Table 13.
Mean (SD) of the performance metrics, for the female subjects’ classification models.
| Algorithms | MAEa (years), mean (SD) | Accuracy, mean (SD) | RMSEb (years), mean (SD) | AUCc, mean (SD) | Precision, mean (SD) | Recall, mean (SD) |
| Decision tree | 1.31 (0.09) | 0.28 (0.02) | 1.78 (0.13) | 0.80 (0.02) | 0.56 (0.05) | 0.82 (0.09) |
| Random forest | 1.29 (0.10) | 0.30 (0.03) | 1.77 (0.10) | 0.79 (0.02) | 0.59 (0.13) | 0.74 (0.17) |
| Support vector machine | 1.21 (0.06) | 0.32 (0.04) | 1.68 (0.06) | 0.80 (0.01) | 0.55 (0.07) | 0.71 (0.11) |
| Multi-layer perceptron | 1.36 (0.24) | 0.30 (0.02) | 1.85 (0.37) | 0.77 (0.02) | 0.60 (0.11) | 0.63 (0.22) |
| K-nearest neighbors | 1.41 (0.12) | 0.30 (0.02) | 1.96 (0.12) | 0.76 (0.03) | 0.55 (0.07) | 0.61 (0.18) |
| Naïve bayes | 1.74 (0.23) | 0.22 (0.02) | 2.23 (0.27) | 0.65 (0.03) | 0.58 (0.06) | 0.82 (0.09) |
aMAE: mean absolute error.
bRMSE: root mean squared error.
cAUC: area under the curve.