two of these

individuals, we observed a very low depth of phenotyping.

Individuals EIEE49 and EPGP015469 only had four and six

phenotypic terms assigned, respectively, whereas the seven

other individuals with de novo variants in KCNQ2 had a me-

dian of 11 assigned HPO terms. This observation suggests

that the lack of similarity in individuals with KCNQ2 may

be due to incomplete phenotyping rather than true pheno-

typic variation. As expected, when we added missing

phenotypic terms to the three individuals, the overall

phenotypic similarity became significant. The phenotypic

similarity for all nine individuals reached p ¼ 0.008 when

adding the top three terms and p¼ 5.03 10�5 when adding

the top ten terms associated with KCNQ2 missing in indi-

viduals EIEE49, EPGP011188, and EPGP015469.

The ability to pinpoint the lack of phenotypic similarity

to individual factors, such as incomplete phenotyping,

may highlight a strength of our approach—by harmonizing

phenotypic information into a common format, it becomes

possible to dissect phenotypes in individual genetic etiol-
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ogies and identify sets of clinical features that drive the

observed phenotypic similarity. However, the KCNQ2

example also highlights the need for methods that ensure

that phenotypes are encoded uniformly and in an exhaus-

tivemanner. Although the overall framework of the HPO al-

lows for both detailed and shallow datasets to be merged

and analyzed jointly, it is a conceptual weakness of the

HPO that phenotype quality and certainty cannot be en-

coded. Because it will remain conceptually challenging to

distinguish incomplete phenotyping from truly absent phe-

notypes, quality measures and standard operation proced-

ures for phenotypes will be required to ensure that the

already heterogeneous phenotype data is not confounded

as a result of low-quality phenotyping data.

Our study had several limitations. We observed a range

of phenotypic terms assigned to the individuals and a sig-

nificant difference among the different cohorts included:

the EGRP cohort was significantly more deeply pheno-

typed compared to the EPGP/Epi4K or EuroEPINOMICS

cohorts. Given the difference in phenotyping depth

within and between cohorts, key aspects of the clinical pre-

sentation in some individuals may be incomplete, thus

limiting the capacity of the similarity algorithms to iden-

tify individuals with shared features. Furthermore, the

phenotypic features captured for an individual may only

capture thosemanifesting by the age at last data collection.

For example, individuals with loss-of-function variants in

SCN2A typically present with developmental delay and

autism, and seizures are frequently observed only after

the age of two. Consequently, for younger individuals, sei-

zures may not be recorded. In the EGRP sub-cohort in

which age of recruitment was systematically recorded in

151/192 individuals, 30/151 individuals were recruited

and phenotyped before the age of two. Accordingly,

phenotypic similarities due to clinical features with later

onset would not be able to be detected in this cohort. How-

ever, this limitation in recruitment strategy and data

collection applies to traditional phenotypic analyses. We

expect that more thorough longitudinal phenotypic de-

tails will be made available in the future through improved

methods of extracting clinical information from electronic

medical records, including advanced natural language pro-

cessing and corrections for age-dependent phenotypic

features.

A further limitation of our studywas our reliance on retro-

spective data and that there may have been bias on how cli-

nicians assigned HPO terms on the basis of their knowledge

or assumption of the underlying genetic cause. Althoughwe

cannot exclude such an effect in the EGRP cohort, both the

EPGP and RES cohorts were phenotyped prior to

sequencing and HPO term assignment was not performed

knowing the individuals’ genotypes. Despite this blinding,

we cannot exclude that clinicians may have been biased to-

ward an assumed underlying genetic diagnosis.

In summary, we demonstrate that an HPO-based frame-

work is capable of bridging and harmonizing phenotypic

data across various clinical datasets that were captured
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alongside large sequencing projects in the epilepsies.

Although clinical data is heterogeneous and sparse, the

mapping of features to a common ontology allows for

the detection of frequently associated clinical features.

The subsequent use of phenotypic similarity algorithms

enables the detection of significant clinical similarities be-

tween individuals with shared genetic etiologies. These

methods provide independent statistical evidence for dis-

ease causation and can be viewed as an extension of the

clinical-genetic approach of defining disease entities

through phenotypic resemblance. Given the increasing

amounts of deep phenotypic data available for systematic

analysis, methods that use computational phenotypes

have the potential to identify novel genetic etiologies,

particularly in situations when individuals have distinct

phenotypic features and when the causative genetic etiol-

ogy is rare.
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