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Summary
Transcriptome-wide association studies (TWASs) have been widely used to integrate gene expression and genetic data for studying com-

plex traits. Due to the computational burden, existing TWASmethods do not assess distant trans-expression quantitative trait loci (eQTL)

that are known to explain important expression variation for most genes. We propose a Bayesian genome-wide TWAS (BGW-TWAS)

method that leverages both cis- and trans-eQTL information for a TWAS. Our BGW-TWASmethod is based on Bayesian variable selection

regression, which not only accounts for cis- and trans-eQTL of the target gene but also enables efficient computation by using summary

statistics from standard eQTL analyses. Our simulation studies illustrated that BGW-TWASs achieved higher power compared to existing

TWAS methods that do not assess trans-eQTL information. We further applied BWG-TWAS to individual-level GWAS data (N ¼ �3.3K),

which identified significant associations between the genetically regulated gene expression (GReX) of ZC3H12B and Alzheimer demen-

tia (AD) (p value ¼ 5.423 10�13), neurofibrillary tangle density (p value ¼ 1.893 10�6), and global measure of AD pathology (p value ¼
9.593 10�7). These associations for ZC3H12Bwere completely driven by trans-eQTL. Additionally, the GReX of KCTD12was found to be

significantly associated with b-amyloid (p value ¼ 3.44 3 10�8) which was driven by both cis- and trans-eQTL. Four of the top driven

trans-eQTL of ZC3H12B are located within APOC1, a known major risk gene of AD and blood lipids. Additionally, by applying BGW-

TWAS with summary-level GWAS data of AD (N ¼ �54K), we identified 13 significant genes including known GWAS risk genes HLA-

DRB1 and APOC1, as well as ZC3H12B.
Introduction

Although genome-wide association studies (GWASs) have

identified thousands of variants associated with complex

traits over the past decades,1–5 most of these associations

are located within noncoding regions and the underlying

biological mechanisms by which these variants impact

a phenotype are unknown.6,7 Recent studies have

shown that GWAS associations were enriched for regula-

tory elements such as expression quantitative trait loci

(eQTL),8–10 suggesting that integrating transcriptomic

and genetic data could help identify key molecular mech-

anisms underlying complex traits.

One such integrative method is transcriptome-wide as-

sociation study (TWAS),11–13 which takes advantage of a

reference panel with profiled transcriptomic and genetic

data from the same individuals. A TWAS first utilizes such

reference data to fit an imputation regression model for

the expression quantitative trait of a target gene with

nearby genotypes (e.g., cis-SNPs within 1 MB region of

transcription starting site) as predictors, and then exam-

ines the gene-based association between the imputed

genetically regulated gene expression (GReX) and the

phenotype of interest. With fitted gene expression imputa-
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tion models from reference data, TWASs can be conducted

with test samples that have either individual-level or sum-

mary-level GWAS data.12–14 The SNPs with non-zero effect

sizes on reference transcriptome in the fitted imputation

models are referred to as broad sense ‘‘eQTL’’ in TWASs. Ex-

amples of publicly available reference data include the Ge-

notype-Tissue Expression (GTEx) project with transcrip-

tomic data for 54 human tissues,8 Genetic European

Variation in Health and Disease (GEUVADIS) for lympho-

blastoid cell lines,15 and North American Brain Expression

Consortium (NABEC) for cortex tissues.16

Essentially, a TWAS is equivalent to a burden type gene-

based test taking ‘‘cis-eQTL effect sizes’’ that are non-zero

coefficients of cis-SNPs from the fitted GReX imputation

model as their corresponding burden weights.11–13 By

weighting genetic variants using cis-eQTL effect sizes, a

TWAS assumes the effects of risk genes on the phenotype

of interest are potentially mediated through their tran-

scriptome variations. Recent studies of a wide range of

complex traits such as schizophrenia, breast cancer, and

Alzheimer dementia (AD)17–21 using TWASs have identi-

fied additional risk genes besides known GWAS risk loci,

demonstrating that additional significant associations

can be identified by TWASs.
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However, existing TWASmethods only use genetic data of

cis-SNPsof the target gene aspredictors tofit theGReX impu-

tation model.11–13 As shown by recent studies, trans-SNPs

(e.g., outside of the 1 MB region) of the target gene not

only explain a significant amount of variation for most

expression quantitative traits, but also often contain signifi-

cant trans-eQTL that are likely to inform molecular mecha-

nisms.22,23 Thus, usingboth cis- and trans-SNPs is likely to in-

crease the imputation accuracy of GReX and the power of

TWASs. Nonetheless, the enormous computational cost

required to fit �20K GReX imputation models for genome-

wide genes and �10M genotypes per tissue type makes the

routine use of existing TWASmethods impractical.

We propose a Bayesian genome-wide TWAS (BGW-TWAS)

method that accounts for both cis- and trans-SNPs based on

a Bayesian variable selection regression (BVSR) model24 for

imputing GReX. Our BGW-TWAS method circumvents the

current computational burden impeding TWASs by

enabling efficient computation via the scalable EM-

MCMC algorithm25 and the summary statistics of standard

eQTL analyses based on single variant tests. First, we

demonstrate the feasibility of this Bayesian approach by

simulation studies with varying proportions of true causal

cis- and trans-eQTL for expression quantitative traits. We

compared BGW-TWAS with several existing TWASmethods

including PrediXcan11 and TIGAR13 that assess only cis-

SNPs. Then we applied BGW-TWAS to clinical and postmor-

tem data from older adults with individual-level GWAS data

(N¼�3.3K)26 to study several clinical and pathological AD-

related phenotypes including clinical diagnosis of AD,

neurofibrillary tangle density, b-amyloid load, and a global

summary measure of AD pathology. Further, we compared

BGW-TWAS with alternative methods by using GWAS sum-

mary statistics for AD available from the International Ge-

nomics of Alzheimer’s Project (IGAP)27 (N ¼ �54K).

Our simulation studies revealed that BGW-TWAS

achieved higher TWAS power by considering both cis-

and trans-SNPs when trans-eQTL accounted for a non-

negligible proportion of transcriptome variance. Our

studies of human AD GWAS datasets identified several

risk genes associated with AD phenotypes that were driven

by trans-eQTL and thus not identified by alternative

methods. The software for implementing BGW-TWAS is

available freely on Github (see Web Resources).
Material and Methods

TWAS Procedure
The first step in a TWAS is to train an imputation model for pro-

filed gene expression levels using genotype data as predictors on

a per-gene basis.11–13 The general imputation model based on

linear regression is given by

E g ¼Xw þ e; (Equation 1)

where E g denotes the expression quantitative trait of the target

gene, centered and adjusted for non-genetic covariates; X denotes

centered genotype data; w denotes the corresponding ‘‘eQTL’’ ef-
The America
fect sizes for the target gene; and e is an error term following a

Nð0; s2e I) distribution. The intercept term is dropped for centering

both response (E g ) and explanatory (X) variables. With bw esti-

mated from the training data (i.e., reference data) that have both

transcriptomic and genetic data profiled for the same subjects, a

TWAS will test the association between the phenotype of interest

and the imputed GReX obtained from individual-level GWAS ge-

notype data ~X of the test cohort as follows

dGReX¼ ~X bw :

Bayesian Variable Selection Regression
Existing TWAS methods only consider SNPs within 1 MB of the

flanking 5’ and 3’ ends (cis-SNPs) in the gene expression imputa-

tionmodel (Equation 1).11–13 In order to leverage additional infor-

mation provided by trans-eQTL that are located outside the 1 MB

flanking region of the target gene, we utilize the Bayesian Variable

Selection Regression (BVSR)24 model to account for both cis- and

trans-SNPs as follows:

E g ¼Xciswcis þXtranswtrans þ e; ei � N
�
0; s2

e

�
: (Equation 2)

The BVSR model assumes a spike-and-slab prior distribution for

wi. That is, the prior onwi is a mixture distribution of a normal dis-

tribution with zero mean and a point-mass density function at 0.

In order to model potentially different distributions of the effect

sizes for cis- and trans-SNPs, we assume the following respective

priors,

wcis;i � pcisN
�
0; s2

ciss
2
e

�þ ð1�pcisÞd0ðwcis;iÞ;

wtrans;i � ptransN
�
0; s2

transs
2
e

�þ ð1�ptransÞd0ðwcis;iÞ; (Equation 3)

where ðpcis; ptransÞ denote the respective probability that the coeffi-
cient is non-zero and normally distributed, and d0ðwiÞ is the point
mass density function that takes value 0 when wis0 and 1 when

wi ¼ 0. Further, the following conjugate hyper prior distributions

are respectively assumed for the cis- and trans-specific parameters,

pcis � Betaðacis; bcisÞ; s2
cis � IGðk1; k2Þ;

ptrans � Betaðatrans; btransÞ; s2
trans � IGðk3; k4Þ; (Equation 4)

where IG indicates the Inverse Gamma distribution and hyper pa-

rameters ðacis; bcis; atrans; btrans; k1; k2; k3; k4Þ will be chosen to

enable non-informative hyper prior distributions (see Supple-

mental Material and Methods for model details).

To facilitate computation, a latent indicator gi is assumed such

that wi ¼ 0 if gi ¼ 0, and wi follows a normal distribution if

gi ¼ 1. Then the expected value of this indicator, E½gi�, represents
the posterior probability (PPi) for each individual SNP to have a

non-zero effect size (i.e., to be an eQTL of the target gene).24 More-

over, we propose a Bayesian approach to estimate GReX for test

samples that can account for the uncertainty for each SNP to be

an eQTL:

dGReX ¼
Xp

i¼1

Xi
� dPPi bwi

� �
; (Equation 5)

where fXi represents the genotype data of variant i for test samples

and (bwi, dPPi ) denote the estimate of effect size and posterior prob-

ability (PP) of having a non-zero effect size from the BVSR model

(Equations 2, 3, and 4) (see Supplemental Material and Methods
n Journal of Human Genetics 107, 714–726, October 1, 2020 715



for detailed Bayesian inference procedure). This Bayesian GReX es-

timate can then be used to conduct a TWAS with individual-level

GWAS data by testing the association between the imputed GReX

and the phenotype of interest.
BGW-TWAS with Summary-Level GWAS Data
With summary-level GWAS data that were generated by single

variant tests, we employed the S-PrediXcan14 approach to obtain

a burden TWAS Z-score test statistic, including not only cis- but

also trans-eQTL in the test. Let bbl denote the SNP effect size of

SNP l fromGWAS, SEð bblÞ denote the standard error of bbl , Zl denote

the Z-score statistic value by single variant test, bsl denote the esti-

mated standard deviation of the genotype data of SNP l from refer-

ence panel, and csg denote the estimated standard deviation of the

imputed expression of gene g from reference panel. The burden

TWAS Z-score test statistic for gene g is given by

Zg ¼
X

l˛Modelg

cwlg

bslcsg

bbl

SE
� bbl

�¼
X

l˛Modelg

cwlg

bslcsg

Zl ¼
X

l˛Modelg

�cwlg bsl

�
Zlffiffiffiffiffiffiffiffiffiffiffiffiffiffibw 0

V bwp ;

cs2
l ¼ Var xlð Þ; cs2

g ¼ bw 0
V bw; V ¼ Cov Xð Þ;

where dwlg ¼ dPPi bwi is the product of posterior probability for SNP l

to have non-zero eQTL effect size from the BVSR model (Equation

2). Here, X denotes the genotype matrix of analyzed SNPs from

reference panels of the same ethnicity and V denotes the corre-

sponding genotype covariance matrix.
Efficient Computation Techniques
In theory, the estimates of eQTL effect sizes and corresponding

posterior probabilities (bwi, dPPi ) can be obtained by using a stan-

dard Markov Chain Monte Carlo (MCMC)28 algorithm. However,

in practice, the computation burden for modeling genome-wide

genotype data is nearly impossible because of enormous required

memory capacity and slow convergence rate for MCMC. To

circumvent these practical limitations, we employ several tech-

niques to enable computational efficiency such that BGW-TWAS

method can be deployed to leverage both cis- and trans-eQTL in-

formation in practice. In particular, we adapt a previously devel-

oped scalable expectation-maximization Markov Chain Monte

Carlo (EM-MCMC) algorithm.25 Unlike the original EM-MCMC al-

gorithm requiring individual-level GWAS data, we can reduce up

to 90% of the computation time by adapting the EM-MCMC algo-

rithm to utilize only summary statistics, including the pre-calcu-

lated linkage disequilibrium (LD) coefficients and score statistics

from standard eQTL analyses by single variant tests. Additionally,

we prune genome-wide genotypes into a subset of genome regions

that are approximately independent and contain either at

least one cis-SNP or one trans-SNP with p value < 1 3 10�5 by

standard eQTL analyses (technical details are provided in

Supplemental Material and Methods).
Simulation Study Design
We conducted simulation studies to validate the performance of

our proposed BGW-TWAS method through comparing with the

alternative existing methods, e.g., PrediXcan, TIGAR, as well as

BVSR using only cis-eQTL. To mimic real studies, we used real ge-

notype data from the ROS/MAP study to simulate gene expression

and phenotype data.We took 499 samples as our training data and

1,209 samples as our test data. GReX imputation models were
716 The American Journal of Human Genetics 107, 714–726, Octobe
fitted using the training data where ‘‘eQTL’’ effect sizes and the cor-

responding posterior probabilities were estimated. Given these

fitted GReX imputation models, GReX data were imputed for a

follow-up TWAS with the test data.

We arbitrarily selected five approximately independent genome

blocks, includingone ‘‘cis-’’ andfour ‘‘trans-’’ genotypeblocks (variants

were filtered with minor allele frequency (MAF) > 5% and Hardy-

Weinberg pvalue> 10�5).With genotypematrixXg of the randomly

selected causal eQTL, we generated effect-sizes wi to target a selected

gene expression heritability h2
e and that all causal eQTL explain equal

expression heritability. Gene expression levels were generated by

E g ¼ Xgw þ ee,with ee � Nð0; ð1 � h2
e ÞÞ. Thenwe simulatedpheno-

typesbyY ¼ bE g þ ep,wherebwas selectedwith respect to a selected

phenotype heritability h2
p and ep � Nð0; ð1 � h2

pÞÞ.
To mimic the complex genomic architecture of gene expression

in practice, we considered two scenarios, one with 5 true causal

eQTL representing the scenario with relatively large effect sizes

and the other one with 22 true causal eQTL representing the sce-

nario with relatively small effect sizes. For the scenario with 5

true causal eQTL, we considered three sub-scenarios with respect

to how these true causal eQTL distributed over considered genome

blocks: (1) all causal eQTL are from the cis-block; (2) two causal

eQTL are from the cis-block explaining 70% of the specified h2
e

while the other three causal eQTL are from the trans-blocks ex-

plaining the other 30% of h2
e ; (3) all causal QTL are from the

trans-block. Similarly, for the scenario with 22 true causal eQTL,

we considered three scenarios where 30%, 50%, and 70% of the

causal eQTL were from cis-genome blocks. We also varied the total

expression trait heritability and phenotype heritability in both

scenarios, i.e., ðh2
e ; h

2
pÞ ¼ ðð5%; 90%Þ; ð10%; 45%Þ; ð20%; 20%Þ;

ð50%; 6%ÞÞ for the scenario with 5 true causal eQTL and

ðh2
e ;h

2
pÞ ¼ ðð5%; 99%Þ; ð10%; 80%Þ; ð20%; 35%Þ; ð50%; 8%ÞÞ

for the scenario with 22 true causal eQTL. Here, different levels of

phenotype heritability were arbitrarily selected to achieve similar

levels of TWAS power across all scenarios.

In each simulation, with training data, we first fitted GReX

imputation models by BVSR (BGW-TWAS) with both cis- and

trans-genome blocks, as well as by Elastic-Net (PrediXcan) and

nonparametric Bayesian Dirichlet process regression (TIGAR)

with only cis-genome block. Then we conducted TWAS with

imputed GReX by respective method. We also compared BGW-

TWAS with using only cis-eQTL estimates from the same BVSR

model. The performance was compared in terms of R2 of the

imputed GReX and TWAS power in test samples. Test R2 was calcu-

lated as the squared correlation between imputed GReX and simu-

lated gene expression values of the test samples. TWAS power was

calculated as the proportion of 1,000 repeated simulations of each

scenario with p value < 2.5 3 10�6 (genome-wide significance

threshold for gene-based association studies).
ROS/MAP and Mayo Clinic GWAS Data of AD
Following simulation studies, we applied BGW-TWASmethod to in-

dividual-level genomic and AD related phenotype data from older

adults available from several studies. We used transcriptomic data,

GWAS data, clinical diagnosis of AD and postmortem indices of

AD pathology from the Religious Orders Study (ROS) and Rush

Memory and Aging Project (MAP)29–31 and GWAS data from the

Mayo Clinic Alzheimer’s Disease Genetics Studies (MCADGS).32–34

All participants from ROS/MAP sign an informed consent, an

Anatomic Gift Act, and a consent for their data to be deposited in

the Rush Alzheimer’s Disease Center (RADC) repository. ROS/MAP
r 1, 2020



studies were approved by the Institutional Review Board of Rush

University Medical Center, Chicago, IL. MCADGS contains samples

from two clinical AD case-control series (Mayo Clinic Jacksonville

and Mayo Clinic Rochester) as well as a neuropathological series

of autopsy-confirmed subjects from the Mayo Clinic Brain Bank.

Microarray genotype data generated for 2,093 European-decent

subjects from ROS/MAP35 and 2,099 European-decent subjects

fromMCADGSwere further imputed to the 1000Genomes Project

Phase 336 in our analysis.37

Post-mortem brain samples from the dorsal lateral prefrontal

cortex from�30% of these ROS/MAP participants with assayed ge-

notype data were profiled for transcriptomic data by next-genera-

tion RNA seqencing.38 These data were used as reference data to

train GReX prediction models in this study. We conducted TWASs

for both clinical and pathological AD phenotypes. The clinical

diagnosis of late-onset Alzheimer dementia was available for

both ROS/MAP and MCADGS. Postmortem pathology indices of

AD were only available for ROS/MAP and included PHFtau tangle

density, b-amyloid load, and a global measure of AD pathology

based on measures of neuritic and diffuse plaques and neurofibril-

lary tangles.29–31 Additional details about the ongoing ROS/MAP

cohort studies and how postmortem indices of tangles and b-am-

yloid load were quantified are included in prior publications29–31

and summarized in the Supplemental Material and Methods.
Results

Simulation Results

For the scenario with five true causal eQTL and various

expression heritability, our simulation studies showed

that BGW-TWAS obtained the highest test R2 for GReX

and TWAS power than PrediXcan and TIGAR when any

portion of the true causal eQTL are distributed over trans-

genome blocks (Figures 1A and 1B). This is because BGW-

TWAS leverages both cis- and trans-eQTL information

while the alternative methods fail to account for trans-

eQTL. Especially, when all true causal eQTL are from

trans-genome regions, the alternative methods barely

have any power to identify the TWAS association with

nearly zero test R2. As expected, BGW-TWAS and PrediX-

can performed comparably when all causal eQTL

were from the cis-genome block, while TIGAR performed

slightly worse with sparse true causal eQTL (Figure 1A).

For the scenariowith 22mixed cis- and trans-eQTL, the per-

formancecomparisonbecamemorecomplicatedwithrespect

to various true expression heritability levels (Figures 1C and

1D). Particularly,whenh2
e ¼ 0:05, allmethodshaddifficulties

accurately estimating eQTL effect sizes and resulted in nearly

zero test R2. As expression heritability increased, the advan-

tage of modeling both cis- and trans-genotype data by BGW-

TWAS arisen and led to higher test R2 and TWAS power.

When h2
e ¼ ð0:1; 0:2Þ and 70% of the true causal eQTL were

cis-, BGW-TWASwas less effective thanPrediXcan andTIGAR

while TIGARachieved thebest performance. This is likelydue

to the fact that the nonparametric Bayesian Dirichlet process

regressionmodel used by TIGAR is preferredwhen true causal

eQTLmanifest relatively small effect sizes,which is consistent

with previous findings.13
The America
In contrast, when true causal eQTL signals have rela-

tively large effect sizes and are distributed outside the cis-

region of the target gene, BGW-TWAS method is preferred

due to the improved accuracy for GReX prediction by

leveraging trans-SNP data. By comparing with using only

BVSR estimates of cis-eQTL, we showed that a significant

proportion of transcriptome variation due to trans-eQTL

was missed and the follow-up TWAS was underpowered.

TWAS of AD-Related Phenotypes with Individual-Level

GWAS Data

Next, we applied BGW-TWAS to the individual-level GWAS

data from ROS/MAP26,31 and MCADGS.32 First, we trained

the BVSR GReX imputation models using samples (n ¼
499) from the ROS/MAP cohort that contained both pro-

filed genotype data and transcriptomic data obtained

from the dorsal lateral prefrontal cortex. All expression

quantitative traits were normalized and corrected for age

at death, sex, postmortem interval (PMI), study (ROS or

MAP), batch effects, RNA integrity number (RIN), top three

principal components derived from genome-wide geno-

type data, and cell type proportions (oligodendrocytes, as-

trocytes, microglia, neurons). The cell type proportions

were derived by using CIBERSORT pipeline39 with single-

cell RNA-seq transcriptome profiles from human brain tis-

sues as in Darmanis et al. 40 to de-convolute bulk RNA-seq

data.41

When we applied BGW-TWAS, we obtained GReX

imputation models for 14,156 genes, compared to respec-

tive 6,011 genes and 14,214 genes by PrediXcan and TI-

GAR that have at least one cis-eQTL with nonzero effect

size on expression quantitative trait. Across the 6,011

genes with GReX imputation models by PrediXcan, our

BGW-TWAS approach had a smaller train R2 (squared cor-

relation between fitted and profiled gene expression

values) value for expression quantitative traits for only

855 genes (Figure S1A). While TIGAR and BGW-TWAS

yielded a similar number of GReX imputation models,

BGW method is expected to result in higher imputation

accuracy when trans-eQTL play an important role in

affecting gene expression levels as shown by our simula-

tion results. Of 13,142 genes that had imputation models

fitted by both TIGAR and BGW-TWAS, BGW-TWAS had

smaller train R2 for only 3,304 genes. That is, BGW-

TWAS would be preferred for genes that have sparse

eQTL, especially trans-eQTL, while TIGAR would be

preferred for genes that have less sparse eQTL that are

mostly cis-eQTL (Figure S1B).

We imputed Bayesian GReX values for all remaining in-

dividuals with genotype data in ROS/MAP and MCADGS

by using Equation 4. We then conducted TWASs by testing

the association between the standardized GReX values

(with unit variance) and both clinical and pathological

AD phenotypes. The TWASs for these phenotypes

controlled for age at death, sex, smoking, ROS or MAP

study, education level, and top three principal compo-

nents derived from genome-wide genotype data.
n Journal of Human Genetics 107, 714–726, October 1, 2020 717



Figure 1. Simulation TWASs Comparing BGW-TWAS, BVSR with cis-eQTL only, PrediXcan, and TIGAR Methods
Simulation studies used various gene expression heritability h2

e ¼ ð0:05; 0:1; 0:2; 0:5Þ and various true causal cis-eQTL proportions. Test
R2 was calculated as the squared correlation between imputed GReX and simulated gene expression values of the test samples.
(A and B) Test R2 and TWAS power comparison with 5 true causal eQTL. BGW-TWAS was found to out-perform the alternative methods
when a non-negligible proportion of true causal eQTL were from trans-genome regions.
(C and D) Test R2 and TWAS power comparison with 22 true causal eQTL. BGW-TWAS was found to out-perform alternative method
when >50% of true causal eQTL were from trans-genome regions and h2

e > 0:1.
For the dichotomous phenotype of clinical diagnosis of

AD, the case/control status was determined by different

rules and the available confounding variables were

different for ROS/MAP and MCADGS. Cognitive status at

death for individuals from the ROS/MAP cohort is based

on the review of all longitudinal clinical data available at

the time of death blinded to all pathologic data. Individ-

uals were classified as having no cognitive impairment,

mild cognitive impairment, or AD. In this study, samples

from individuals with AD were taken as case subjects and

samples from individuals without dementia (i.e., either

with no cognitive impairment or mild cognitive impair-

ment) were taken as control subjects. For the MCADGS

samples, case subjects were determined for samples with

a medical history of late-onset AD diagnosis, and available

confounding variables included only age, sex, and top

three principal components derived from GWAS data.

Therefore, wemeta-analyzed these two cohorts for AD clin-

ical diagnosis by applying the inverse-variance weighting

method42 to summary statistics obtained by TWAS per

cohort. We compared the meta-TWAS results obtained

with BGW-TWAS to alternative TWAS methods.

BGW-TWAS identified ZC3H12B (located on chromo-

some X) whose GReX values were associated with AD

with effect size b ¼ 0:265, p value 5.42 3 10�13, and
718 The American Journal of Human Genetics 107, 714–726, Octobe
FDR¼ 3.073 10�8 (Figure 2A; Table 1). Both within-cohort

TWASs obtained positive effect sizes (b ¼ 0:22; 0:29) for

ROS/MAP and MCADGS, with respective p value ¼ 2 3

10�4, 4.12 3 10�10. On the other hand, this gene was

not identified by either PrediXcan or TIGAR because the as-

sociation of this gene is completely driven by trans-eQTL

(Figures S2 and S4).

TWASs of pathological AD phenotypes were restricted to

ROS/MAP from whom postmortem AD indices were

collected. TWASs were conducted for individuals with

GWAS genotype data and AD pathology indices: tangles

(n ¼ 1,121), b-amyloid (n ¼ 1,114), and global AD pathol-

ogy (n ¼ 1,139). These results are shown in the Manhattan

plots in Figures 2B, 3A, 3B, S2, S3, and S5– S7.

Using BGW-TWAS, ZC3H12B was identified to be associ-

ated with global AD pathology with p value ¼ 9.59 3 10�7

(Figure 2B; Table 1) as well as neurofibrillary tangle density

with p value 1.89 3 10�6 (Figure 3A; Table 1). KCTD12

located on chromosome 12 was identified to be signifi-

cantly associated with b-amyloid load with p value ¼
3.44 3 10�8(Figure 3B; Table 1).

We show the BVSR posterior probabilities for considered

SNPs to be eQTL for ZC3H12B and KCTD12 in Figure 4 and

the standard eQTL analyses results for these two genes in

Figure S4. These data suggest that the association between
r 1, 2020



Figure 2. Manhattan Plots of BGW-TWAS
Results of AD Clinical Diagnosis and Global
AD Pathology
Here, -log10(p values) by BGW-TWAS were
plotted and red lines denote genome-wide
significant threshold (2.5 3 10�6) for gene-
based association studies. ZC3H12B was
found to be significantly associated with
both AD clinical diagnosis (A) and global
AD pathology (B).
the imputedGReXvaluesofZC3H12B andADphenotypes is

completely driven by trans-eQTL, while the association be-

tween the GReX values of KCTD12 and b-amyloid load is

driven by both cis- and trans-eQTL. Four of the top driven

trans-eQTL (rs12721051, rs4420638, rs56131196, rs157592;

Table 2) for ZC3H12B are located in APOC1, a known risk

gene for AD43 and blood lipids,44–46 which is <12 KB away

from the well-known AD risk gene APOE.47 Specifically,

rs12721051 located in the 3’ UTR region ofAPOC1was iden-

tified as a GWAS signal of total cholesterol levels;46

rs4420638 located in the downstreamofAPOC1 is in linkage

disequilibrium (LD) with the APOE-E4 allele (rs429358) and

was identified to be a GWAS signal of various blood lipids

measurements (i.e., low-density lipoproteincholesterolmea-
Table 1. Significant Risk Genes Identified by BGW-TWAS using Individual-Level GWAS Data

Gene CHR Position Train R2 p Value Ef

ZC3H12B X 64,708,614 0.24 5.42 3 10�13 0.

ZC3H12B X 64,708,614 0.24 9.59 3 10�7 0.

ZC3H12B X 64,708,614 0.24 1.89 3 10�6 0.

KCTD12 13 77,454,311 0.09 3.44 3 10�8 0.

The American Journal of Human G
surement, C-reactive protein measure-

ment, triglyceridemeasurement,and to-

tal cholesterol measurement)44 and

AD;48 rs56131196 located in the down-

stream and rs157592 located in the reg-

ulatory region ofAPOC1were identified

asGWAS signals of ADand independent

of APOE-E4.49 Additionally, ZC3H12B

was found to regulate pro-inflammatory

activation of macrophages50 and has

higher expression in brain, spinal cord,

and thymus tissue types compared to

other tissues.51 These results showed

that the effects of these known GWAS

signals (rs4420638, rs56131196,

rs157592) of AD could be mediated

through the expression levels of

ZC3H12B.

TWAS of AD with Summary-Level

GWAS Data

To validate our findings using individ-

ual-level GWAS data from ROS/MAP

and MCADGS, we conducted a TWAS
of AD using the publicly available IGAP GWAS summary

statistics.27 Specifically, we used the GWAS summary statis-

tics that were generated by meta-analysis of four consortia

(�17K case subjects and �37K control subjects, Euro-

peans): the Alzheimer’s Disease Genetic Consortium

(ADGC), the Cohorts for Heart and Aging Research in

Genomic Epidemiology (CHARGE) Consortium, the Euro-

pean Alzheimer’s Disease Initiative (EADI), and the Ge-

netic and Environmental Risk in Alzheimer’s Disease

(GERAD) Consortium.

BGW-TWAS identified 13 significant genes located in

chromosome 3, 6, 7, 10, 11, 19, and X, including known

GWAS risk genes HLA-DRB152 and APOC1, and ZC3H12B

that was identified using individual-level GWAS data from
from ROS/MAP and MCADGS Cohorts

fect Size (SD) Phenotype

265 (0.037) AD

142 (0.029) global AD pathology

138 (0.029) tangles

143 (0.026) b-amyloid
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Figure 3. Manhattan Plots of BGW-TWAS
Results of Neurofibrillary Tangle Density
and b-Amyloid Load
Here, -log10(p values) by BGW-TWAS were
plotted and Red lines denote genome-wide
significant threshold (2.5 3 10�6) for gene-
based association studies. ZC3H12B was
found to be significantly associated with
neurofibrillary tangle density (A). KCTD12
was found to be significantly associated
with and b-amyloid load (B).
ROS/MAP and MCADGS (Table 3). Moreover, seven of

these genes (including HLA-DRB1 and APOC1) were also

identified when we only considered cis-eQTL estimates

by BVSR in the TWAS. CEACAM19 near the well-known

GWAS risk gene APOE was also identified by S-PrediXcan

and TIGAR. Known GWAS risk gene HLA-DRB152 was also

identified by S-PrediXcan (Table 3; Tables S1–S3).

Our results showed that by using BVSR estimates of cis-

and trans-eQTL (BGW-TWAS), most independent risk loci

were identified including loci driven by trans-eQTL. For

those significant genes driven mainly by cis-eQTL, a TWAS

using BVSR estimates of cis-eQTL still identified more inde-

pendent significant risk loci (distributed over chromosomes

2, 3, 6, 11, and 19) than S-PrediXcan and TIGAR, including

all 4 significant genes (HLA-DRB1, SLC39A13, PVR, CEA-

CAM19) identified by S-PrediXcan and 4 out of 21 signifi-

cant genes (ZNF227, ZFP112, PVR, CEACAM19) identified

by TIGAR (Tables S1–S3). Although TIGAR identified the

most significant TWAS genes (21), these genes are from

chromosomes 11 and 19, which are likely to be driven by

the same cis-eQTL from two independent loci.

These TWAS results using summary-level GWAS data

with a much larger sample size validated our findings ob-
720 The American Journal of Human Genetics 107, 714–726, October 1, 2020
tained with BGW-TWAS using individ-

ual-level GWAS data from ROS/MAP

and MCADGS.

Insights about eQTL Genetic

Architecture

In addition to imputing Bayesian

GReX values (Equation 5), the poste-

rior probabilities of having non-zero

eQTL effect sizes estimated by BVSR

also provide insights into the genetic

architecture of eQTL, especially about

how potential eQTL are distributed

across the genome. Note that the pos-

terior probability obtained from the

BVSR model (Equations 2, 3, and 4) is

essentially the expected probability

for a SNP to be an eQTL. Therefore,

the sum of posterior probabilities of

having non-zero eQTL effect sizes rep-

resents the expected number of eQTL.

From our simulation studies, we

observed that the expected propor-
tions of cis-eQTL were consistent with the true propor-

tions of causal cis-eQTL. The expected number of eQTL

obtained across simulation scenarios is presented in Table

4, where two out of five (40%) causal eQTL and 11 out of

22 (50%) causal eQTL are from cis-genome regions. We

can see that, with higher true expression heritability,

the expected number of eQTL is closer to the true number

of causal eQTL. We can also see that the expected number

of eQTL is more accurate for the scenario with 5 true

causal eQTL than with 22 true causal eQTL, which is

due to the fact that the BVSR model prefers relatively

larger eQTL effect sizes. These simulation results demon-

strated the validity of our BGW-TWAS method based on

the BVSR model as well as the usefulness of the sum of

posterior probabilities of having non-zero eQTL effect

sizes.

For 14,156 genes with fitted GReX prediction models by

BVSR using the ROS/MAP data, after excluding 19 outlier

genes with >100 expected eQTL, we obtained the average

number of expected eQTL as 2.44 (SD ¼ 5.70) across

genome-wide regions, 0.25 (SD ¼ 1.24) for cis-eQTL, and

2.48 (SD ¼ 5.49) for trans-eQTL. That is, on overage, 88%

of eQTL were from trans-genome regions with respect to



Figure 4. BVSR Posterior Probabilities
(PP) of Having Non-zero eQTL Effect Sizes
for Analyzed cis- and trans-SNPs, with
Target Genes ZC3H12B and KCTD12
(A) ZC3H12B located on chromosome X has
top trans-eQTL from chromosomes 1, 6, and
19, where all eQTL are of trans-eQTL.
(B) KCTD12 located on chromosome 12 has
top cis-eQTL from chromosome 12 and
trans-eQTL from chromosomes 4 and 6.
the target gene. We can see that �90% genes with train R2

> 0.05 have�2–3 average expected eQTL, and�10% genes

with train R2 < 0.05 have>5 average expected eQTL (Table

4). By linking these findings with our simulation studies

where train R2 is likely to be >0.05 when true expression

heritability is >0.1, we can conclude that �90% genes

are likely to have true expression heritability >0.1.

Additionally, from our Bayesian estimates of the cis-

and trans-specific posterior probabilities of having non-

zero eQTL effect sizes (i.e., pcis; ptrans in Equation 3) for

genome-wide genes using ROS/MAP data (Figure S11),

we can see that pcis and ptrans clearly follow different

distributions. This also validates our assumptions of

respective prior distribution for cis- and trans-hyper

parameters.
Table 2. trans-SNPs with Top Five Posterior Probability (PP) > 0.003 of Having Non-zero eQT

CHR POS rsID Function MAF

1 159,135,282 rs3026946 intergenic 0.213

19 45,422,160 rs12721051 3’ UTR (APOC1) 0.161

19 45,422,846 rs56131196 downstream (APOC1) 0.173

19 45,422,946 rs4420638 downstream (APOC1) 0.173

19 45,424,514 rs157592 regulatory region (APOC1) 0.181
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Discussion

In this paper, we proposed and vali-

dated a Bayesian genome-wide TWAS

(BGW-TWAS) method based on the

BVSR24 model to leverage the infor-

mation of both cis- and trans-eQTL.

We derived an efficient computa-

tional approach to fit the BVSR model

with large-scale genomic data, by

pruning genome regions that contain

either at least one cis-SNP or one

potential trans-eQTL and adapting

the previously developed scalable

EM-MCMC algorithm25 with pre-

calculated LD coefficients and sum-

mary statistics from standard eQTL

analyses. BGW-TWAS extends previ-

ous TWAS methods11–13 that utilize

only partial genotype information
from a small window of cis- SNPs to train the GReX

imputation model.

Genotype data of trans-eQTL have been shown to

explain a significant amount of variation of expression

quantitative traits and provide important molecular mech-

anisms underlying known GWAS loci of complex dis-

eases.22,23 The results from our simulation and application

studies demonstrated that BGW-TWAS improves the yield

of a TWAS by levering both cis- and trans-eQTL informa-

tion. For example, higher precision of GReX prediction

and power of TWASs were obtained in our simulation

studies when true causal trans-eQTL existed. These results

showed that BGW-TWAS has a greater advantage for sce-

narios where eQTL have relatively large effect sizes for

the expression quantitative traits (e.g., 5 versus 22 true
L Effect Sizes for ZC3H12B

PP w p Value

0.0147 �0.071 6.25 3 10�7

0.0031 0.071 3.94 3 10�6

0.0048 0.069 1.75 3 10�6

0.0051 0.068 1.77 3 10�6

0.0056 0.075 1.43 3 10�6
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Table 3. Significant Genes Identified by BGW-TWAS using IGAP GWAS Summary Statistics of AD

Gene CHR Position

TWAS p Value

BGW-TWAS BVSR cis-eQTL PrediXcan TIGAR

GPX1a 3 49,394,608 2.45 3 10�98 2.45 3 10�98 – 3.15 3 10�1

FAM86DP 3 75,484,261 1.55 3 10�13 4.81 3 10�1 5.38 3 10�1 9.63 3 10�1

BTN3A2a 6 26,378,546 1:59310�26 1:56310�26 3:17310�1 5:04310�1

ZNF192a 6 28,124,089 1:26310�32 1:25310�32 8:56310�2 2:07310�1

AL022393.7a 6 28,144,452 3:25310�178 2:24310�178 1:50310�1 8:36310�2

HLA-DRB1a,b 6 32,557,625 1:02310�12 8:99310�13 2:06310�6 –

AEBP1 7 44,154,161 5:55310�220 8:62310�1 6:69310�1 4:19310�1

BUB3 10 124,924,886 6:64310�18 1:05310�2 – 4:76310�1

FBXO3 11 33,796,089 1:48310�9 6:88310�1 – 1:13310�1

CEACAM19a,b,c 19 45,187,631 4:7310�13 2:54310�13 3:60310�12 2:83310�16

APOC1a 19 45,422,606 8:9310�11 1:11310�10 3:18310�6 7:2310�3

ZC3H12B X 64,727,767 2:08310�37 – – –

CXorf56 X 118,699,397 6:02310�07 – – –

TWAS p values by alternative methods, i.e., using BVSR cis-eQTL estimates only, PrediXcan, and TIGAR are also provided. p values for genes that were missed by
TWAS were indicated as ‘‘–.’’ ZC3H12B that was identified by BGW-TWAS using individual-level GWAS data from ROS/MAP and MCADGS was also identified by
BGW-TWAS using IGAP summary-level GWAS statistics. CEACAM19 from chromosome 19 was identified by all TWASmethods, and HLA-DRB1 from chromosome 6
is a known GWAS risk locus.
aGenes that were also identified as significant by using BVSR cis-eQTL estimates.
bGenes that were also identified by PrediXcan.
cGenes that were also identified by TIGAR.
causal eQTL with the same expression heritability). This is

because variable selection by the BVSR model is designed

to select sparse signals with relatively large effect sizes as

shown in previous GWASs.24,25

By applying our BGW-TWAS method to several human

AD datasets, we identified a risk gene (ZC3H12B) with

GReX values that were significantly associated with both

clinical diagnosis of AD and postmortem AD pathology

indices (neurofibrillary tangle density and global measure

of AD pathology). This association was not identified by

existing TWAS methods because this gene is shown to be

completely driven by trans-eQTL. Importantly, a potential

biological mechanism was revealed by showing that the

top driven trans-eQTL of ZC3H12B are known GWAS sig-

nals of AD43 and blood lipids44–46 and <12 KB away from

the well-known AD risk gene (APOE).47 Thus, we expect

BGW-TWAS leveraging both cis- and trans-eQTL has poten-

tial for making a large impact on advancing our under-

standing of complex human diseases and traits.

By fitting BVSR models using both cis- and trans-eQTL,

we not only can account for the uncertainty for a SNP to

be an eQTL to predict GReX (Equation 5), but also can

use the sum of posterior probabilities of having non-zero

eQTL effect sizes to estimate the expected number of

eQTL.24,25 The distribution of expected eQTL can also

help characterize the underlying genetic architecture of

expression quantitative traits.

The current study has several limitations. First, while

BGW-TWAS reduces the computational burden for

modeling both cis- and trans-eQTL, its computing costs
722 The American Journal of Human Genetics 107, 714–726, Octobe
are still substantial to train GReX prediction models for

genome-wide genes (�20K) per tissue type. It requires

approximately 30 min of computation time and 3 GB

memory per gene (with parallel computation imple-

mented in 4 CPU cores). Parallel computation can be em-

ployed to make use of high-performance computation

clusters with multiple cores to reduce computation time.

Second, our current method is designed to use pre-calcu-

lated in-sample LD coefficients and summary statistics

from single variant eQTL analyses; further work is required

to expand this approach to use approximate LD coeffi-

cients generated from reference samples of the same

ethnicity. Third, our simulation studies showed that the

non-parametric Bayesian method TIGAR performed best

when all causal eQTL are cis- with relatively small effect

sizes (e.g., 22 true causal cis-eQTL). Our TWAS results of

AD using the IGAP summary statistics demonstrated that

TIGAR and BGW-TWAS yield complementary findings.

These results highlight the potential utility of leveraging

both methods especially for studies in which the true dis-

tributions of cis- and trans-eQTL of the test genes are gener-

ally unknown.

In conclusion, the BGW-TWASmethod presented herein

provides a framework for leveraging information from

both cis- and trans-eQTL to conduct gene-based association

studies. Because trans-QTL are common for other quantita-

tive omics traits, e.g., epigenetic, proteomic, and metabo-

nomic, our proposed computational procedure would be

to investigate other quantitative omics traits in gene-based

association studies. Integrative method developments will
r 1, 2020



Table 4. Average Sums of Posterior Probabilities of Having Non-zero eQTL Effect Sizes that Are Stratified Based on Gene Expression
Heritability (Either True Simulated Heritability in Simulation Studies or the Range of Train R2 of the Fitted BVSRModels with ROS/MAPData

Gene Expression Heritability

Sum of Posterior Probabilities

Whole Genome cis-Region trans-Region

5 True Causal eQTL

0:05 0.79 0.46 0.33

0:1 2.28 1.13 1.15

0:2 3.72 1.44 2.28

0:5 4.91 1.56 3.35

22 True Causal eQTL

0:05 0.05 0.02 0.03

0:1 0.21 0.11 0.10

0:2 1.43 0.87 0.56

0:5 6.46 3.89 2.57

ROS/MAP

(0, 0.05) 1,504 genes 6.63 0.60 6.23

(0.05, 0.1) 1,964 genes 1.45 0.13 1.32

(0.1, 0.25) 6,617 genes 2.00 0.17 1.83

(0.25, 0.5) 3,224 genes 2.66 0.22 2.44

(0.5, 1) 474 genes 3.04 0.31 2.73

The simulation scenarios presented here are those with 2 of 5 and 11 of 22 true causal eQTL from the cis-regions.
stand to benefit from our BGW-TWAS method, especially

the perspectives of leveraging information from trans-

QTL and efficient computation techniques derived from

this paper. In addition, BGW-TWAS can be applied to study

other complex human phenotypes to identify potential

risk genes that could be targeted in further drug discovery.
Data and Code Availability

ROS/MAP data can be requested through Rush Alzheimer’s

Disease Center and Synapse. MCADGS data can be re-

quested through Synapse. IGAP summary statistics are

available online. Summary statistics generated from our

BGW-TWAS methods for studying AD are publicly avail-

able through Synapse. Source code of BGW-TWAS is avail-

able through Github. See Web Resources for URLs.
Supplemental Data

Supplemental Data can be found online at https://doi.org/10.

1016/j.ajhg.2020.08.022.
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Web Resources

BGW-TWAS, https://github.com/yanglab-emory/BGW-TWAS

BGW-TWAS summary statistics on Synapse.org, https://www.

synapse.org/#!Synapse:syn22316791

IGAP, http://web.pasteur-lille.fr/en/recherche/u744/igap/igap_

download.php

MCADGS data on Synapse.org, https://www.synapse.org/#!

Synapse:syn2910256

PrediXcan, https://github.com/hakyim/PrediXcan
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ROS/MAP data on Synapse.org, https://www.synapse.org/#!

Synapse:syn3219045

Rush Alzheimer’s Disease Center, https://www.radc.rush.edu/

TIGAR, https://github.com/yanglab-emory/TIGAR
References

1. Hirschhorn, J.N., and Daly, M.J. (2005). Genome-wide associ-

ation studies for common diseases and complex traits. Nat.

Rev. Genet. 6, 95–108.

2. Wellcome Trust Case Control Consortium (2007). Genome-

wide association study of 14,000 cases of seven common dis-

eases and 3,000 shared controls. Nature 447, 661–678.

3. McCarthy, M.I., Abecasis, G.R., Cardon, L.R., Goldstein, D.B.,

Little, J., Ioannidis, J.P., and Hirschhorn, J.N. (2008). Genome-

wide association studies for complex traits: consensus, uncer-

tainty and challenges. Nat. Rev. Genet. 9, 356–369.

4. Nikpay, M., Goel, A., Won, H.H., Hall, L.M., Willenborg, C.,

Kanoni, S., Saleheen, D., Kyriakou, T., Nelson, C.P., Hopewell,

J.C., et al. (2015). A comprehensive 1,000 Genomes-based

genome-wide association meta-analysis of coronary artery dis-

ease. Nat. Genet. 47, 1121–1130.

5. Visscher, P.M., Wray, N.R., Zhang, Q., Sklar, P., McCarthy, M.I.,

Brown,M.A., and Yang, J. (2017). 10 Years of GWASDiscovery:

Biology, Function, and Translation. Am. J. Hum. Genet. 101,

5–22.

6. Huang, Q. (2015). Genetic study of complex diseases in the

post-GWAS era. J. Genet. Genomics 42, 87–98.

7. Gallagher, M.D., and Chen-Plotkin, A.S. (2018). The Post-

GWAS Era: From Association to Function. Am. J. Hum. Genet.

102, 717–730.

8. Battle, A., Brown, C.D., Engelhardt, B.E., Montgomery, S.B.;

GTEx Consortium; Laboratory, Data Analysis &Coordinating

Center (LDACC)—Analysis Working Group; Statistical

Methods groups—Analysis Working Group; Enhancing GTEx

(eGTEx) groups; NIH Common Fund; NIH/NCI; NIH/NHGRI;

NIH/NIMH; NIH/NIDA; Biospecimen Collection Source Site—

NDRI; Biospecimen Collection Source Site—RPCI; Bio-

specimen Core Resource—VARI; Brain Bank Repository—Uni-

versity of Miami Brain Endowment Bank; Leidos Biomedical—

Project Management; ELSI Study; Genome Browser Data Inte-

gration &Visualization—EBI; Genome Browser Data Integra-

tion &Visualization—UCSC Genomics Institute, University

of California Santa Cruz; Lead analysts; Laboratory, Data Anal-

ysis &Coordinating Center (LDACC); NIH program manage-

ment; Biospecimen collection; Pathology; and eQTL manu-

script working group (2017). Genetic effects on gene

expression across human tissues. Nature 550, 204–213.

9. Nicolae, D.L., Gamazon, E., Zhang, W., Duan, S., Dolan, M.E.,

and Cox, N.J. (2010). Trait-associated SNPs are more likely to

be eQTLs: annotation to enhance discovery from GWAS.

PLoS Genet. 6, e1000888.

10. Pickrell, J.K., Marioni, J.C., Pai, A.A., Degner, J.F., Engelhardt,

B.E., Nkadori, E., Veyrieras, J.B., Stephens, M., Gilad, Y., and

Pritchard, J.K. (2010). Understandingmechanisms underlying

human gene expression variation with RNA sequencing. Na-

ture 464, 768–772.

11. Gamazon, E.R., Wheeler, H.E., Shah, K.P., Mozaffari, S.V.,

Aquino-Michaels, K., Carroll, R.J., Eyler, A.E., Denny, J.C., Nic-

olae, D.L., Cox, N.J., Im, H.K.; and GTEx Consortium (2015).

A gene-based association method for mapping traits using

reference transcriptome data. Nat. Genet. 47, 1091–1098.
724 The American Journal of Human Genetics 107, 714–726, Octobe
12. Gusev, A., Ko, A., Shi, H., Bhatia, G., Chung, W., Penninx,

B.W., Jansen, R., de Geus, E.J., Boomsma, D.I., Wright,

F.A., et al. (2016). Integrative approaches for large-scale

transcriptome-wide association studies. Nat. Genet. 48,

245–252.

13. Nagpal, S., Meng, X., Epstein, M.P., Tsoi, L.C., Patrick, M.,

Gibson, G., De Jager, P.L., Bennett, D.A., Wingo, A.P., Wingo,

T.S., and Yang, J. (2019). TIGAR: An Improved Bayesian Tool

for Transcriptomic Data Imputation Enhances Gene Mapping

of Complex Traits. Am. J. Hum. Genet. 105, 258–266.

14. Barbeira, A.N., Dickinson, S.P., Bonazzola, R., Zheng, J.,

Wheeler, H.E., Torres, J.M., Torstenson, E.S., Shah, K.P., Garcia,

T., Edwards, T.L., et al.; GTEx Consortium (2018). Exploring

the phenotypic consequences of tissue specific gene expres-

sion variation inferred from GWAS summary statistics. Nat.

Commun. 9, 1825.

15. Lappalainen, T., Sammeth,M., Friedländer, M.R., ’t Hoen, P.A.,

Monlong, J., Rivas, M.A., Gonzàlez-Porta, M., Kurbatova, N.,
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