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Lessons Learned from Bugs
in Models of Human History

Aaron P. Ragsdale,1 Dominic Nelson,1 Simon Gravel,1,3,* and Jerome Kelleher2,3,*

Simulation plays a central role in population genomics studies. Recent years have seen rapid improvements in software efficiency that

make it possible to simulate large genomic regions for many individuals sampled from large numbers of populations. As the complexity

of the demographicmodels we study grows, however, there is an ever-increasing opportunity to introduce bugs in their implementation.

Here, we describe two errors made in defining population genetic models using the msprime coalescent simulator that have found their

way into the published record. We discuss how these errors have affected downstream analyses and give recommendations for software

developers and users to reduce the risk of such errors.
In the effort to build more realistic

simulations of genetic diversity, scien-

tific software developers often focus

on computational speed and biolog-

ical realism. As the models simulated

become more realistic, however, they

also become more complex and diffi-

cult to specify. The interface through

which users define their models

is therefore increasingly important.

Without an intuitive and thoroughly

documented interface, it is very diffi-

cult to simulate complex population

models correctly.

The msprime coalescent simulator1–3

is now widely used in genetics studies.

Much of its appeal is the large increase

in efficiency over the classical ms

program,4 which makes it feasible to

simulate large samples of whole chro-

mosomes for the first time. Another

distinct advantage of msprime is its Py-

thon application programming inter-

face (API), which greatly increases the

flexibility and ease of use over the stan-

dard approach of text-based command

line interfaces. In particular, programs

like ms require users to specify cryptic

command line options to describe de-

mographic models. For example, the

Gutenkunst et al.5 demographicmodel

(which is the subject of this note), as

written inms syntax, is shown inFigure

1A. Thismodel is relatively simple, and

models with many more populations

and parameters are increasingly com-

mon. Descriptions of such models in
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ms syntax are not easy to comprehend.

The Python interface for msprime, by

contrast, allows theuser to statemodels

in a more human-readable and pro-

grammatic manner and has many

advantages over ms’ command line

interface.

Even when using a high-level pro-

gramming language like Python, how-

ever, implementing multi-population

models of demographic history is diffi-

cult and prone to error. In this note, we

discuss two implementation errors that

arose through unfortunate design deci-

sions inmsprime’s demographyAPI and

that then found their way into the sci-

entific record. The first error has rela-

tively mild effects on genetic diversity

but was used in many publications,

whereas the second error was used

only once but had a large impact on

the simulation results. In light of these

implementation errors, we discuss im-

provements tomsprime’s APImotivated

by these discoveries and, more gener-

ally, best practices for implementing

and simulating complexmulti-popula-

tion demography.

Case 1: A Misspecified Model in

msprime’s Documentation

To illustrate the demography API,

msprime included a description of a

widely used three-population Out-

of-Africa model5 as part of its

tutorial documentation. In this model

(Figure 2A), Eurasian (CEU and CHB)
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and African (YRI) populations split

from each other in the deep past,

followed by a more recent split of Eu-

ropean and Asian populations with

variable rates of continuous migration

between each of the populations.

Regrettably, the implementation in

the msprime tutorial was incorrect.

Before the time of the split of African

and Eurasian populations, when there

should have been just a single

randomly mating population, migra-

tion was allowed to occur between

the ancestral population and a second

population with size equal to the

Eurasian bottleneck size for all time

into the past (Figure 2B). This incor-

rect model was introduced into the

tutorial for msprime version 0.3.0 and

remained in the documentation for

around 4 years.

Fortunately, the effects of this error

are subtle. Population sizes and struc-

ture since the time of the earliest split

are unaffected, so differences in ex-

pected FST are negligible between

the correct and incorrect models.

However, the ancient structure

distorts the distribution of early

TMRCAs (times to most recent com-

mon ancestor) (Figures 2E–2G). The

extraneous ancient population in-

creases the long-term effective popu-

lation size, resulting in roughly 4%

excess heterozygosity in contempo-

rary populations compared to the in-

tended model, but the overall effects
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Figure 1. Implementations of Demography in Coalescent Simulations
(A) The Gutenkunst et al. (2009)5 human expansion model as written in ms syntax.
(B) The same human expansion model with demographic events written in msprime
syntax. In earlier versions of the msprime documentation, the highlighted line 17 was
missing, so population structure erroneously continued into the past.
(C) A simulation of this model in Martin et al. (2017)6 omitted demographic events in the
simulation function (highlight). This omissionmeant that populations remained distinct
in the distant past and had excess FST .
(D) In msprime version 1.0, models will be specified so that population configurations
and demographic events are coupled, reducing the possibility of making such errors of
omission.
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on patterns of diversity are minimal

(Figures 2C and 2D).

Even though the error has a limited

effect on simulated data, the tutorial

code has been copied many times

and used in publications. By searching

for some identifying strings from the

model definition on GitHub, we

found 32 repositories containing

either direct copies of the erroneous

model code or code that was obvi-

ously derived from it (we have opened

issues on each of these repositories to

alert the authors). In most cases,

the publications used simulations to

test a non-demographic inference

method, such as inferring gene gene-

alogies from sequencing data,7 deter-

mining the age of a genetic variant,8

or studying the power of variant asso-

ciation tests.9 In each of these studies,

this model was used as an example of

a complex population history. Zhou

et al.10 used the incorrect model as

an example of how their method for

visualizing demographic models can

support msprime input. Finally, Pfaf-

felhuber et al.11 used simulations of

the incorrect model demography to

evaluate their method for choosing

ancestry-informative markers. Given

the very subtle effect of the incorrect

model on demography (and the fact

the method was evaluated with other

simulations and real data), it seems

unlikely that the model details had

any qualitative effect on their conclu-

sions.

This long-standing error could have

been prevented by better API design.

To model a population split currently

in msprime, a user must specify a

‘‘MassMigration’’ event that moves

lineages from one population to

another and thenmust also remember

to turn off migration between those

populations at the same time. The de-

mographic events for the correct

model are given in Figure 1B. Note

that the migration rate change on

line 17 was missing in the incorrect

model. The release of msprime version

1.0 will introduce a ‘‘PopulationSplit’’

event, which more intuitively links

the movement of lineages with appro-

priate changes in migration rates at

the time of the split.
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Figure 2. Expected Diversity Statistics under the Gutenkunst et al. Model
(A) The correctly implemented model. Dashed arrows depict continuous migration.
(B) The incorrectly implemented model from the msprime tutorial with migration continuing into the past beyond the mass migration
event with proportion 1 from the ancestral population to the bottleneck population.
(C) Marginal allele frequency spectra under the two models. Heterozygosity in the incorrect model is inflated by � 3:5%, although the
general shapes of the distributions are qualitatively similar.
(D) Similarly, the increased heterozygosity leads to excess D2, although the LD-decay is qualitatively similar between models.
(E–G)We compared the true size history for each population under this model to their expected inverse coalescent rates, which are often
interpreted as Ne. The correct and incorrect models (A and B) are equivalent in the recent history, so the inverse coalescence rates only
differ in the more distant past. For multi-population demographic history, the inverse coalescence rates are not expected to match the
‘‘true’’ historical size along each branch because population structure and migration between populations change coalescent probabil-
ities over time.
Case 2: Incorrect Model Parameters

in an Analysis Pipeline

In another publication using this

model,6 a separate error was intro-

duced: the model itself was defined as

suggested in the documentation (with

updated parameters from Gravel

et al.12) and inspected with the
msprime debugging tools. Despite

these initial checks, the simulation

was performed without passing the

list of demographic events, such as

historical changes in size or population

splits, so that the three populations

never merged and remained sepa-

rated with low levels of migration
The American Journal of Human Ge
(Figure 3A). This leads to a vast overesti-

mate of the divergence across human

populations. Although the correct

model predicts a mean FST of

0:05� 0:10 across the three popula-

tions, the simulated model generated

FST ranging between0:3� 0:6, depend-

ing on the populations considered.
netics 107, 583–588, October 1, 2020 585
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Figure 3. The Transferability of Polygenic Risk Scores (PRSs) under Neutrality
(A) In Martin et al.,6 the simulated demographic model did not apply demographic events in the past, so continental populations were
simulated as isolated with low levels of migration for all time. The correct model has historical events as shown in Figure 2A.
(B–G) We repeated the simulation experiment in Martin et al.6 by using the correct demographic model. GWAS summary statistics
were computed from 10,000 case and control subjects in the European population, and the distribution of inferred PRSs was compared
across the three simulated populations. Correlations between true and inferred polygenic scores were computed over 100 simulation
replicates. Unlike the original study, we do not observe large differences in mean inferred PRS across the three populations (C and D),
and although risk prediction in the African and East Asian populations is still reduced compared to the European population, the
reduction in prediction accuracy is not as large as reported in the original study (E–G). (B) and (C) show the distribution of true
and inferred PRSs after standardizing PRSs across all individuals in the simulation (this is in contrast to Figure 5 in Martin et al., which
plotted unstandardized PRS6). Because the polygenic trait was simulated as a threshold trait, it is the relative distribution of PRSs across
individuals that determined cases and controls instead of absolute true or inferred PRS. (D) shows a comparison of PRS distributions for
a simulation replicate with 1,000 causal variants. For each population in the violin plots, the original correlations from Martin et al.6

are shown on the left, and correlations via the correct model are shown on the right. For direct comparison to the original study, see
Figure 5 in Martin et al.6 Box plots show median, first and third quartiles, and 95% intervals.
Overall diversity was also strongly

affected: heterozygosity was more

than doubled in African populations

and reduced by more than half in

Eurasian populations relative to the

correct model.

This simulation was performed to

assess the transferability of polygenic

risk scores across human populations.

In other words, it sought to explore

how human demographic history

and population structure affect our

ability to predict genetic risk in

diverse populations given the well-

documented unequal representation

in medical genetic studies.13 The re-

sulting publication has been influen-

tial in the discussion of health in-
586 The American Journal of Human Genetics
equalities and genomics: it has been

cited over 350 times since 2017. The

large excess in divergence under the

incorrect model here exaggerated the

role of demography and genetic drift

in limiting the transferability of ge-

netic risk scores across populations.

Difficulties in transferability remain

in the corrected model (Figure 3),

although risk prediction in each pop-

ulation is significantly improved

(compare to Figure 5 in Martin et al.6

). Simulations under the correct

model indicate that the accuracy of

genetic risk scores is still substantially

reduced in understudied populations

(Figures 3E–3G), supporting one of

the main conclusions of Martin
107, 583–588, October 1, 2020
et al.6 However, the reduction is

much less pronounced than reported.

In particular, we do not observe large

differences in mean predicted risk

across populations (Figures 3C and

3D) that were present in data and sim-

ulations from Martin et al.6 Thus, a

model with continental-scale demo-

graphic structure, highly polygenic ar-

chitecture, and neutral evolution does

not appear to explain the large direc-

tional biases in mean predicted risk

identified in Martin et al.6

Froma softwareperspective, this error

was easy to make and could have been

preventedbybetterAPIdesign.Theorig-

inal msprime API requires the user to

pass three separateparameters to specify



a demographic model (see example in

Figure 1C). Note that the same three pa-

rameters must be passed to both the

debugger and the simulate function.

To help prevent such errors, msprime

version1.0will introduceademography

class. The above snippet would then be

rewritten (approximately) as shown in

Figure 1D. This simple change to the

interface makes it much less likely that

different models are passed to the

debugger and simulator, reducing the

potential for error.

Conclusions

The implementation of complex de-

mographic models is error prone, and

such errors can have a large impact

on downstream analyses and interpre-

tation. Thediscovery and correctionof

the demographic models discussed

here underscore how API design

choice can lead to the propagation of

mistakes that are difficult to notice.

There are myriad other ways to get

models slightly or very wrong. Migra-

tion rates canbe set in thewrongdirec-

tion, for example, and parameters can

be rescaled incorrectly when a new

mutation rate is used. We therefore

recommend the following steps to

ensure more robust simulations.

First, if possible, we recommend

using the stdpopsim14 library, which

removes the need to re-implement

demographic models from scratch.

This is a ‘‘standard library’’ of qual-

ity-controlled models and simulation

resources for a growing number of

commonly studied species. The

resource is built around an open-

source community development

model with rigorous code review

and quality control (QC) procedures.

For example, when a contributor

adds a new model, it is not fully inte-

grated into the catalog until a second,

entirely independent, implementa-

tion of the model is provided by

another developer. If the original

and ‘‘QC’’ versions of the model are

precisely equal, then we can have a

reasonable degree of confidence in

correctness. It is through this QC

process that we discovered the mis-

specified model in msprime’s docu-

mentation. However, stdpopsim has
QC-verified models available for

only a handful of published models

and species, so it might not meet

the needs of a particular simulation

study. If the required model is not

present in stdpopsim, then extra

care should be taken to validate the

implementation. This could include

verification through code review or

comparison with an independent im-

plementation of the model. If the

model is of wider interest to the com-

munity, we would encourage devel-

opers to contribute it to stdpopsim;

at the very least, the QC procedures

in place provide a strong reassurance

of correctness.

Second, regardless of whether the

model has been implemented locally

or obtained from a resource like

stdpopsim, basic statistical validation

should always be performed on the re-

sults. Errors are all too easy to make,

and an analysis of the basic statistical

properties of the simulations is essen-

tial due diligence. For example, a brief

analysis of FST values most likely

would have prevented the error in

Martin et al.6 It is understandable

that such analyses were not under-

taken in this case because processing

such a huge dataset (600,000 samples)

was highly challenging. Recent prog-

ress has made statistical analysis at

this scale much easier15 so that FST ,

heterozygosity, the allele frequency

spectrum, or the distribution of coa-

lescence times can be rapidly

computed. However, the problems

would have been apparent if pilot

simulations with smaller sample sizes

were undertaken and analyzed

because simulations and analysis of

small samples sizes are very efficient.

Graphical inspection of demographic

models can also help identify issues,

especially if visualization can be auto-

mated. The demography debugging

tool in msprime summarizes demo-

graphic events occurring over time,

and various efforts are underway to

facilitate the specification and visuali-

zation of population genetics models,

such as Zhou et al.10 and the demog-

raphy package used in this paper.

Finally, openness is essential to the

self-correcting nature of science. We
The American Journal of Human Ge
only know about these errors

because of open code and open-

source development processes. By

making their entire pipeline avail-

able, Martin et al.6 not only enabled

other research teams to build upon

their findings, but they also made it

possible for errors to be found and

corrected. There must be many,

many more mistakes out there, and

we need both pre- and post-publica-

tion vigilance from users and devel-

opers to ensure the soundness of

the large body of simulation-based

analyses.
Data and Code Availability

We computed the expected allele fre-

quency spectrum (AFS) by using mo-

ments version 1.0.316 and LD-decay

curves by using moments.LD.17 FST
and other diversity statistics were

computed from the expected AFS and

verified with branch statistics from

the output of msprime simulations us-

ing tskit version 0.2.3.15 Demographic

models were plotted with the

demography package written for Py-

thon (https://github.com/apragsdale/

demography, version 0.0.3). The

demography package allows users to

define a demographic model as a

directed acyclic graph using net-

workx,18which canbeplotted as in Fig-

ures 2A, 2B, and 3A. Demography also

can translate the graph-based demog-

raphy into msprime input commands

or simulate the AFS or two-locus statis-

tics by usingmoments16,17 or dadi.5 For

the analysis of polygenic risk, we used

the original pipeline from Martin

et al.6 available from https://github.

com/armartin/ancestry_

pipeline/blob/master/simulate_prs.py.

Weupdated thepipeline to runwith the

correct demographic parameters and

more recent versions of msprime and

tskit, and the updated pipeline is avail-

able at https://github.com/apragsdale/

PRS.Data and Python scripts to recreate

Figures 2 and 3 can be found at https://

github.com/jeromekelleher/msprime-

model-errors. A full list of the GitHub

repositories containing copies of the

erroneous model are also given here.
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