Table 4.
Intensity | 0 | 0.5 | 1 | 1.5 | 2 | 2.5 | 3 |
---|---|---|---|---|---|---|---|
0 | 0.82 | 0.11 | 0.04 | 0.00 | 0.02 | 0.00 | 0.01 |
0.5 | 0.31 | 0.29 | 0.22 | 0.05 | 0.07 | 0.02 | 0.05 |
1 | 0.16 | 0.16 | 0.28 | 0.06 | 0.24 | 0.00 | 0.10 |
1.5 | 0.16 | 0.10 | 0.20 | 0.04 | 0.20 | 0.02 | 0.28 |
2 | 0.03 | 0.03 | 0.10 | 0.10 | 0.34 | 0.00 | 0.39 |
2.5 | 0.06 | 0.03 | 0.07 | 0.01 | 0.25 | 0.03 | 0.55 |
3 | 0.00 | 0.00 | 0.02 | 0.00 | 0.06 | 0.00 | 0.92 |
The confusion matrix provides insight into how prediction is correctly distributed over the seven different classes of intensity. The ground truth labels are given vertically, and the predicted labels by the convolutional neural network are written on the horizontal axis.