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We thank Aaron Ragsdale, Dominic Nelson, and Simon Gravel for identifying a coding error in the setup of the demo-

graphic simulations shown in Figure 5 that changed the magnitude of simulation results regarding population differ-

ences. The interpretation of Figure 5 that polygenic risk scores do not generalize well across populations remains the

same, although themagnitude of differences shown in Figure 5C are considerably diminished (see Ragsdale et al.1 Figure 2

in this issue of AJHG for an update).

The code used for these original simulations is publicly available at the following web address: https://github.com/

armartin/ancestry_pipeline/blob/master/simulate_prs.py. In this code, there were three main steps in setting up the de-

mographic component of the simulation, and the error occurred in the third step.
1. The code specified a demographic model from a previous study2 that reflects the inferred history of African, East

Asian, and European ancestry populations in the 1000 Genomes Project according to msprime’s documentation

(note that Ragsdale et al.1 ‘‘Case #1’’ also identified a subtle model misspecification carried forward from the docu-

mentation of msprime, but it had little practical effect). This model of population history consisted of three main

parameters: (1) population configurations (this specifies sample sizes, the initial population size, and growth rates),

(2) migration matrices (this specifies the migration parameters among the 3 pairs of populations), and (3) demo-

graphic events (this specifies mass migration events [e.g., historical merging of these three populations], migration

rate changes, and timings of these events).

2. The model setup was checked with parameters confirmed with msprime debugging tools.

3. The population configurations andmigrationmatrices were then passed into the simulation used in the generation

of Figure 5. However, these demographic event parameters (1.3 above) were erroneously not passed on to the

simulation.

The error introduced by failing to pass the demographic event parameters resulted in three simulated populations that

did not merge in the past. Instead the three modeled populations remained isolated with low levels of migration between

each pair. Consequently, the simulated populations were much more genetically differentiated than is realistic in hu-

mans. Ragsdale et al.1 have rerun these simulations with the demographic model specifications that we intended to

use and found that the differences inferred in PRS distributions across populations in Figure 5B are vastly diminished

compared to our results.

This error did not affect any other figures or empirical results in this article, and we originally interpreted Figures 4 and 5B

as providing consistent empirical- and simulation-based evidence, respectively, for significant mean shifts in inferred PRS

across populations relative to the true underlying distribution. The empirical findings that PRS predictions vary across

populations have also been borne out in considerable empirical work based on data from diverse biobanks not available

at the time of this paper’s publication.3

The updated simulation analysis calls into question our original interpretation that genetic drift alone can explain nearly

all of the differences. In work conducted since this paper’s publication, several additional factors beyond linkage disequi-

librium and allele frequency differences across populations have further highlighted how challenging the issues of PRS

generalizability are. Some issues that have been explored further include residual population stratification in genome-

wide association studies (GWASs), winner’s curse, cohort ascertainment effects, background and negative selection,

gene x gene and gene x environment interactions, and other complex factors.3–12 Early evidence suggests that the relative

quantitative contributions of these factors can be trait-, population-, and context-specific,10,11 highlighting that calibra-

tion of PRS ought to jointly consider these complexities.
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Recent work has found variability in themagnitude of differences among PRS distributions across populations depending

on the study in which GWAS summary statistics were derived.7,8 We have now further considered the fact that Figure 4 in

our publication showed the most pronounced PRS differences for height across populations, which were calculated with

GWAS summary statistics from GIANT. The more recent work showed that GWASs of height from GIANT produced large

differences in polygenic score distributions across populations but that these differences are substantially attenuated

when using GWASs from the UK Biobank.7,8 In-depth analyses by these studies indicate that residual population strat-

ification in GIANT summary statistics arising frommeta-analysis of smaller, heterogeneous cohorts produced larger than

expected distributional differences across populations. Taken together, these results hint that the inferred PRS distribu-

tion is not necessarily expected to vary substantially across populations provided that the discovery cohort is very well

controlled for population structure. However, this standard is not routinely met by GWASs, and this suggestion also

needs to be examined further; specifically, a more recent study using relatively homogeneous data from the Finnish pop-

ulation harmonized in a manner similar to the UK Biobank still found evidence of overpredicted differences across

the country.9 Overall, these complexities indicate that interpreting differences in polygenic scores across populations

is non-trivial.

The simulations in this study provided an early guide for how we think about PRS differences across populations, and we

regret that this error produced an oversimplified explanation to large inferred differences across populations. Since this

study’s publication, a community-maintained repository of demographic models has been developed in stdpopsim with

quality-control procedures in place to potentially prevent such modeling implementation mistakes in the future.13 The

central message that human history impacts PRS remains unchanged, as do implications that large studies encompassing

more diverse ancestries are needed tomore equitably increase PRS accuracies.We thank our colleagues for identifying this

error and helping correct the record. Although this error was unfortunate, its identification and correction are testament

to the power of open science and public sharing of code and data.
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