Skip to main content
. 2020 Sep;21(6):454–463. doi: 10.2174/1389202921999200625103936

Table 2.

Currently available tools for PPI prediction.

Predictor ML
Algorithms
Encoding Methods Testing Methods Accuracy Year Predictor URL References
Pred_PPI SVM Auto covariance Jackknife 90.67% (human), 88.99% (yeast), 90.09% (Drosophila), 92.73%
(E. coli), 97.51% (C. eleganse)
2010 http://cic.scu.edu.cn/bioinfor-matics/predict_ppi/default.html [72]
Hotpoint SVM PseAAC and local alignment kernel 5-fold CV 70% 2010 http://prism.ccbb.ku.edu.tr/hotpoint/ [89]
PSOPIA Domain-based Sequence similarity 10-fold CV 70-85% 2014 http://mizuguchilab.org/PSOPIA [80]
NIP SVM G-gap dipeptide compositions Jackknife 92.67% 2016 http://mlda.swu.edu.cn/codes.php?name=NIP [70]
SPRINT SVM k-mer 10-fold N/A 2017 https://github.com/lucian-ilie/SPRINT/ [71]
SIPMA RF Autocorrelation, AAC,
PseAAC
10-fold CV 89.9% 2018 http://kurata14.bio.kyutech.ac.jp/SIPMA/ [46]
DPPI Deep learning Sequence features 10-fold CV 96% 2018 https://github.com/hashemifar/DPPI/ [77]
PPI-Detect SVM BPF and sequence features 10-fold CV 91.40% 2018 https://ppi-detect.zmb.uni-due.de/ [47]
DLPred Deep learning PSSM, HI, AAindex, sequence conservation score, and 3D-1D scores. 10-fold CV 73.68% 2019 http://qianglab.scst.suda.edu.cn/dlp/ [75]
GWORVMBIG Optimizer-Based Relevance Vector Machine PSSM and evolutionary encoding 5-fold CV NA 2019 http://219.219.62.123:8888/GWORVMBIG [76]
DAMpred Neural-Network Protein structure encoding 10-fold 86% 2019 https://zhanglab.ccmb.med.umich.edu/DAMpred [73]
FCTP-WSRC SVM and Weighted sparse leraning Auto covariance and KNN 5-fold CV 96.67%, 99.82%, and 98.09% for H. pylori, Human and Yeast 2020 https://github.com/wowkiekong/PPI-prediction [74]