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ABSTRACT Genetic drift is an important evolutionary force of strength inversely proportional to Ne, the effective population size. The
impact of drift on genome diversity and evolution is known to vary among species, but quantifying this effect is a difficult task. Here we
assess the magnitude of variation in drift power among species of animals via its effect on the mutation load – which implies also
inferring the distribution of fitness effects of deleterious mutations. To this aim, we analyze the nonsynonymous (amino-acid changing)
and synonymous (amino-acid conservative) allele frequency spectra in a large sample of metazoan species, with a focus on the primates
vs. fruit flies contrast. We show that a Gamma model of the distribution of fitness effects is not suitable due to strong differences in
estimated shape parameters among taxa, while adding a class of lethal mutations essentially solves the problem. Using the Gamma +
lethal model and assuming that the mean deleterious effects of nonsynonymous mutations is shared among species, we estimate that
the power of drift varies by a factor of at least 500 between large-Ne and small-Ne species of animals, i.e., an order of magnitude more
than the among-species variation in genetic diversity. Our results are relevant to Lewontin’s paradox while further questioning the
meaning of the Ne parameter in population genomics.
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GENETIC drift, the fluctuation of allele frequencies due to
the randomness of reproduction, is one of the major

evolutionary forces. Drift affects the fixation probability of
selectedmutations, thereby increasing the genetic load (Ohta
1972; Lynch et al. 2011). Drift affects patterns of genome
variation and can mimic or hide traces of adaptation
(Jensen et al. 2005; Klopfstein et al. 2006; Peischl et al.
2018). Quantifying drift and its variation is obviously an im-
portant goal. The strength of genetic drift can be directly
assessed from time series data, i.e., by analyzing the dynam-
ics of allele frequency across a controlled number of genera-
tions (Jónás et al. 2016; Nené et al. 2018). This is convenient
for experimentally evolving populations, but trickier in natu-
ral conditions, where populations are less easily defined and
the effects of immigration difficult to control for (Ryman et al.
2019). For these reasons, the strength of genetic drift is often

approached at species level via its long-term interaction with
other evolutionary forces. In a Wright–Fisher population the
power of drift – i.e., the across-generation variance in allele
frequency due to random sampling of organisms – is inversely
proportional to the effective population size, Ne, and issues
related to the variation in drift intensity can also be phrased
in terms of variation in Ne.

The amount of neutral genetic diversity, or heterozygosity,
carried by a population, p, is expected to reflect the muta-
tion/drift balance and at equilibrium be proportional to the
Ne.m product, where m is the mutation rate. In principle, one
could therefore assess the variation in Ne among species from
the variation in p. Empirical evidence shows that heterozy-
gosity is indeed correlated with abundance across species
(Ellegren and Galtier 2016). The magnitude of the observed
variation, however, is smaller than intuitively expected, and
moderate differences in heterozygosities are sometimes re-
ported between species that vary markedly in census popu-
lation size – an observation often called Lewontin’s paradox
(Lewontin 1974; Leffler et al. 2012; Romiguier et al. 2014).
Three main reasons have been invoked to explain this co-
nundrum. First, the equilibrium p is not only influenced by
Ne but also by m, which of course might vary between species
and obscure the signal. Second, population size can vary in
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time. In this case p is expected to reflect not the contempo-
rary Ne, but rather the long-term Ne, which more precisely is
the time-harmonic mean of Ne (Wright 1938) and is strongly
influenced by small values. Said differently, current genetic
diversity might be largely determined by ancient bottlenecks
or founder effects, irrespective of the amount of drift nor-
mally experienced by the considered population. Third, se-
lection at linked sites, either positive (Gillespie 2001) or
negative (Charlesworth et al. 1995), can substantially affect
p and may dominate over the effects of drift in large popu-
lations (Corbett-Detig et al. 2015; Elyashiv et al. 2016). All
these effects make the concept of Ne a rather complex one,
difficult to define and measure (Ewens 1984; Sjödin et al.
2005; Karasov et al. 2010).

Hereweattempt to assess the variation inNeamong species
by exploiting another drift-dependent variable, which is the
load of segregating deleterious mutations: small-Ne species
are expected to carry a higher load than large-Ne ones at
selection/drift equilibrium. The segregating mutation load
can conveniently be approached via the number and popula-
tion frequency of nonsynonymous (= amino-acid changing)
variants. This implies focusing on the coding fraction of the
genome, which can be seen as a limitation. On the other
hand, coding sequences offer a unique opportunity to neatly
control for the effect of mutation rate and demography by
jointly analyzing the synonymous (= amino-acid conserva-
tive) variation, which can be assumed to be neutral. The ratio
of nonsynonymous to synonymous heterozygosity, pN=pS, is
often used as a measure of the mutation load (Chen et al.
2017). The pN=pS ratio has a number of desirable properties.
First, it is mutation rate-independent, as indicated above,
which is convenient for comparisons among distantly related
species. Second, pN=pS is expected to approach its equilib-
rium faster than p after a change in Ne (Pennings et al. 2014;
Brandvain and Wright 2016; Gravel 2016). For this reason,
pN=pS should be less sensitive than p to ancient bottlenecks
and selective sweeps. Empirically, pN=pS was found to be
negatively correlated to population size in Drosophila
(Jensen and Bachtrog 2011), birds (Figuet et al. 2016), ani-
mals (Romiguier et al. 2014), plants (Chen et al. 2017), and
yeasts (Elyashiv et al. 2010).

So, can one quantify Ne, or its among-species variation,
based on coding sequence polymorphism data? One major
hurdle is that the expected amount and pattern of nonsynon-
ymous variation is determined not only by Ne but also by the
strength of selection, or more precisely, the distribution of
fitness effects (DFE) of nonsynonymous mutations, which is
unknown (Eyre-Walker and Keightley 2007). Drift is only
expected to detectably affect the population frequency of
mutations with selection coefficient, s, of the order of 1/Ne

or smaller. Consider two populations of effective sizes N1 and
N2. The expected difference in mutation load between the
two essentially depends on the amount of deleterious muta-
tions of effect intermediate between 21/N1 and 21/N22. If
the DFE was such that most nonsynonymous mutations are
either much more or much less deleterious than these two

values, then a small difference in load is to be expected be-
tween the two species. If, however, a large fraction of the
nonsynonymous mutations had intermediate selection coef-
ficients, then the contrast would be sharper. Welch et al.
(2008) demonstrated that in a Wright–Fisher population, if
the fitness effect of nonsynonymous mutations follows a
Gamma distribution of mean �s and shape parameter b, then
the expected pN=pS is proportional to ðNesÞ2b. As b de-
creases, the distribution gets more skewed, and the expected
load becomes less strongly dependent on Ne. These consider-
ations imply that the variation in Ne among species can only
be assessed from the nonsynonymous vs. synonymous con-
trast via a joint estimation of the shape of the DFE.

Eyre-Walker et al. (2006) introduced a method for esti-
mating the DFE of nonsynonymous mutations from the ob-
served frequencies of nonsynonymous and synonymous
variants in a population sample – the so-called site-frequency
spectra, or SFS. The idea is that slightly deleteriousmutations
tend to segregate at lower frequency than neutral ones, so
they are expected to distort the nonsynonymous SFS com-
pared to the synonymous one. Assuming Gamma-distributed
deleterious effects, expressions were derived for the expected
nonsynonymous and synonymous SFS at mutation/selec-
tion/drift equilibrium as a function of the population muta-
tion rate, the shape and mean of the DFE, and nuisance
parameters aimed at capturing demographic effects (Eyre-
Walker et al. 2006). The method has been widely reused
since then, with modifications, mostly with the aim of esti-
mating the adaptive amino-acid substitution rate (Keightley
and Eyre-Walker 2007; Boyko et al. 2008; Eyre-Walker and
Keightley 2009; Schneider et al. 2011; Galtier 2016; Tataru
et al. 2017; Moutinho et al. 2019; Uricchio et al. 2019). The
distinct versions of the method mainly differ in how they
account for departures from model assumptions. These in-
clude ancient changes in Ne (Eyre-Walker 2002; Tataru
et al. 2017; Rousselle et al. 2018), linked selection (Messer
and Petrov 2013; Uricchio et al. 2019), beneficial mutations
(Galtier 2016; Tataru et al. 2017), and selfish processes such
as GC-biased gene conversion, a meiotic distorter that favors
G and C over A and T alleles irrespective of fitness effects.
Three recent studies have demonstrated that GC-biased gene
conversion can strongly affect inferences based on the non-
synonymous vs. synonymous contrast, and must be seriously
taken into account (Corcoran et al. 2017; Bolívar et al. 2018;
Rousselle et al. 2019).

Using this method, one can estimate the distribution of the
S ¼ 4Nes product, and particularly its mean �S ¼ 4Ne�s . Under
the assumption that distinct species share a common DFE,
and therefore a common average selection coefficient �s
(Loewe et al. 2006), one can estimate the between-species
ratio of Ne from the between-species ratio of �S. Here we an-
alyze a recently generated population genomic data set in
animals, with a focus on the primates vs. fruit flies compari-
son. We ask two questions: (i) is the DFE of nonsynonymous
mutations similar among species?; and (ii) if yes, by how
much does �S, and therefore drift power, vary across species?
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Assuming a classical Gammamodel for the DFE did not allow
us to reliably assess the variation in Ne due to important dif-
ferences in estimated shape parameter between taxa. This
problem, however, was alleviated by including in the model
aNe-independent fraction of lethal mutations. Controlling for
the effect of GC-biased gene conversion and segregating ben-
eficial mutations, we estimated that Ne varies by a factor of
500 between primates and fruit flies, i.e., an order of magni-
tude more than predicted from the variation in genetic
diversity. An even wider range of variation was uncovered
when we sampled more broadly across the metazoan
phylogeny.

Materials and Methods

Data sets

We used the coding sequence polymorphism data set assem-
bled by Rousselle et al. (2020). This includes 50 species from
10 diverse taxa of animals (hereafter called “groups”),
namely primates, rodents, passerines, fowls, fruit flies, but-
terflies, ants, mussels, earthworms, and ribbon worms. Data
in the former five groups (vertebrates + fruit flies) were
taken from public databases. In the other five groups, which
are non-model invertebrates, exon capture data were newly
generated by Rousselle et al. (2020). Six to 20 individuals per
species were genotyped at 531,360 to 14,112,150 coding
positions from 1261 to 8604 genes (Supplemental Material,
Table S1). The data set was built by selecting in each group a
unique set of genes common to all species. Distinct groups,
however, have distinct gene sets.

The primate and fruit fly data sets are of particularly high
quality in terms of genome annotation and sample size. The
two groups, furthermore, have contrasted levels of genetic
diversity, with primates being among the least polymorphic,
and fruit flies among the most polymorphic, taxa of animals
(Lewontin 1974; Leffler et al. 2012; Romiguier et al. 2014).
We therefore focused on these two groups in most of the
analysis. In primates, the Papio anubis data set had a relative-
ly low sample size of five diploid individuals and was not
analyzed here. In fruit flies, the Drosophila sechellia data set
contained a relatively small number of SNPs and was also
removed. Our main data set therefore includes five species
of catarrhine primates – Homo sapiens, Pan troglodytes,
Gorilla gorilla, Pongo abelii, and Macaca mulatta – and five
species of fruit flies – D. melanogaster, D. simulans, D. teissieri,
D. yakuba, and D. santomea.

In each species, the synonymous and nonsynonymous SFS
were generated by counting, at each biallelic position (SNPs),
the number of copies of the two alleles, tri- or quadri-allelic
positions being ignored. To account formissing data, a specific
sample size, n, was chosen for each species, this number
being lower than twice the number of sampled individuals.
Biallelic SNPs at which a genotype had been called in ,n/2
individuals were discarded. When genotypes were available
in exactly n/2 individuals, the minor allele count was simply

recorded. When genotypes were available in .n/2 individu-
als, hyper-geometric projection to the {1, n} set was per-
formed (Hernandez et al. 2007; Gayral et al. 2013). We
used the so-called “folded” SFS in our main analysis, i.e.,
did not rely on SNP polarization, but rather merged counts
from the kth and (n 2 k)th categories, for every k. Unfolded
SFS (Rousselle et al. 2020) were also used in a control analysis.

To account for the confounding effect of GC-biased gene
conversion, we also generated folded GC-conservative syn-
onymousandnonsynonymousSFSbyonly retainingA—Tand
G—C SNPs, following Rousselle et al. (2019). Estimates
based on GC-conservative SFS are expected to be unaffected
by any bias due to GC-biased gene conversion, but this comes
at the cost of a much smaller number of SNPs. Two species,
ribbonworm Lineus longissimus and fowl Pavo cristatus, had
,100GC-conservative SNPs andwere removed from thedata set.

We also reanalyzed two previously published coding se-
quence population genomic data sets. Chen et al. (2017)
gathered SFS data from published genome-wide analyses in
34 species of animals. We focused on the 23 species in which
at least five diploid individuals were sampled. These include
13 vertebrates (10 mammals, 1 bird, 2 fish), 9 insects (7 -
Anophelesmosquitoes, 1 fruit fly, 1 butterfly) and 1 nematode.
Galtier (2016) analyzed a data set of 44 species from eight
distinct metazoan phyla. We selected the 28 species in which
sample size was 5 or above, i.e., 6 species of vertebrates,
6 insects, 5 molluscs, 3 crustaceans, 3 echinoderms, 2 tuni-
cates, 1 annelid, 1 cnidarian, and 1 nematode.

Inference methods

For each species, the population-scaled mean selection co-
efficient of deleterious mutations, �S, was estimated using the
maximum likelihood method introduced by Eyre-Walker
et al. (2006), in which a model assuming Gamma-distributed
deleterious effects of amino-acid changing mutations is fitted
to the synonymous and nonsynonymous SFS. Following up
on Galtier (2016), we developed a multi-species version of
this model, where the shape parameter of the Gamma distri-
bution can be shared among species. We also implemented
distinct models for the DFE, namely the Gamma + lethal,
partially reflected Gamma and their combination. The
Gamma + lethal model simply assumes that a fraction plth
of the nonsynonymous mutations are lethal, i.e., cannot con-
tribute any observable polymorphism, whereas a fraction 12
plth has Gamma-distributed effects (Eyre-Walker et al. 2006;
Elyashiv et al. 2010). The partially reflected Gammamodel of
the DFEwas introduced by Piganeau and Eyre-Walker (2003)
and considers the existence of back mutations from the del-
eterious state to the wild type. This model entails no addi-
tional parameter compared to the Gamma model and can be
easily combined with the “+ lethal” option. These methods
were here newly implemented in a multi-SFS version of the
grapes program (https://github.com/BioPP/grapes). The
amount of neutral polymorphism of each species was
assessed using the pS statistics, following Romiguier et al.
(2014).
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Simulations

Following Rousselle et al. (2018), we performed simulations
using SLIM V2 (Haller and Messer 2016) to assess how
quickly pS and the estimated �S (Gamma model) reach their
equilibrium when Ne varies in time. We simulated the evolu-
tion of coding sequences in a single population evolving for-
ward in time and undergoing first an increase and then a
decrease in effective population size. We considered a pan-
mictic population of 104 or 23 104 diploid individuals whose
genomes consisted of 1500 coding sequences, each of
999 base pairs. The mutation rate was set to 2.2 3 1027

per base pair per generation and the recombination rate to
1027 per base pair per generation. The assumed distribution
of the fitness effect of mutations comprised 50% of neutral
mutations and 50% of mutations following a negative
Gamma distribution of mean 22.5 and shape 0.3. Each mu-
tation that arose during a simulation was categorized as ei-
ther synonymous (if the fitness effect was zero) or
nonsynonymous (if the fitness effect was different from
zero), allowing us to compute pN, pS, and pN=pS at any time
point throughout the simulation. To make simulations trac-
table, we used small effective population sizes and high mu-
tation rates and selection coefficients, knowing that only the
products of these quantities, i.e., 4Nem ¼ 0:88:1022 and
4Ne�s ¼ 2 0:025, are relevant. Simulations were replicated
50 times.

Data availability

All the analyzed data sets are freely available from https://
zenodo.org/record/3829893 (sequence alignments) and
https://zenodo.org/record/3818299 (SFS). Supplemental
material available at figshare: https://doi.org/10.25386/
genetics.12833708.

Results

Synonymous genetic diversity

We first analyzed synonymous and nonsynonymous SFS in
five species of primates and five species of fruit flies. The
estimated synonymous diversity, pS, was much higher in fruit
flies than in primates (Table 1), consistent with the literature
(Leffler et al. 2012). The estimated pS varied from 0.062% in
H. sapiens to 3.2% in D. yakuba, i.e., a factor of 51 (Figure 1,
x-axis). The per group median pS was 0.11% in primates and
1.5% in fruit flies, i.e., varied by a factor of 13.

Gamma DFE

A model assuming Gamma-distributed population-scaled se-
lection coefficient was fitted to SFS data separately in the
10 species.Weuncovered substantial variation inb, the shape
parameter of the Gamma DFE: the maximum likelihood esti-
mate of b varied from 0.09 to 0.36 among species (Figure 1,
y-axis). When we instead fitted a model assuming a common
b across species, the likelihood dropped severely (one b per
species, log-likelihood =21100.8; shared b, log-likelihood =
21382.7), and the hypothesis of a common DFE shape across
the 10 species was strongly rejected by a likelihood ratio test
(LRT; P, 10220; 9 degrees of freedom). Therewas a trend for
species from the same group to provide similar estimates of b
(Figure 1). In primates, the range of estimated b was narrow
([0.09;0.16]) and the hypothesis of a common DFE shape was
not rejected by LRT (optimal b for primates: 0.11; P = 0.45;
4 degrees of freedom). In fruit flies, the optimal bwas close to
0.3 in four species, but much lower in D. santomea (Figure 1).
The optimal fruit fly b was firmly rejected by primates as a
group (LRT; P, 10220; 1 degree of freedom), and reciprocally
(LRT; P , 10220; 1 degree of freedom; the test includes D.
santomea).

Table 1 Maximum likelihood estimates of �̄S in primates and fruit flies under the Gamma + lethal DFE model

b shared across species one b per group

pS (%) Plth = 0.96 Plth = 0.65 Plth = 0.6 Plth = 0.65

Species
H. sapiens 0.06 23.36 21.39 22.75 21.53
G. gorilla 0.11 24.38 22.08 24.18 22.22
P. troglodytes 0.11 27.56 23.30 27.03 23.45
P. abelii 0.16 29.16 24.64 29.64 24.59
M. mulatta 0.18 220.0 210.4 224.5 29.64
D. santomea 0.11 2401 2232 2395 2234
D. melanogaster 1.07 2502 2295 2493 2297
D. teissieri 1.52 21860 21080 21820 21090
D. yakuba 1.57 2946 2553 2928 2558
D. simulans 3.18 21660 2970 21630 2979

Max/min Ne 53.0 555 779 662 714
Bootstrap [324–1050] [438–1660] [353–1430] [422–1350]
Group median Ne ratio 13.8 125 168 132 162
Bootstrap [84–203] [102–296] [87–237] [103–281]
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Estimates of �S, the population-scaled mean selection co-
efficient, varied greatly among species in this analysis, but
this was largely explained by variations in b. Gamma shape
and mean are known to be correlated parameters, and this
was verified here: the across-species correlation coeffi-
cient between log-transformed �S and log-transformed b

was20.94 in primates and20.99 in fruit flies (Figure S1).
The among-species variation in estimated �S can therefore
not be taken as a reliable indicator of the variation in Ne

when b differs much among species.
The observed variation in estimated DFE shape might in

principle reflect biological differences among species and
groups, e.g., differences in composition/structure of the pro-
teome/interactome, maybe strengthened by our gene sam-
pling strategy – here, species from the same group share the
same genes, whereas distinct groups have distinct gene sets.
The D. santomea behavior, however, appears difficult to rec-
oncile with this hypothesis. D. santomea is closely related to
D. yakuba and D. teissieri (Turissini and Matute 2017), and
shares the same gene set as other species of fruit flies. We see
no obvious reason why the DFE of deleterious nonsynony-
mous mutations in D. santomea would differ strongly from
other fruit flies, and resemble the primate DFE. Interestingly,
D. santomea shares with primates a relatively low genetic
diversity (Figure 1), perhaps as a consequence of its re-
stricted geographic distribution (Bachtrog et al. 2006).
For this reason, we hypothesized that the among-species
variation in estimated bwe report could reflect a failure of
the Gamma model to capture the details of the DFE at all
values of Ne, rather than genuine differences in DFE among
species.

Gamma + lethal DFE

It should be recalled that very highly deleterious alleles have
essentially zero probability of being observed at the poly-
morphic stagewith the sample sizeweusedhere.Wereasoned
that if the DFE included a proportion of mutations of effects
essentially independent of Ne, this could lead to undesired
effects when fitting a Gamma distribution of S, a variable
proportional to Ne.

To investigate this, we fitted to SFS data amodel assuming
a proportion plth of lethal mutations, and a proportion 12 plth
of mutations of Gamma-distributed effects. Lethal mutations
are here defined as mutations having a probability of being
observed at polymorphic stage equal to zero. Figure 2 shows
how the likelihood responds to plth and b in primates and fruit
flies. In fruit flies, the optimal b was close to 0.3 irrespective
of plth, and the likelihood was maximal when plthwas close to
0.75. In primates, the optimal b varied more visibly with plth.
It was close to 0.1 when plth was low, as indicated above, but
increased toward higher values when plth increased. The
maximal likelihood in primates was still obtained when plth
was close to zero and b close to 0.1, but importantly, areas of
the parameter space close to the fruit fly optimum (e.g., plth
0.65 and b 0.3) provided a reasonably good fit to the data
(Figure 2). This suggests that the DFE perhaps does not differ
so dramatically between primates and fruit flies, offering the
opportunity to compare estimates of �S across species under
the Gamma + lethal model. The difference in log-likelihood
between the one-b-per-species and shared-bmodels was sub-
stantially decreased under the Gamma + lethal model
(191.0) compared to the Gamma model (281.9). Still, the
one-b-per-species model significantly rejected the shared-b
model in both cases, indicating that the inclusion of the plth
parameter was not sufficient to erase every perceptible dif-
ference in DFE among species.

We jointly analyzed the 10 species from the two groups
under the Gamma + lethal model assuming a shared shape
parameter among species, and found that the likelihood was
maximal when plthwas in the range 0.6–0.65 (Figure S2). We
considered these two values as plausible estimates of plth.
When plth was set to 0.6, the maximum likelihood estimate
of b was 0.278. In this analysis the maximum likelihood es-
timate of �S varied by a factor of 550 among species, and the
median fruit fly �S was 125 times as large as the median pri-
mate �S (Table 1). Of note, the estimated �S inD. santomeawas
similar to that of other species of fruit flies, and much larger
than in primates. Setting plth to 0.65 instead of 0.6 yielded
similar results (Table 1). Confidence intervals were obtained
by bootstrapping SNPs (100 replicates). The Gamma+ lethal
model outperformed the Gamma model in this analysis: let-
ting plth be different from zero increased the log-likelihood by
85 units, which was highly significant (P, 10220, 1 degree of
freedom). We also estimated �S under the Gamma + lethal
model assuming that the b parameter was shared by species
within a group, but could vary between the two groups. Es-
timates of �S and Ne ratios were close to the ones obtained

Figure 1 Estimated Gamma shape differs between primates and fruit
flies. Blue dots: primates. Red dots: fruit flies. x-axis: synonymous genetic
diversity (log10 scale). y-axis: estimated shape parameter assuming a
Gamma DFE of nonsynonymous mutations.
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assuming shared b across all species (Table 1, right-most two
columns), confirming that the inferred DFEs of the two
groups tend to converge when a fraction of lethal mutations
are included. We checked that our estimate of �S and b were
such that the mean pN=pS was linearly related to �S2b across
species, as expected at equilibrium with Gamma-distributed
fitness effects (Welch et al. 2008). This was the case under
both the Gamma and Gamma + lethal models (Figure S3).

Robustness of the estimates

We performed a number of additional analyses to investigate
the robustness of the above results to various methodological
settings. The results are summarized in Table 2. In each of
the four control analyses – “GC-conservative,” “reflected
Gamma,” “unfolded,” and “subsampled fruit flies” – we tried
eight values of plth, from 0.4 to 0.75. We optimized b and the
other parameters conditional on plth and recorded the likeli-
hood. Table 2 shows the results for values of plthwithin 2 log-
likelihood units of its maximum.

The first line of Table 2 recalls some of the results pre-
sented in Table 1. In the “GC-conservative” control, we ap-
plied the same method as in the main analysis but only
including C/G and A/T SNPs, which are supposedly immune
from GC-biased gene conversion. The “reflected Gamma”
analysis used the same data set as the main one, but assumed
a reflected Gamma instead of a Gamma DFE, thus accounting
for the presence of slightly beneficial mutations – in addition
to a proportion of lethal mutations. The “unfolded” control
used unfolded instead of folded SFS. Finally, in the “sub-
sampled fruit flies” control, we reduced the size of the fruit
fly data set to the size of the primate one, such that the two
groups have equal weights in the analysis. One hundred data

sets were generated by randomly subsampling in D. mela-
nogaster the number of SNPs available in G. gorilla, and sim-
ilarly for D. santomea/H. sapiens, D. simulans/M. mulatta, D.
teissieri/P. troglodytes, and D. yakuba/P. abelii. The most
likely value for plth was 0.6 in 77 subsampled data sets and
0.55 in the other 23. Table 2 reports the median estimates
and 95% confidence intervals across the 100 subsampled
data sets for these two values of plth.

The GC-conservative data set included roughly 10 times
less SNPs than themainone. The likelihood surfacewasflatter
and close to itsmaximumat three values of plth –0.5, 0.55, and
0.6 –while the estimated bwas always close to 0.3. The ratio
of �S between large-Ne fruit flies and small-Ne primates was
roughly twice as low as in the main analysis, either using
extreme estimates or within-group medians. The reflected
Gamma analysis also yielded ratios of �S a bit lower than the
main analysis – but still substantially higher than ratios of pS

(see Table 1). Of note, themaximum log-likelihood under the
reflected Gamma + lethal model (21301.6) was slightly de-
creased compared to Gamma + lethal (21297.7). When un-
folded SFS were analyzed, the estimated bwas lower than in
the main analysis, and the ratio of �S was twice as large. A
similar pattern was obtained when we subsampled the fruit
fly data set so as to match the primate sample size – a slightly
lower estimate of b and a max/min Ne ratio of the order of
103. In all these control analyses the Gamma + lethal
model fitted the data significantly better than the Gamma
model.

Additional metazoan taxa

We analyzed an additional 37 species from eight diverse
groups of animals (Rousselle et al. 2020). In this 47-species
data set, the estimated synonymous diversity pS varied from
0.062% in H. sapiens to 4.4% in musselMytilus trossulus. The
within-group median pS varied from 0.12% in primates to
3.3% in mussels, i.e., by a factor of 27.

The results were largely consistent with the primates vs.
fruit flies comparison. First applying the Gamma model, we
detected a strong group effect on the estimated b (Figure S4).
Butterflies and ants, for instance, tended to yield relatively
high estimates of b, whereas the best fit in primates and birds
was reached at relatively lowb. This wasmitigated bymoving
to the Gamma + lethal model, even though the specificity of
particular groups was still apparent (Figure S5). When we
jointly analyzed all species assuming a Gamma + lethal DFE
using folded SFS and all mutations, the maximal likelihood
was reached when plth was 0.5 (with plth = 0.55 being close)
and the estimated b was 0.26. We calculated the within-
group median �S, which varied by a factor of 110 among
groups (Table 3, first column). We performed the same
GC-conservative, reflected Gamma and unfolded analyses
as described above (Table 3). The estimated �S in the reflected
Gamma, unfolded and main analyses were strongly corre-
lated (r2 . 0.97 in all three pairwise comparisons), while
the ratio of max/min median �S varied a bit: it was 73 in the
Gamma reflected analysis, 200 in the unfolded analysis. In all

Figure 2 + Lethal model, likelihood surface. x-axis: proportion of lethal
nonsynonymous mutations. y-axis: Gamma shape parameter for nonle-
thal, nonsynonymous mutations. The color scale is indicative of the log-
likelihood: green = high, yellow = intermediate, red = low. The difference
between local and maximal log-likelihood is indicated by numbers within
a couple of relevant cells – 0 means maximal. The marked cell corre-
sponds to the maximum of the likelihood when both data sets are jointly
analyzed (see Figure S2). x-axis continuously covers the 0.4–0.8 range,
and also shows the plth = 0 case (Gamma model).
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three analyses, fruit flies were the group with the highest
median �S, and primates the lowest.

TheGC-conservativeanalysisdifferedabit anddidnot rank
the 10 groups in the same order (Table 3). In this analysis, the
lowest median �S was found in ants and the highest in mus-
sels, the ratio between these two numbers being 180. The
GC-conservative estimates of �Sweremore strongly correlated
with species propagule size, a variable previously identified
as a proxy for Ne in animals (Romiguier et al. 2014), than
were the other three estimates (GC-conservative: r2 = 0.27,
P= 3.1024 ; main analysis: r2 = 0.11, P= 3.1022; log-trans-
formed variables). Figure 3 shows the relationship between
pS and the relative �S as estimated from the GC-conservative
data set. Note that the y-axis encompasses three orders of
magnitude, vs. two on the x-axis. As mentioned above, D.
santomea was an outlier: pS in this species was low, but the
estimated �S was typical of fruit flies and other large-Ne spe-
cies. The ratio of max/min estimated �S across the 47 species
was 491, 1100, 301, and 1076, respectively, in the main,
GC-conservative, reflected Gamma, and unfolded analyses.

We similarly analyzed two additional, recently published
data sets. The Chen et al. (2017) data set (23 species) yielded
results similar to the Rousselle data set: the optimal plth for
this data set was 0.5, the estimated b was 0.29, and the ratio
of maximal to minimal �Swas 581 – to be compared to a max/
min ratio of pS of 54. Of note, the estimated ratio of �S be-
tween D. melanogaster and H. sapiens was 139 in the Chen
et al. (2017) data set, which is close to the 119 obtained in
our main analysis (see Table 1). The Galtier (2016) data set
(28 species) differed from the other two in that the likelihood
was largely insensitive to plth: it varied by ,2 log units over
the 0–0.6 range for plth. The estimated b was close to 0.275
irrespective of plth (in the 0–0.6 range), and the ratio of max-
imal to minimal estimated �S was 7300–7900, i.e., an addi-
tional order of magnitude compared to Rousselle’s and
Chen’s data sets. This result was mainly explained by a very
high estimated �S in the mosquito Culex pipiens and, particu-
larly, the nematode Caenorhabditis brenneri (Figure S6).

We conducted a goodness-of-fit analysis by comparing, for
each species of the three data sets, the likelihood of the
Gamma+ lethal model to that of a saturatedmodel, in which

every class of the synonymous and nonsynonymous SFS has
its own frequency parameter. Regarding the Rousselle et al.
(2020) and Galtier (2016) data sets, we found that in a ma-
jority of species (37 out of 47 and 25 out of 28, respectively)
the Gamma+ lethal model was not rejected by an LRT (Table
S2). The Chen et al. (2017) data set behaved a bit differently:
the Gamma + lethal model was rejected in 12 species out of
23 for this data set. Please note that in these analyses the plth
parameter was fixed to 0.6 in all species, while being consid-
ered as a free parameter of the Gamma + lethal model.

Discussion

Herewe introducedanovel approach to compare the intensity
of genetic drift among species based on coding sequence SFS
data. Below we discuss the assumptions, merits and limita-
tions of this approach (subsection 1–3), before moving to
the interpretation and implications of our results (subsection
4–5).

Estimating Ne-related parameters from SFS data

Here we used the approach introduced by Eyre-Walker et al.
(2006) for fitting a population genetic model to a synony-
mous and a nonsynonymous SFS. This model includes three
parameters of interest: population mutation rate u, average
deleterious effect �S, and DFE shape b. In addition, the model
has n/2 nuisance parameters, where n is the sample size – the
so-called ri’s [see Equations 1 and 2 in Eyre-Walker et al.
(2006), here applied to folded SFS]. Parameter ri multiplies
the ith entry of the expected synonymous and nonsynony-
mous SFS. The ri’s are intended to capture any effect that
similarly affects the fate of synonymous and nonsynonymous
mutations – such as linked selection, population substruc-
ture, and departure from demographic equilibrium. In prac-
tice r1 is set to 1, and ri, i . 1, can be interpreted as the
relative effective mutation rate of the ith frequency category,
compared to the first category.

Including the ri’s in the model is often necessary in terms
of goodness of fit. This was the case here: when we set all the
ri’s to 1, i.e., assumed panmixy, no linked selection, and de-
mographic equilibrium, the likelihood dropped dramatically,

Table 2 Robustness analysis, primates vs. fruit flies

Label Analysis SNP flies SNP prim. plth b Max/min �S Median �S ratio

a Main 1.14 3 106 5.68 3 104 0.6 0.28 555 125
b1 GC-conserv. 1.84 3 105 3.88 3 103 0.5 0.29 251 68
b2 GC-conserv. 1.84 3 105 3.88 3 103 0.55 0.29 302 74
b3 GC-conserv. 1.84 3 105 3.88 3 103 0.6 0.30 398 84
c Refl. Gamma 1.14 3 106 5.68 3 104 0.6 0.30 341 88
d1 Unfolded 5.9 3106 5.68 3 104 0.55 0.23 1210 227
d2 Unfolded 5.9 3 106 5.68 3 104 0.6 0.23 1480 274
e1 Subsampled 5.68 3 104 5.68 3 104 0.55 0.23 1300 240

[0.20–0.25] [752–3520] [155–546]
e2 Subsampled 5.68 3 104 5.683104 0.6 0.25 900 183

[0.22–0.28] [577–2020] [128–356]
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from 21297.7 to 271,404.7 (primates + fruit flies data set,
Gamma + lethal, plth = 0.6). Such a simplistic model is
strongly rejected by the data and can hardly be used for in-
ference purposes. Alternatively, one could try to explicitly
model population substructure, linked selection (Good
et al. 2014) and/or departure from demographic equilibrium
(Evans et al. 2007; Keightley and Eyre-Walker 2007). In prac-
tice, however, these effects are very difficult to disentangle.
Messer and Petrov (2013), for instance, demonstrated that
linked selection severely confounds inferences on the varia-
tion of Ne in a two-epoch model. This is why the flexible ri-
based parametrization has been used in numerous recent
applications of the extended McDonald–Kreitman method
(Galtier 2016; Tataru et al. 2017; Moutinho et al. 2019;
Rousselle et al. 2020). The ri-based approach is particularly
appropriate when a relatively large number of species are
analyzed, like here, when exploring many demographic sce-
narios for each species would be particularly costly.

Introducing the ri’s, however, has one drawback, which is
that this tends to blur the interpretation of the estimates of
parameters of interest, particularly u and �S (Kim et al. 2017).
Consider for instance a data set yielding some estimate of u,
in which the estimated ri’s (i. 1) are all well below 1, mean-
ing that singletons are in excess compared to the standard
coalescent expectation. Such a pattern is expected for a pop-
ulation having experienced a recent, strong bottleneck. Now
consider another data set yielding the same estimate of u, but
with estimated ri’s (i. 1) all well above 1, as expected under
gradual population decline. To conclude that the two consid-
ered populations have the same population mutation rate
would appear somehow meaningless. A similar problem pos-
sibly applies to the interpretation and among-data sets com-
parisons of the estimated �S. In this study we did not estimate
u via the maximum likelihood method, but rather used pS as
our estimate of u. We did, however, use the maximum likeli-
hood estimate of �S. One should keep in mind that the mean-
ing of these estimates is somehow dependent on the
estimated ri’s, to an extent currently difficult to quantify.

To investigate this issue a bit deeper, we plotted the
estimated ri’s for all SNP categories in primates and fruit flies

(Figure S7). In this analysis, the Gamma + lethal model was
used, species were analyzed separately (no shared parame-
ter), and plth was set to 0.6. Figure S7 shows that the vast
majority of the ri’s belong to the [0.5, 1.5] interval, i.e., do not
dramatically differ from 1, both in primates and fruit flies.
The figure also shows that, although the median differs a bit
between primates and fruit flies for SNP category 3 to 8, the
distributions are largely overlapping among the two groups.
Although a more detailed analysis would be worthwhile, Fig-
ure S7 does not suggest to us that the ri’s pose a major prob-
lem of comparability in this analysis.

Strong variation in Gamma-DFE shape across species

When a Gamma DFE was assumed, our analysis revealed
significant among-taxa variation in the estimated shape pa-
rameter. In primates, the bestfit was achievedwhen the shape
parameter was of the order of 0.1–0.15, and consistently so in
five different species. These values are close to those obtained
by Castellano et al. (2019), who similarly analyzed coding
sequence SFS data in nine populations of great apes. Assum-
ing a Gamma DFE, these authors found that the best model
was one in which the shape parameter was shared among
species and equal to 0.16. This estimate was only slightly
increased when a fraction of beneficial mutations was mod-
eled (Castellano et al. 2019). In fruit flies, in contrast, we
found that the value of b that best fitted the data were close
to 0.3 – with the exception of D. santomea. This also is con-
sistent with previous reports. Keightley et al. (2016), for in-
stance, obtained a point estimate of 0.35 for b in D.
melanogaster, taking special care of the problem of SNP
mis-orientation. In butterflies, our median estimated b,

Table 3 Analysis of 47 species in 10 groups of animals

Main GC-cons. Reflected Unfolded

Plth 0.5 0.55 0.5 0.45
b 0.26 0.28 0.29 0.22
Relative median �S: Color:

Primates 1 1.6 1 1 Blue
Ants 1.6 1 1.6 1.6 Yellow
Butterflies 1.8 1.6 1.7 1.8 Orange
Passerines 3.1 4 2.9 3.1 Magenta
Earthworms 4.8 6.4 4.3 5.1 Cyan
Rodents 5.2 7.6 4.6 6.5 Gray
Fowls 21 7.8 17 25 Green
Ribbonworms 38 120 29 55 Black
Mussels 40 180 30 60 Brown
Fruit flies 110 130 75 200 Red

Figure 3 Variation in population-scaled mean selection coefficient vs.
neutral genetic diversity across 47 species of animals. Each dot is for a
species of animal. x-axis: relative synonymous heterozygosity. y-axis: rel-
ative estimated �S Colors indicate groups (see Table 3). GC-conservative
SNPs were used. Estimates of �S were divided by its minimal value, which
was obtained in ant Formica pratensis.
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0.37 (min=0.29,max=0.52), is close to the 0.44 reported by
Mackintosh et al. (2019) based on a different approach. Our
results corroborate those of Chen et al. (2017),who provided a
detailed analysis of the variation in estimated b across various
taxa of animals and plants, and like us reported a tendency for
species with a low genetic diversity to exhibit low values of b.

The variation in estimated b we and Chen et al. (2017)
report is substantial. It should be recalled that the shape
parameter has a strong effect on the Gamma distribution,
as it is inversely proportional to its variance. Consider for
example Gamma-distributed DFEs sharing the same mean s
of, say, 0.1, but with distinct shape parameters. If b is set to
0.1, as estimated in primates, then 53% of mutations are
associated with a selection coefficient smaller than 0.001. If
bwas rather equal to 0.3, as in fruit flies, then this percentage
would be 19%, and down to 12% if b=0.4, as in butterflies.
Given the scarcity of experimental data on the nonsynony-
mous DFE in animals, one cannot firmly argue that such dif-
ferences are implausible. We note, however, that if the
estimates of b we obtained reflected a biological reality, this
would entail considerable variation in the prevalence of small
effect mutations across animal proteomes, for which an ex-
planation would be needed.

Herewe rather hypothesized that the among-taxa variation in
estimatedb is, for its largest part, due tomodel mis-specification,
that is, we suggest that the true DFE might not be Gamma-
distributed. Besides the above intuitive argument, this hypoth-
esis is based on two observations. The first one is the behavior of
the D. santomea data set, which carries much less diversity than
other species of fruit flies, and yielded a distinctively lower
estimate of b, suggesting that the Gamma model fails to cor-
rectly capture the shape of the DFE at all values of Ne. The
alternative explanation, i.e., that the DFE in D. santomea truly
differs from that of other fruit flies, appears dubious in this case
given the low between-species divergence. It is worth noting
that this argument is based on a single species, though. Second,
we found that the Gamma + lethal model provided a signifi-
cantly better fit to the data than the Gamma model, while pre-
dicting DFE shapes that were more similar across taxa.

In this study, therefore, we implicitly attributed the ob-
served variation in estimated Gamma shape to a methodo-
logical artifact. This is obviously questionable. It could be that
the among-taxa variation in estimated b reported here and in
Chen et al. (2017) has some biological relevance. This would
deserve to be investigated experimentally, e.g., following the
approach of Böndel et al. (2019), who obtained an estimate
of b = 0.3 in green algae Chlamydomonas reinhardtii based
on crosses and fitness measurements in mutation accumula-
tion lines. It should be kept in mind that our discussion of the
variation in Ne is conditional on the assumption of a common
distribution of the deleterious effect of nonsynonymous mu-
tations among species.

Modeling lethal mutations

The Gamma + lethal model, which considers an Ne-indepen-
dent fraction of large-effect deleterious mutations, provided

a significantly better fit to the data than the Gamma model.
Here is a possible interpretation of this result. Fitting a DFE
model to a nonsynonymous and a synonymous SFS implies
accommodating both the difference in shape (the relative
frequencies of singletons, doubletons, etc.) and in size (the
total number of SNPs) between the two spectra. The former is
determined by the balance between neutral and slightly del-
eterious mutations, whereas the latter mainly reflects the
proportion of strongly deleterious mutations. We suggest
that the Gamma distribution struggles to accommodate these
two aspects at the same time. When the pN=pS ratio is rela-
tively high, as in primates, there is a tendency for the Gamma
model to converge toward low values of b, thus ensuring a
large proportion of small effect nonsynonymous mutations,
while a higher b could fit the difference in shape between the
two spectra equally well, or maybe better. The additional plth
parameter of the Gamma + lethal model, we suspect, some-
how releases this constraint by controlling to a large extent
the predicted pN=pS ratio.

This interpretation seems tofit reasonablywell ouranalysis
of the primates + fruit flies data set, and the report by Chen
et al. (2017) of a lower estimate of b in small-Ne species. This
rule, however, does not always apply. Our estimate of b in
Formica ants, for instance, was close to 0.4 under the Gamma
model, despite a low genetic diversity in this taxon. More
work would appear needed to determine whether the rela-
tively high estimate of b we obtained in ants reveals a real
peculiarity of this group, or is due to the specific gene set we
analyzed here, or can be explained by the relatively small
SNP sample size of our ant data set, compared to primates
and fruit flies (Table S1). To our knowledge, the Gamma +
lethal model has been tried in two studies before this one.
Eyre-Walker et al. (2006) analyzed a data set of 320 genes in
90 human individuals, and found that adding the plth param-
eters did not change the picture much, compared to the
Gamma model. This contrasts with our analysis and high-
lights the sensitiveness of this kind of analysis to the specific-
ities of the data – number of genes, number of individuals,
SNP calling procedure. Elyashiv et al. (2010) applied the
Gamma + lethal model to yeast data and found that the
shape parameters converged toward 0.35 under this model,
which is very close to our joint estimate, while the Gamma
model supported a higher value for b.

The Gamma+ lethal model is a simple modification of the
Gamma model, which was sufficient to significantly improve
the fit in this analysis. The model, however, is not entirely
satisfactory. In particular, our analysis makes the assumption
of a common proportion of very strongly deleterious muta-
tions among species with different Ne, which appears awk-
ward knowing that the probability for a mutation to
segregate at observable frequency is determined by the Nes
product. There might be more efficient, continuous ways to
model the DFE and solve the problem posed by the Gamma
distribution with this data set. One intrinsic difficulty with
SFS model fitting is that deleterious mutations of sufficiently
large effects will be equally unobservable irrespective of their
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precise selection coefficient – for instance, mutations of se-
lection coefficient s ¼ 2100=Ne or s ¼ 21000=Ne just have
essentially zero probability to be observed in a population
sample of size 10 to 20, as we are having here. This means
that we lack information on the tail of the distribution we are
trying to model. This also presumably explains why our plth
estimate is substantially larger than existing estimates of the
fraction of lethal mutations (Dickinson et al. 2016; Kim et al.
2017): we expect the parameter to capture not only lethal
mutations, but also strongly deleterious mutations main-
tained at low frequency in the population.

Estimating Ne: mutation load vs. diversity

Our analysis of the load of deleterious mutations uncovered
three [based on the Rousselle et al. (2020) and Chen et al.
(2017) data sets] or four [based on the Galtier (2016)] or-
ders of magnitude of variation in drift power among species
of animals, when the neutral genetic diversity of the very
same species varied by a factor of 100 or less. Below we
discuss potential reasons for this discrepancy.

First, it should be recalled that, unlike the nonsynonymous
to synonymous contrast, the genetic diversity of a species is
influenced by the mutation rate. If the mutation rate was
negatively correlated with the effective population size, and
differed by one or two orders ofmagnitude between species of
animals, then our results could be explained very simply.
Empirical estimates in humans (Kong et al. 2012) and
Drosophila (Keightley et al. 2009) indeed seem to point to
an order of magnitude of difference in per base, per genera-
tion mutation rate between these two taxa. We lack, how-
ever, a reliable estimate of the mutation rate in the vast
majority of the species of our data set. The existence of a
negative relationship between Ne and m, although some-
how expected theoretically (Sung et al. 2012), is so far
hypothetical.

Demographic fluctuations are another potential cause of
discrepancy between genetic diversity-based and mutation
load-based estimates of Ne. Brandvain and Wright (2016)
recalled that the mutation/selection/drift equilibrium is
reached more quickly when selection is strong, with neutral
mutations being the slowest to converge. This suggests that
the mutation load might be less strongly influenced by an-
cient bottlenecks than the neutral genetic diversity, and
therefore yield more reliable estimates of present-day drift
power. To further investigate this hypothesis, we simulated
coding sequence evolution in a population after a strong bot-
tleneck. We found that the estimated �S indeed equilibrates
faster than pS during the recovery phase (Figure 4, genera-
tions 0–10,000). In these simulations, diversity-based esti-
mates of Ne would be biased downward during a
substantial period of time after the bottleneck, whereas the
deleterious variation would more quickly provide a reliable
estimate. Ancient bottlenecks, therefore, might explain why
genetic diversity-based and mutation load-based estimates of
drift power sometimes disagree – e.g., see above our discus-
sion of the D. santomea case. Can this effect account for the

increased between species variance in drift power we report,
compared to genetic diversity-based estimates? This would
require additional assumptions, such as, e.g., that large-Ne

species tend to fluctuate more than small-Ne ones, or that
the minimal value reached by Ne as populations fluctuate
varies less among species than the maximal one. Such hy-
potheses have already been proposed (Romiguier et al.
2014) but so far lack any empirical support.

A third and major factor potentially affecting the estima-
tion of Ne is linked selection. The mutation load results from
stochastic variations in allele frequency, which we have so far
interpreted in terms of genetic drift. Linked selection – i.e.,
selective sweeps and background selection – is another
source of stochasticity, which like drift is expected to result
in a decreased genetic diversity and an increased mutation
load (Kaiser and Charlesworth 2009; Barton 2010; Hartfield
and Otto 2011). Corbett-Detig et al. (2015) demonstrated
that the reduction in genetic diversity due to linked selection
is stronger in large than in small population-sized species of
plants and animals. Linked selection, therefore, tends to ho-
mogenize the genetic diversity among species. The impact of
linked selection on the deleterious variation has been less
thoroughly investigated, either theoretically or empirically.
What we know is that recurrent selective sweeps result in
patterns of neutral variation at linked loci that are best rep-
resented by a form of multiple-merger coalescent (Durrett
and Schweinsberg 2005; Coop and Ralph 2012). Multiple-
merger coalescents, on the other hand, are known to predict
patterns of neutral and selected variation that depart the
predictions of just drift (Eldon and Wakeley 2006; Der
et al. 2012). So it might be that the respective effects of linked
selection on the genetic diversity and the mutation load do
not scale similarly with population size, perhaps explaining
our results. This, again, is entirely hypothetical and would
require confirmation via specific theoretical developments,
which ideally should also account for the effect of back-
ground selection.

The discrepancy between diversity-based and mutation
load-based estimates of Ne was central in two recent studies
of the DFE in animals. Huber et al. (2017) estimated the
distribution of S for nonsynonymous mutations in H. sapiens
and D. melanogaster using an approach similar to ours. Di-
viding by an estimate ofNe, they found that the distribution of
s differed substantially between these two species, the aver-
age fitness effect of mutations being higher in H. sapiens than
in D. melanogaster. This result seemingly contradicts our as-
sumption of a constant DFE among species. It should be
noted, however, that their estimate of Ne was obtained from
ameasure of the neutral genetic diversity, i.e., was potentially
affected by the caveats discussed above. The Huber et al.
(2017) and this study actually agree in showing that esti-
mates of 4Nes and 4Nem do not scale proportionally across
species. The two studies differ in their interpretation: Huber
et al. (2017) invoked a difference in DFE, while we highlight
linked selection and demographic fluctuations as potential
causes of the discrepancy.
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Finally, Castellano et al. (2019) recently introduced a new
hypothesis. These authors reported awider range of variation
in �S than in p among species of great apes, which they inter-
preted in terms of positive epistasis. Castellano et al. (2019)
suggested that the average effect of a new deleterious muta-
tion could be negatively related to the existing load, because
of the interaction between deleterious mutations. According
to their interpretation, species genetic diversity would scale
linearly with Ne, whereas the variation in �S would reflect a
positive correlation between Ne and �s. This interesting hy-
pothesis offers yet another potential explanation to the dis-
crepancy between diversity-based and mutation load-based
estimators of drift power.

Both Huber et al. (2017) and Castellano et al. (2019)
challenge our assumption of a common DFE across species
in invoking an effect of Ne on the average fitness effect of
deleterious nonsynonymous mutations. They differ in their
predictions, though, with Huber et al. (2017) suggesting a
stronger average effect, and Castellano et al. (2019) aweaker
average effect, in small-Ne species. How and how much the
distribution of deleterious effects varies among species is as
yet an unresolved issue, which clearly is key to the interpre-
tation of the selected vs. neutral variation and the measure-
ment of drift intensity.

How variable among species is Ne?

Lewontin’s paradox has been a recurrent cause of concern/
excitement over the last decade (Leffler et al. 2012;
Romiguier et al. 2014; Corbett-Detig et al. 2015; Coop
2016; Filatov 2019; Mackintosh et al. 2019). In animals,
the within-species genetic diversity roughly spans two orders
of magnitude, whereas population density and geographic
range vary considerably more across species. Our analysis
of the mutation load rather suggests that Ne varies by a factor

of 103, or maybe 104, among species of animals. This is a step
toward reconciling genetic with ecological estimates of pop-
ulation size – but how big is this step?

On the one hand, one or two additional orders of magni-
tude can be seen as a moderate improvement, far from
reconciling the effective and census population sizes of animal
populations. Small insects or nematodes presumably outnum-
ber large vertebrates by much more than a factor of 500 or
5000. On the other hand, Lewontin’s paradox may appear
somewhat naive in suggesting that the genetic diversity
should be proportional to the effective population size.
Clearly, very large populations can just not follow the
p ¼ 4Nem prediction. This equation assumes mutation-drift
equilibrium, which is only reached after a number of gener-
ations of the order of Ne. As Ne increases, the assumption that
the considered population has been devoid of bottlenecks
and sweeps during the last Ne generations becomes less and
less plausible (Gillespie 2000). So maybe we should be sat-
isfied, after all, by an estimated ratio of 103 or 104 of long-
term Ne among species of animals. We suggest that Lewon-
tin’s “paradox” in part reflects the varying definition/usage of
the Ne parameter in the molecular evolutionary literature.
Assessing the amount of stochasticity in allele frequency evo-
lution, the prevalence of linked selection vs. drift, and their
impact on genome evolution are key goals of current popu-
lation genomics that perhaps do not need to be phrased in
terms of a paradox, and probably cannot be reduced to just
the issue of estimating one “Ne” per species.
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