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ABSTRACT It is increasingly evident that natural selection plays a prominent role in shaping patterns of diversity across the genome.
The most commonly studied modes of natural selection are positive selection and negative selection, which refer to directional
selection for and against derived mutations, respectively. Positive selection can result in hitchhiking events, in which a beneficial allele
rapidly replaces all others in the population, creating a valley of diversity around the selected site along with characteristic skews in
allele frequencies and linkage disequilibrium among linked neutral polymorphisms. Similarly, negative selection reduces variation not
only at selected sites but also at linked sites, a phenomenon called background selection (BGS). Thus, discriminating between these
two forces may be difficult, and one might expect efforts to detect hitchhiking to produce an excess of false positives in regions
affected by BGS. Here, we examine the similarity between BGS and hitchhiking models via simulation. First, we show that BGS may
somewhat resemble hitchhiking in simplistic scenarios in which a region constrained by negative selection is flanked by large stretches
of unconstrained sites, echoing previous results. However, this scenario does not mirror the actual spatial arrangement of selected sites
across the genome. By performing forward simulations under more realistic scenarios of BGS, modeling the locations of protein-coding
and conserved noncoding DNA in real genomes, we show that the spatial patterns of variation produced by BGS rarely mimic those of
hitchhiking events. Indeed, BGS is not substantially more likely than neutrality to produce false signatures of hitchhiking. This holds for
simulations modeled after both humans and Drosophila, and for several different demographic histories. These results demonstrate
that appropriately designed scans for hitchhiking need not consider BGS’s impact on false-positive rates. However, we do find evidence
that BGS increases the false-negative rate for hitchhiking, an observation that demands further investigation.
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The impact of natural selection on genetic diversity within
and between species has been debated for decades

(Kimura 1968, 1983; Gillespie 1984, 1991; Kern and Hahn
2018; Jensen et al. 2019). Perhaps the strongest evidence
that selection influences the amount of diversity at linked
neutral alleles comes from the correlation between diversity
levels and recombination rates across the genome (Begun
and Aquadro 1992; Smukowski and Noor 2011; McGaugh
et al. 2012; Corbett-Detig et al. 2015). This observation is
consistent with genetic hitchhiking, in which a beneficial mu-
tation rapidly increases in population frequency and carries

its genetic background along with it. These events, which are
also referred to as selective sweeps, result in the complement
of genetic diversity in the vicinity of the selected site being
largely replaced by descendants of the chromosome(s) that
acquired the adaptive mutation. The width of the resulting
valley of diversity will depend in part on the recombination
rate, as crossover events will allow linked variation to “es-
cape” by shuffling alleles onto and off the set of sweeping
chromosomes (Maynard Smith and Haigh 1974; Kaplan
et al. 1989). The correlation between recombination rate
and diversity can also be explained by background selection
(BGS), wherein neutral alleles linked to a deleterious muta-
tion are purged via negative (or purifying) selection unless
they can escape via recombination (Charlesworth et al.
1993). Whether primarily due to hitchhiking, BGS, or—more
likely—a combination of the two (Elyashiv et al. 2016;
Booker and Keightley 2018), there is growing evidence that
natural selection has a profound impact on the amount and
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patterns of diversity across the genome in a variety of species
(Begun et al. 2007; Lohmueller et al. 2011; Langley et al.
2012; Corbett-Detig et al. 2015; Booker and Keightley
2018). Indeed, it appears that natural selection is in part re-
sponsible for the limited range of levels of genetic diversity
observed across species (Lewontin 1974; Leffler et al. 2013;
Corbett-Detig et al. 2015), although other forces are likely at
play as well (Coop 2016).

There is ample reason to suspect that BGS may substan-
tially reduce the amount of polymorphism genome-wide. For
example, approximations have been derived for the expected
percent reduction in diversity at a given site, termed B, due to
negative selection acting on linked sites (Hudson and Kaplan
1994, 1995; Nordborg et al. 1996). The extent to which BGS
affects diversity can thus be predicted from a genome anno-
tation and estimated distribution of fitness effects (DFE)
(e.g., McVicker et al. 2009). While there may be some un-
certainty over the true DFE, such B-maps predict that BGS has
a sizeable impact, removing an estimated �20% and �45%
of diversity on the autosomes in humans and Drosophila, re-
spectively (McVicker et al. 2009; Comeron 2014).

More controversial is the potential role of positive selection
in shaping the landscape of diversity across the genome
(Stephan 2010). A number of approaches exist for detecting
positive selection in population genomic data. For example,
variants of the McDonald–Kreitman test, which searches for
an excess of nonsynonymous divergence between species,
have found that in many organisms a large fraction of amino
acid substitutions are beneficial (Smith and Eyre-Walker
2002; Charlesworth and Eyre-Walker 2006; Enard et al.
2016; Galtier 2016). Efforts have also been made to fit ge-
nome-wide parameters of recurrent hitchhiking models to
population genetic data in Drosophila, in some cases suggest-
ing appreciable rates of hitchhiking events (Andolfatto 2007;
Jensen et al. 2007; Li and Stephan 2006). An alternative
approach to assess the frequency of adaptive substitutions
is to directly search for recent selective sweeps. For this rea-
son, and because identifying hitchhiking may provide clues
about recent adaptations and selective pressures, a large
number of methods for locating selective sweeps in the ge-
nome have been devised (Hudson et al. 1994; Fay and Wu
2000; Kim and Stephan 2002; Sabeti et al. 2002; Kim and
Nielsen 2004; Nielsen et al. 2005; Voight et al. 2006; Lin et al.
2011; Ronen et al. 2013; Ferrer-Admetlla et al. 2014; Pybus
et al. 2015; Schrider and Kern 2016; Mughal and DeGiorgio
2018). Nevertheless, detecting signatures of hitchhiking re-
mains a major challenge. For example, it is well known that
demographic events such as population bottlenecks can mir-
ror selective sweeps (Simonsen et al. 1995; Jensen et al.
2005; Nielsen et al. 2005) and the feasibility of detecting
hitchhiking in the presence of nonequilibrium demography
remains hotly debated (Harris et al. 2018; Schrider and Kern
2018). It has also been suggested that BGS could bemistaken
for selective sweeps (e.g., Comeron et al. 2012; DeGiorgio
et al. 2016), and it is this possibility that we investigate here.

Intuitively, one may expect BGS to resemble hitchhiking
because both forces can create localized reductions of poly-
morphism. Moreover, BGS is a very flexible model in part
because of the astronomical number of possible arrange-
ments of selected sites across a chromosome; it is straight-
forward to construct a BGS scenario that somewhat mirrors
the valley of diversity caused by hitchhiking by placing a
large cluster of selected sites in a region flanked by vast
stretches of unselected sites (e.g., Mughal and DeGiorgio
2018). At first blush this may suggest that distinguishing
between hitchhiking and BGS should be extremely chal-
lenging [reviewed in Stephan (2010)]. However, in prac-
tice we often know (with some degree of uncertainty)
where selected sites reside in genomes with high-quality
annotations of genes and conserved noncoding elements
(CNEs); such information is used to create the B-maps
alluded to above. Thus, rather than focusing on the most
pessimistic scenario in which BGS could mirror selective
sweeps, it is possible to ask how often BGS would
be expected to actually mirror hitchhiking in real ge-
nomes. In addition, hitchhiking events affect diversity in
ways other than just removing polymorphisms: they can
also dramatically skew the site frequency spectrum toward
low- and high-frequency-derived alleles (Braverman et al.
1995; Fay and Wu 2000) and increase linkage disequilib-
rium (LD) on either flank of the selected site while reduc-
ing LD between polymorphisms on opposite sides of the
sweep site (Kim and Nielsen 2004). While BGS may also
influence these aspects of polymorphism, such effects may
be subtle (Charlesworth et al. 1995; Tachida 2000; Zeng
2013). Thus, it is unclear whether BGS will resemble hitch-
hiking when additional features of genetic variation are
examined.

With this inmind, herewe examine the separability of BGS
and hitchhiking models via simulations of large genomic
regions summarized by a number of statistics capturing the
amountofnucleotideandhaploypticdiversity, the shapeof the
site frequency spectrum, and patterns of LD. Our approach is
to simulate BGS scenarios designed to match annotated ge-
nomes with respect to their locations of selected sites and
estimated DFEs, and to compare the resulting patterns of
diversity to thoseexpectedunder selective sweeps. Inaddition
to qualitative comparisons of these models using various sum-
maries of diversity, we also use a classification approach to
ask how often BGS simulations are mistaken for hitchhiking
events, as this is informative about how frequently realiza-
tions of these twomodels will resemble one another.We first
examine simulations modeled after the human genome,
including both equilibrium and nonequilibrium demo-
graphic histories. We then consider the Drosophila mela-
nogaster genome, which has both a much larger density of
selected sites and a different estimated DFE. We then con-
clude with a discussion of the implications of our results for
efforts to detect positive selection in the face of potentially
widespread BGS.
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Materials and Methods

Annotation data

We downloaded annotation data from the University of Cal-
ifornia Santa Cruz (UCSC) Table Browser (Karolchik et al.
2004) for both the human (Lander et al. 2001) and D.
melanogaster (Adams et al. 2000) genome assemblies
(GRCh37/hg19 and release 5/dm3 coordinate spaces, re-
spectively; all data accessed on December 21, 2018). These
data included refSeq protein-coding gene coordinates for
both genomes and phastCons elements (Siepel et al. 2005)
conserved across vertebrates and insects, respectively, as well
as the locations of gaps within both genome assemblies. The
human genetic map from Kong et al. (2010) was also
obtained from this resource. In addition to data from the
UCSC Table Browser, we used the D. melanogaster genetic
map from Comeron et al. 2012.

Overview of simulation strategies

We used four different simulation strategies to assess the
similarities between BGS and hitchhiking models. These in-
cluded: (1) forward simulations of various scenarios of BGS in
moderately sized chromosomal windows (e.g., 1 cM in hu-
mans); (2) forward simulations of BGS in larger chromo-
somal regions, (3) coalescent simulations of selective
sweeps used both to qualitatively compare with BGS and to
train a classifier to more formally quantify the similarity of
BGS and hitchhiking (by asking how often simulations of BGS
are misclassified as selective sweeps); and (4) forward sim-
ulations containing both BGS and selective sweeps, used for
assessing the extent to which the signatures of hitchhiking
events are weakened in the presence of BGS.

Forward simulations of BGS

We used fwdpy11 version 0.1.4 (Thornton 2014) to perform
forward simulations of 1.1-Mb regions modeled after human
populations and 110-kb regions modeled after D. melanogaster.
In all simulations with BGS, 75% of mutations within
selected regions (either exons or CNEs) were deleterious
(i.e., the selection coefficient, s, was drawn from the appro-
priate DFE), while the remaining 25% were selectively neu-
tral. The selection coefficients for deleterious mutations were
g-distributed: the DFE for deleterious mutations in humans
had a mean of 20.030 and shape parameter of 0.206 [as
estimated by Boyko et al. (2008)], and for Drosophila the
mean and shape were 20.000133 and 0.35, respectively
(Huber et al. 2017). We simulated populations under four
different scenarios (Figure 1): (1) no selection; (2) a scenario
we refer to as central BGS, wherein the central �5% of the
simulated region is a coding sequence; (3) a scenario where
each simulated replicate is modeled after a randomly se-
lected genomic region as described below (we refer to this
scenario as real BGS because it shouldmore accurately model
BGS in real genomes than scenario 2); and (4) a scenario
identical to 3 but where the selection coefficients in CNEs
are 10-fold lower than in coding regions, although the DFEs

have the same shape (real BGS–weak CNE). Each of our
simulated scenarios contained a single, fixed dominance co-
efficient, h, for all deleterious mutations. We simulated rep-
licates of each real BGS scenario (scenarios 3 and 4 above)
with dominance values of 0, 0.25, 0.5, and 1.0. The fitness
values of homozygous wild-type, heterozygous, and homozy-
gous mutant individuals were 1, 1-hs, and 1-s, respectively.
Unless otherwise noted, we report results from simulations
with dominance of 0.25 because deleterious mutations may
often be partially recessive (García-Dorado and Caballero
2000; Peters et al. 2003; Agrawal and Whitlock 2011), al-
though our results do not appear to change qualitatively with
different dominance values as discussed in the Results. All
forward simulations began with a burn-in period of 10N gen-
erations, where N is the ancestral population size. Although
this may not have been a sufficient burn-in period to ensure
that all lineages coalesced normally in the ancestral popula-
tion, the strong concordance between the mean values of
summary statistics calculated from our neutral forward and
coalescent simulations (e.g., Figure 3) implies that the bur-
n-in duration did not substantially impact our results. At the
end of each simulation we randomly sampled 100 chromo-
somes from the population.

For each replicate of our real BGS simulations, we mod-
eled a random genomic window of the appropriate size for
the two species. This was done by first selecting the endpoint
of the window, which we constrained to be a multiple of
100 kb for humans and 10 kb for Drosophila. Window loca-
tions were drawn with replacement, and all possible loca-
tions across the genome had equal probability of being
selected, although windows with $75% of positions in as-
sembly gaps were disallowed. The simulation replicate was
then modeled after the selected region by taking the loca-
tions of annotated exons and phastCons elements within the
region and allowing deleterious mutations to occur at these
sites only, i.e., all mutations outside of these elements were
neutral. Our neutral simulations followed the same proce-
dure as the real BGS simulations for randomly selecting a
region to model but used only the region’s recombination
landscape.

For our human simulations, we used two different de-
mographic histories: a constant-sized population with Ne =
10,000, and the European population size history estimated
by Tennessen et al. (2012); the latter model contains two
successive population contractions followed by a period of
exponential growth and then a phase of more rapid growth
continuing until the present. For Drosophila, we followed the
three-epoch demographic model estimated by Sheehan and
Song (2016), wherein the population experiences a pro-
tracted but moderate bottleneck followed by a nearly full
recovery. Note that all of these demographic histories are
single-population models with no gene flow. Our average
mutation and recombination rates (m and r, respectively) in
humans were 1.23 1028 (Kong et al. 2012) and 1.03 1028,
while inDrosophila these rates were set to 53 1029 (Schrider
et al. 2013; Assaf et al. 2017) and 2.3 3 1028, respectively
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[based on Comeron (2014)]. To allow the mutation rate to
vary across simulated replicates, for each simulation we drew
the rate uniformly from a range spanning a full order of
magnitude and centered around the specified mean; thus,
mutation rates varied considerably among replicates but
were constant across the simulated region within each repli-
cate. In the interest of computational tractability we reduced
our population sizes and simulation durations (in genera-
tions) 10-fold and 100-fold for the human and Drosophila
simulations, respectively. Concordantly, mutation rates, re-
combination rates, and selection coefficients were increased
by the same factor so that u = 4N m, r = 4N r, and a = 2N s
were unaffected by this rescaling.

Simulations of BGS in larger chromosomal regions

The simulation strategy above generated thousands of repli-
cates of 1.1 and 110 kb in length for humans and Drosophila.
Because the impact of BGS can extend beyond these dis-
tances, we also simulated larger chromosomes of length
12.1 and 1.21 Mb in humans and Drosophila. For these sim-
ulations, we used the approach of the real BGS and real BGS–
weak-CNE scenarios described above, in which the locations
of selected sites are based on randomly selected 12.1- and
1.21-Mb regions of the human and Drosophila genomes, re-
spectively. This approach allowed us to examine the impact of
BGS on sweep detection when the region being examined is
affected by both proximal and distal negatively selected sites
spread across a chromosome. These simulations were carried

out for each combination of demographic model and DFE
described above.

Coalescent simulations of hitchhiking

Our goal was to compare the results of the BGS simulations
described above to recent hard and soft selective sweeps. To
rapidly simulate positive selection while conditioning on
fixation of the adaptive allele, we used the coalescent simu-
lator discoal (Kern and Schrider 2016). These simulations
used the same demographic histories and average values of
locus-wide u and r as the forward simulations for BGS above.
Again, u varied uniformly across an order of magnitude from
replicate to replicate. Rather than following a particular ge-
netic map, r was drawn from a truncated exponential with a
maximum value fixed to three times the mean; larger values
of r require more memory and therefore sometimes cause the
simulation to crash. This strategy allowed for variation in
recombination rate while skewing toward lower rates. For
each demographic history, we simulated 4000 examples of
neutral evolution, hard sweeps occurring at the center of
each of 11 adjacent equally sized windows partitioning the
simulated chromosome, and soft sweeps at the center of each
window. Our soft sweeps consisted of selection on a previ-
ously neutral allele that is segregating at a specified fre-
quency at a time at which it becomes beneficial and sweeps
to fixation (Hermisson and Pennings 2005), rather than the
alternative model of soft sweeps from recurrent adaptive mu-
tations (Pennings andHermisson 2006). Note that this model

Figure 1 Overview of selection
models examined in this study.
(A) Hitchhiking models (either
hard or soft sweeps) in which
there is a recent sweep in the
center of the simulated region
(blue site), and the recomb rate
is flat but varies across simulated
replicates. (B) The central BGS
model in which mutations in the
central �10% of the region can
be deleterious, but all other mu-
tations are neutral. (C) The real
BGS model, in which for each
rep both the recombination map
and the locations of sites experi-
encing negative selection (red re-
gions) are drawn from a
randomly selected region in the
genome, but all selected sites
have the same DFE. (D) The real
BGS model with weak selection
on CNEs, which is the same as
the real BGS model but muta-
tions at CNEs (purple) have
10-fold lower s than those within
exons (red) on avg. avg, average;
BGS, background selection; CNE,
conserved noncoding element;
DFE, distribution of fitness ef-
fects; recomb rate, recombination
rate; rep, replicate.
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does not ensure that multiple independent lineages that har-
bor the adaptive allele at the onset of selection will partici-
pate in the sweep (i.e., it is possible that all lineages but one
may go to extinction, making the outcome somewhat more
similar to selection on a de novomutation). We also note that
an alternative definition of hard and soft sweeps is commonly
used in the literature, where a sweep is defined as hard if all
sweeping lineages trace their ancestry to a single individual
at the onset of selection and defined as soft otherwise (e.g.,
Hermisson and Pennings 2017). However, here we simply
equate hard sweeps with selection on a de novo mutation
and soft sweeps with selection on standing variation. For
each hard- and soft-sweep replicate, the selection coefficient
of the beneficial mutation was drawn uniformly from be-
tween 0.0001 and 0.05, while the initial selected frequency
for soft sweeps ranged from between 0 and 0.05. The fixation
time for each sweep was randomly chosen from between
0 and 200 generations ago, thereby modeling relatively re-
cent selective sweeps (e.g., completing within the last�5000
years in humans). As with our forward simulations, our sam-
ple size was set to 100 haploid genomes.

Forward simulations with hitchhiking and BGS

We also sought to compare the influence of hitchhiking on
diversity in regionswith andwithout BGS. Therefore,we used
forward simulations tomodel the real BGS scenario described
above while also conditioning on the recent fixation of an
adaptivemutation near the center of the region. The results of
these simulations were then compared with simulated hitch-
hiking events on otherwise neutrally evolving chromosomes.
The procedure for this simulation was as follows: first the
simulation runs up until a randomly selected time drawn from
�U(201, 5000) generations before the present, and the sim-
ulation state is saved. Next, the selected phase begins either
by introducing a de novo beneficial mutation at the center of a
randomly selected chromosome in the case of hard sweeps, or
by changing the selection coefficient of the polymorphism
nearest to the center of the chromosome having a frequency
within a specified range in the case of a soft sweep. If the
selected mutation is lost or does not reach fixation by the end
of the simulation, the simulation is restarted from the point at
which the state was previously saved, and this process re-
peats until fixation is achieved.

We sought to use the same uniform distributions as the
coalescent simulations described above for the selection co-
efficient, fixation time, and initial selected frequency (in the
case of soft sweeps). Because some combinations of these
parameters are more likely than others to yield simulation
replicatesmatching our acceptance criteria,wedownsampled
our set of completed replicates after splitting them into bins
that were equally sized with respect to the fraction of each
parameter range encompassed. For hard sweeps, we split our
parameter ranges for the selection coefficient and fixation
time into thirds, and drew an equal number of replicates from
each bin in the resulting two-dimensional grid of nine param-
eter ranges. For soft sweeps we split our three parameter

ranges (selection coefficient,fixation time, and initial selected
frequency) into halves, and drew an equal number of repli-
cates from each bin in the three-dimensional grid of eight
parameter ranges. The resulting distribution of accepted
replicates was then somewhat similar to that produced under
our coalescent simulations, although our binning procedure
was fairly coarse and also reduced our total number of rep-
licates considerably. We performed this procedure for both
hard and soft sweeps with and without BGS under the
Tennessen et al. (2012) model of European demography, us-
ing the same rescaling factor as above (0.1). The resulting
numbers of replicates were as follows: 342 for hard sweeps
on a neutrally evolving background, 104 for soft sweeps on a
neutrally evolving background, 378 for hard sweeps on a
background experiencing BGS, and 128 for soft sweeps with
BGS.

Summary statistics and visualization

For each coalescent and forward simulationwe calculated the
following statistics: p (Nei and Li 1979; Tajima 1983), ûW
(Watterson 1975), ûH and Fay and Wu’s H (Fay and Wu
2000), Tajima’s D (Tajima 1989), the maximum derived al-
lele frequency (DAF) (Li 2011), the number of distinct hap-
lotypes, H12 and H2/H1 (Garud et al. 2015), Kelly’s ZnS (i.e.,
average r2; Kelly 1997), Kim and Nielsen’s v (Kim and
Nielsen 2004), and the variance, skewness, and kurtosis of
the distribution of densities of pairwise differences between
chromosomes. All of these can be calculated using diploS/
HIC (Kern and Schrider 2018) in haploid mode. For our hu-
man simulations, these statistics were calculated both within
100- and 1-kb windows to visualize variation across coarse
and fine scales, respectively. In Drosophila, these window
sizes were 10 kb and 100 bp. The smaller window sizes pro-
duced plots that were quite noisy, so we further smoothed
values by plotting running averages across 10 windows.

Classifying sweeps

We adopted a classification approach to ask how often our
forward simulations resembled selective sweeps on the basis
of the set of summary statistics described above. In particular,
we used the diploS/HIC software package in haploid mode to
classify each simulated region as a hard sweep, a soft sweep,
linked to a hard sweep, linked to a soft sweep, or neutrally
evolving. A classifier was trained to discriminate among these
five classes as follows (note that none of these classes contain
BGS, but this classifier can still be used to classify simulations
with BGS, thereby revealing which of the five classes a BGS
replicate most closely resembles).

Training was performed by first dividing the coalescent
simulations described above into 11windows. Hard- and soft-
sweep simulations with a selected mutation located in the
central window were then labeled as hard and soft, respec-
tively, while those in other windows were labeled as “hard-
linked” and “soft-linked,” respectively. Next, a balanced train-
ing set with 2000 examples of each of the five classes was
constructed from these simulations, and a separate set of the
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same size was set aside for testing. We then trained our clas-
sifier using diploS/HIC’s train command with default param-
eters, before using the predict command to obtain
classifications, which told us which of the five classes above
most closely resembled a given simulation outcome accord-
ing to diploS/HIC. Three classifiers were trained in total: one
for the human equilibrium model, one for the human model
of European demography from Tennessen et al. (2012), and
one for the D. melanogaster model of African demography
from Sheehan and Song (2016). Each classifier was then
applied to additional simulations generated under the corre-
sponding demographic model as described in the Results.

Data availability

All code for generating forward and coalescent simulations,
calculating and visualizing summary statistics, training, and
applying diploS/HIC are available at https://github.com/
SchriderLab/posSelVsBgs. In addition, all simulated data,
along with statistics from each replicate in both text and
graph form, are available at https://figshare.com/projects/
posSelVsBgs/72209. Supplemental material available at fig-
share: https://doi.org/10.25386/genetics.12863981.

Results

Simplistic models of BGS in humans can resemble
selective sweeps

We begin by simulating constant-sized populations with mu-
tation and recombination rates matching estimates from the
human genome, and comparing average patterns of diversity
after a selective sweep to those from two different models of
BGS. The first model of BGS that we examined (dubbed
central BGS) includes a 50-kb coding region in the center
of the simulated locus, flanked by nonfunctional DNA on
either side occupying the remainder of the 1.1-Mb locus (note
that similar models have been used to describe the expected
patterns of polymorphism under BGS) (e.g., Mughal and
DeGiorgio 2018). In the second model (real BGS), for each
replicate simulation a 1.1-Mbwindowwas randomly selected
from the human genome, and our simulation was designed to
match several features of this genomic window including the
locations of selected sites (exons and CNEs) and the recom-
bination landscape (Materials and Methods). Although pa-
rameter values varied across replicates, the overall locus-
wide mean population-scaled mutation and recombination
rates, u and r, were set to roughly match values expected
in a human population of effective size 10,000 and a total
locus size of 1.1 Mb. Note that for our BGS simulations, poly-
morphism at selected sites is included in our observations;
our results therefore reflect the action of direct purifying
selection as well as BGS. Selective sweeps were generated
via coalescent simulation, while the BGS scenarios weremod-
eled via forward simulation (Materials and Methods).

In Figure 2 we show levels of diversity as measured by
three estimators of u within simulated regions experiencing

different modes of linked selection (averaged across
1000 replicates). We see that hard selective sweeps produce
a large valley of diversity at the center of the simulated region
with a gradual recovery toward equilibrium moving away
from the selected site (Figure 2A), as expected (Maynard
Smith and Haigh 1974). Note that this valley is more pro-
nounced for p than for uW, due to the expected deficit of
intermediate-frequency alleles produced by a hitchhiking
event (Braverman et al. 1995). On the other hand, uH is ele-
vated in the regions flanking the selective sweep due to the
excess of high-frequency derived alleles that escaped the
sweep via recombination (Fay andWu 2000). For soft sweeps
(Figure 2B), we see a qualitatively similar pattern but with a
less pronounced valley of diversity. Again, p is lower than uW
in the simulated region, indicating a deficit of intermediate-
frequency alleles. It has been observed that soft sweepswith a
fairly high initial selected frequency (e.g., 5% or more) can
sometimes yield an excess of intermediate-frequency alleles
(Teshima et al. 2006; Schrider et al. 2015), but here our
initial selected frequency is constrained to values #5%, so
closer concordance between hard and soft sweeps is
expected. Additional statistics summarizing information
about the site frequency spectrum, haplotype diversity, and
LD are shown in Figure 3. These statistics show patterns
concordant with expectations under a sweep: we observe
peaks in the number of high-frequency derived alleles (Fay
andWu 2000; Hahn 2018) and in LD (Kim andNielsen 2004)
in regions flanking the sweep, decaying haplotype homozy-
gosity with increasing distance from the selected site (Garud
et al. 2015), and characteristic spatial patterns of the vari-
ance, skewness, and kurtosis of pairwise diversity around the
sweep (Kern and Schrider 2018).

In the central BGS scenario (Figure 2C), we observe a
strong localized reduction in diversity caused by direct selec-
tion against deleterious mutations, and then a rapid increase
in diversity as we move away from the selected sites. Still,
these diversity levels are somewhat reduced relative to the
neutral expectation due to their linkage with the selected
region, and recover gradually as we move further away as
expected under BGS (Charlesworth et al. 1993). There are
also apparent changes to the site frequency spectrum in the
selected region [e.g., reduced Tajima’s D and maximum
(DAF)], although these quickly recover toward neutral ex-
pectations with increasing distance from the selected region.
Thus, while the average realization of this particular scenario
does not perfectly match the predictions of a selective sweep,
it is consistent with the possibility that regions experiencing
BGS may commonly be mistaken for sweeps, especially if
negatively selected sites are also examined, as may typically
be the case when scanning for positive selection in practice.

Finally, in Figure 2Dwe show the mean values of the three
estimators of u across the real BGS simulations, wherein each
replicate draws its recombination map and locations of se-
lected sites from a random region of the human genome. We
see that diversity is somewhat reduced in these simulations
relative to the neutral expectation due to the combination of
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direct and linked negative selection. Because each replicate
models a different genomic region, there is no consistent
spatial pattern shown in Figure 2D, but this does not mean
that individual replicates in this set do not resemble selective
sweeps. We examine this possibility below.

Expected patterns of diversity produced by BGS in
particular regions of the human genome

In the previous section, we examined the average values of
different summary statistics under four different evolutionary
models (Figure 2 and Figure 3), including one model of BGS
where the chromosomal locations of exons and CNEs as well
as the recombination map were chosen to match randomly
selected regions in the human genome. Because these regions
may differ dramatically in the number and locations of se-
lected sites, and thus the expected impact of selection on
diversity, rather than looking at the average across regions,
a more useful question to ask is whether any particular re-
gion’s measures of diversity are expected to resemble selec-
tive sweeps. We examine this in Supplemental Material,
Figures S1–S10, where we show the values of 15 summary
statistics calculated from sets of simulations, each modeled
after a particular randomly chosen region of the human ge-
nome, with 1000 replicates for each region. These plots also
show the density of exonic and conserved noncoding sites in
100-kb windows, revealing the concordance between the
peaks and valleys in the density of selected sites and the
average values of the summary statistics. Among these

10 examples, we see considerable variation in the number
and arrangement of selected sites along the chromosome.
There are corresponding differences in the mean values of
summary statistics from region to region, and generally
across windows within a region we see subtle shifts in the
amount of nucleotide diversity that coincide with changes in
the density of selected sites (i.e., peaks in conserved elements
correspond to slight dips in p). However, in none of these
regions do the expected patterns of summary statistics re-
semble a selective sweep, or even the central BGS scenario.
An examination of the arrangements of selected sites along
these chromosomal regions reveals why this is so: in none of
these 10 regions do we see a high density of selected sites in
the center flanked by largely unconstrained sequence. Thus,
these results suggest that scenarios of BGS that are most
likely to resemble selective sweeps may not be appropriate
models for the typical manner in which BGS shapes diversity
across the human genome. We investigate this possibility
more systematically in the following section.

BGS rarely produces patterns of diversity resembling
selective sweeps in equilibrium populations

In the previous section we examined simulated data based on
10 randomly selected 1.1-Mb regions of the human genome,
finding thatnoneareexpected toproducepatternsof variation
mimicking a recent hitchhiking event. However, the human
genome is large, consisting of�3000 such regions. Thus, even
if a small minority of regions have an arrangement of selected

Figure 2 Patterns of diversity produced by different models of linked selection under constant population size. (A) Values of three estimators of u in
regions experiencing a recent hard sweep at the center of the window. (B) Values of these estimators in regions with a recent soft sweep at the center.
(C) Values in regions where purifying selection is acting on a central 50-kb element. (D) Values in regions with purifying selection acting on elements
distributed across the chromosome in a manner that mirrors the locations of exons and CNEs in randomly selected 1.1-Mb regions in the human
genome. Each panel shows windowed statistics calculated as described in the Materials and Methods and averaged across 1000 simulated replicates,
and the mean value of each statistic across the neutral forward simulations is also shown as a dashed line. BGS, background selection; CNE, conserved
noncoding element.
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sites and recombination maps that lend themselves to pro-
ducing large valleys of diversity at their center, then BGS
could still result in a large number of regions somewhat re-
sembling selective sweeps. We sought to examine this di-
rectly by asking how many of our simulated examples from
the real BGS set are mistaken for sweeps on the basis of their
spatial patterns of population genetic summary statistics. To
do this, we used the S/HIC framework (Schrider and Kern
2016), which represents a genomic region as a large vector of
population genetic summary statistics calculated in and nor-
malized across each of a number of windows within this re-
gion (Materials and Methods); we refer to this set of statistics
as our feature vector. S/HIC then classifies the central win-
dow of this region into one of five distinct evolutionary mod-
els: a hard sweep (i.e., a hard selective sweep recently
occurred at the region’s center), a soft sweep, linked to a hard
sweep (i.e., a hard sweep recently occurred within or near the

region, but not within the central subwindow), linked to a
soft sweep, or evolving neutrally (i.e., no recent sweep in the
vicinity of the region). This inference is made via supervised
machine learning: we first train a classifier on the basis of
feature vectors calculated from genomic regions whose true
class is known prior to applying the trained classifier to data
whose true class may be unknown. In our case, the training
data are obtained via coalescent simulation of regions with
a sweep in a center, surrounded by unselected sequence
(Materials and Methods). Because of the design of its feature
vector, S/HIC is well suited for determining whether a given
genomic window resembles a selective sweep or not on the
basis of its spatial patterns of genetic variation. We note that
there are similar approaches that may be equally suitable for
this task (e.g., Lin et al. 2011; Mughal and DeGiorgio 2018).

After training our S/HIC classifier, we applied it to the
1000 replicates from our central BGS and real BGS sets of

Figure 3 Values of 15 statistics calculated in each of the simulation conditions shown in Figure 2. Here, the mean value of each statistic (calculated from
1000 simulation replicates) is shown in the 11 adjacent 100-kb windows within the 1.1-Mb chromosomal region. In each panel the neutral expectation
of the statistic obtained from forward simulations are shown as a horizontal black line, while the neutral expectation from coalescent simulations is
shown as a dashed gray line, although for most statistics these two expectations were essentially identical, for some there was a slight difference
perhaps reflecting the subtle differences in the models used by the two simulators, and/or incomplete burn-in. DAF, derived allele frequency; div,
divided.
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forward simulations (i.e., the same data examined in Figure
2D). First, we assessed S/HIC’s ability to perform the task for
which it was trained: discriminating between selective
sweeps, regions linked to selective sweeps, and neutrally
evolving regions (top 5 rows of Figure 4). Overall the classi-
fier performed quite well, although discrimination between
hard and soft sweeps is difficult for both the sweep and
sweep-linked classes; this is not unexpected given that our
soft sweeps had a fairly low initial selected frequency (#5%),
making them more similar to hard sweeps where the initial
frequency is 1/2N. Moreover, here we equate soft sweeps
with selection on standing variation regardless of the number
of independent copies that participate in the sweep (-
Materials and Methods), raising the possibility that, in some
cases, only a single ancestral copy will reach fixation. How-
ever, our primary concern is the extent to which sweeps of
any type can be distinguished from alternative evolutionary
models. Importantly, we see that 4% of neutrally evolving
regions are misclassified as selective sweeps (all as soft;
Figure 4); these results are based on forward simulations
but similar numbers are obtained when we use a test set of
coalescent simulations generated in the same manner as
those used to train S/HIC. Thus, due to the stochasticity
of the evolutionary process, despite the vast difference in
the expectations between sweep models and neutrality,
we can expect to occasionally see neutrally evolving re-
gions whose spatial patterns of genetic diversity resemble
selective sweeps closely enough for S/HIC to misclassify
them.

Next, we assessed S/HIC’s behavior on BGS models not
included in training (bottom 3 rows of Figure 4), first asking
how often examples in our central BGS set were mistaken for
selective sweeps by S/HIC. Perhaps unsurprisingly given the
sharp valley of diversity observed in Figure 2C, we find that
32.5% of these simulated regions are classified as sweeps by
S/HIC, with the majority classified as soft sweeps (29.5%
classified as soft vs. 3% as hard). However, when examining
the real BGS simulations, which are designed to more accu-
rately model BGS in the human genome, we find that 4.7% of
examples are classified as sweeps (4.3% as soft and 0.4% as
hard), similar to the corresponding fraction of neutrally evolv-
ing examples (P= 0.51; Fisher’s exact test). When simulating
weaker selection on CNEs than on protein-coding exons, we
again find no significant elevation in the rate of false-sweep
calls (4.9% of examples classified as sweeps; P = 0.39); how-
ever, we note that the real BGS models do result in regions
being classified as affected by linked soft selective sweeps (i.e.,
the soft-linked class) at a substantially higher rate than are
neutral regions (�11% for real BGS models vs. 6.2% under
neutrality). In addition to running our classifier on each sim-
ulated replicate, we have created plots similar to Figures S1–S10,
but rather than showing themean values of each statistic we plot
each simulation replicate separately. Readers curious about the
extent of variability in patterns across individual realizations of
each of our simulated scenarios—which can be considerable—
may wish to explore these plots of each individual simulation
(available at https://figshare.com/projects/posSelVsBgs/72209).

Thus far our simulations do not support the claim that BGS
frequently alters diversity in a manner consistent with selec-
tive sweeps. This may imply that, at least in the case of
parameterizations relevant for the human genome, BGS
should be readily separable from models of selective sweeps
by examining summaries of variation taken across a large
chromosomal region. However, up to this point we have only
considered a constant-sized population. Given that nonequi-
librium population dynamics can have a profound impact on
genetic diversity and the effect of BGS (Torres et al. 2018,
2019), we examine two such models in the following sections.

Selective sweeps and BGS are readily distinguishable in
the presence of drastic population size change

To this point, we have shown that BGS and sweep models are
readily distinguishable in simulated constant-sized popula-
tions with genomic regions modeled after those randomly
selected from the human genome. It is known that human
populationshaveexperiencedanumberofdemographicchanges
that have reshaped patterns of diversity genome-wide (Gravel
et al. 2011). These include recent explosive population growth
(Tennessen et al. 2012) and, in non-African populations, a se-
vere bottleneck associated with the migration out of Africa
(Marth et al. 2004). Thus, if our goal is tomodel BGS in humans
we should consider the effects of dramatic population size
changes. Therefore, we repeated all of the analyses described
above under a model of European population size history
(Tennessen et al. 2012).

Figure 4 Confusion matrix showing the fraction of constant-sized simu-
lations assigned to each class by S/HIC. The y-axis shows the true evolu-
tionary model of the simulated region, and the x-axis shows the model
selected by S/HIC. Thus, a given row shows the fraction of simulated
examples of a given scenario that were assigned to each of S/HIC’s five
classes. In the top five rows, the diagonal corresponds to correct classifi-
cations, while in the bottom three rows (BGS scenarios) there is no pos-
sible correct classification and our concern is how often a region is
misclassified as a sweep. Note that the examples with positive selection
were simulated with discoal while those with negative selection or neutral
evolution were generated with fwdpy. BGS, background selection; CNE,
conserved noncoding element.
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Panels A and B of Figure 5 show that selective sweeps
under the European model produce a fairly similar pattern
to sweeps in a constant population (Figure 2), with one no-
ticeable difference in that uH is depressed rather than ele-
vated in regions flanking the sweep (although it remains
considerably higher than p). Again, we see a sharp dip in
diversity around the selected region in the central BGSmodel
(Figure 5C) and on average a global reduction in diversity in
the real BGS model (Figure 5D). When comparing the values
of a larger set of population genetic statistics across the full
1.1-Mb region, we see that on average the central BGS model
bears a passing resemblance to sweeps for some statistics but
not others, echoing our results from the constant population
size case (Figure S11).

We also reexamined the same 10 randomly selected ge-
nomic regions shown in Figures S1–S10, this time simulating
BGS under the European model of Tennessen et al. 2012
(Figures S12–S21). Again, none of these 10 regions show
the appearance of a sweep. To more formally ask how often
examples of each of our scenarios resemble hitchhiking
events, we trained a S/HIC classifier under the model of
Tennessen et al. 2012 (Materials and Methods) and recorded
the number of simulations that were misclassified as a selec-
tive sweep (Figure 6). Population bottlenecks are expected to
produce sweep-like signatures (Simonsen et al. 1995; Jensen
et al. 2005; Nielsen et al. 2005), and we do find that under
this demographic model we observe a slightly higher false-

positive rate for neutrally evolving regions than under con-
stant population size (6.2% in total vs. 4% under constant
population size; P = 0.033). In addition, we do have greater
difficulty distinguishing between hard and soft sweeps, per-
haps because population bottlenecks during a sweep can re-
duce diversity among chromosomes harboring the beneficial
allele, thereby “hardening” the sweep (Wilson et al. 2014). As
observed under equilibrium demographic history, the false-
positive rate is considerably higher under the central BGS
model than under neutrality (0.9% and 22.7% of simulations
classified as hard and soft, respectively Figure 6). Under the
real BGSmodel, the false-positive rate is similar to that under
neutrality (5.8% in total, with 5.7% and 0.1% of simulations
classified as hard and soft, respectively; P = 0.78 for the
comparison with neutrality); we find similar results when
simulating regions with weaker selection on CNEs (5.6%
false positives, with 4.9% classified as hard and 0.7% as soft;
P = 0.64 when compared with neutrality). In sum, under
neither real BGS model do we see an excess of regions clas-
sified as being linked to a sweep. Thus, under realistic ar-
rangements of selected sites, models of BGS in humans do
not appear to produce signatures of selective sweeps even in
the context of severe population size change.

BGS rarely mimics sweeps in Drosophila

Thus far our results are based on simulations modeled after
the human genome, which has a low density of genes and
conserved DNA (�5%; Siepel et al. 2005) compared to more

Figure 5 Patterns of diversity produced by different models of linked selection under the model of European population size history of Tennessen et al.
(2012). (A) Values of three estimators of u in regions experiencing a recent hard sweep at the center of the window. (B) Values of these estimators in
regions with a recent soft sweep at the center. (C) Values in regions where purifying selection is acting on a central 50-kb element. (D) Values in regions
with purifying selection acting on elements distributed across the chromosome in a manner that mirrors the locations of exons and CNEs in randomly
selected 1.1-Mb regions in the human genome. Each panel shows windowed statistics calculated as described in the Materials and Methods and
averaged across 1000 simulated replicates, and the mean value of each statistic across the neutral forward simulations is also shown as a dashed line.
BGS, background selection; CNE, conserved noncoding element.
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compact genomes. To examine the impact of BGS in a ge-
nome with a higher density of conserved elements, we sim-
ulated BGS in regions modeled after 110-kb windows in the
D. melanogaster genome (see Materials and Methods), in
which .50% sites show evidence of purifying selection
(Andolfatto 2005; Halligan and Keightley 2006). For these
simulations we used Sheehan and Song’s (2016) three-epoch
demographic model of a Zambian population sample (Lack
et al. 2015). In Figure 7 we again show values of three esti-
mators of u under our four difference scenarios. For this de-
mographic history, there is a more pronounced difference
between hard and soft sweeps (Figure 7, A and B). This
may be a consequence of the larger effective population size
(Ne) for Drosophila, which yields a much stronger effect ob-
served for hard sweeps than under previous scenarios, while
soft sweeps contain a drift phase whose duration is constant
(in coalescent units) across values of Ne. Under the central
BGS scenario (Figure 7C), we again see a strong reduction in
diversity in the immediate vicinity of the selected sites
flanked by a rapid recovery. In the real BGS scenario (Figure
7D), we again do not see any spatial pattern on average, as
expected given our random sampling across loci; however we
do see a larger mean reduction in variation relative to expec-
tations in the absence of selection than seen in the human
scenarios due to the denser placement of selected sites in
Drosophila. The average patterns of additional summary sta-
tistics are shown in Figure S22; these statistics show a strong
hitchhiking effect for hard sweeps (a valley of nucleotide di-
versity, a plateau of LD, an SFS skewed toward low- and high-
frequency derived alleles, etc.) and a somewhat different
pattern for soft sweeps (e.g., elevated Tajima’s D and a fairly
high ratio of H2/H1). Although for central BGS the depth of
the valley of diversity closely resembles that of soft sweeps, as
expected there is no spatial pattern on average for any statis-
tics under the real BGS scenario.

We examine expected values of summary statistics in
10 randomly selected individual regions in Figures S23–
S32. Here, we see a much more conspicuous relationship
between summaries of diversity and the density of conserved
elements, in part because this density is an order of magni-
tude higher than in our human simulations. Again, none of
our 10 randomly selected regions resemble a selective sweep
at all. Using an S/HIC classifier trained on coalescent simu-
lations under the Sheehan and Song model (Materials and
Methods), we see that no neutrally evolving regions are mis-
classified as sweeps (Figure 8); this is perhaps unsurprising
given the much stronger signatures shown in Figure 7 than in
either human model we examined. A modest fraction of the
central BGS cases are misinferred to contain sweeps (3.7% in
total, with 2.3% hard and 1.4% soft), but for real BGS these
false positives occur more rarely (1%, with 0.1% hard and
0.9% soft; these fractions are 0.5% hard and 0.2% soft when
selection on CNEs is weaker). Unlike in the human scenarios,
the real BGS simulations do result in an excess of sweep calls
(P = 0.0019 and P = 0.015 in the standard and weak-CNE
real BGS scenarios, respectively), although this effect is quite
modest (false-positive rate #1% in either case). As in the
human scenarios, we also note a sizeable fraction of simula-
tions of the real BGS scenario assigned to S/HIC’s soft-linked
class (16.7% and 18.9% for the standard and weak-CNE real
BGS examples, vs. 2.2% under neutrality).

Dominance of deleterious mutations

We also examined the impact of the dominance coefficient of
deleterious mutations on the propensity of regions experienc-
ing BGS to be mistaken for selective sweeps. As shown in
Figure S33, there does not appear to be a strong relationship
between dominance and the fraction of real BGS simulations
classifiedasasweepbydiploS/HIC. Inour simulatedconstant-
sized human populations, the fraction of spurious sweep calls
(either hard or soft) hovers �5%, with no significant differ-
ence across dominance values and no discernible trend with
increasing dominance. Similar results are observed under the
European model, where the fraction of sweep calls ranges
between 4% and 6%, and the African D. melanogastermodel,
where this fraction is �1% or less in all cases, again with no
significant difference among dominance classes. These re-
sults imply that, at least for models of BGS in which every
deleterious mutation has the same dominance coefficient,
patterns of variation are unlikely to resemble those expected
under recent hitchhiking events regardless of that coeffi-
cient’s value.

Properties of regions misclassified as selective sweeps

Although we find that the fraction of real BGS simulations
misclassified as sweeps is not dramatically different from that
of neutral simulations, it may be useful to ask whether the
propensity of a genomic region under BGS to produce a
signature of hitchhiking can be predicted a priori from
the arrangement of selected sites and the recombination rate.
In Table 1, we show Spearman’s correlation coefficients

Figure 6 Confusion matrix showing the fraction of simulations under the
Tennessen et al. (2012) model of European demography assigned to each
class by S/HIC, following the same schema as Figure 4. BGS, background
selection; CNE, conserved noncoding element.
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between the probability that a given simulation contains a
sweep according to S/HIC (represented by the sum of the
diploS/HIC’s posterior probability estimates for the hard
and soft classes) and the number of selected sites in the cen-
tral window, the number of selected sites in all other win-
dows, and the total recombination rate of the simulated
region. We calculated these correlations for each combina-
tion of species, demographic history, and strength of selection
on CNEs in our simulated data set. For each data set we
observe a significant negative correlation between the recom-
bination rate and S/HIC’s predicted posterior probability that
the region is a sweep. In Drosophila, we also observe a sig-
nificant correlation between the number of selected sites in
the central window and the posterior probability of a sweep
in the weak-CNE scenario. Overall, our results suggest that
there may be some power to predict which regions are most
likely to be produce spurious sweep-like signatures; as one
might expect, such regions have lower crossover rates and a
greater density of selected sites in the central window (al-
though the latter was significant in only one of our simulated
scenarios).

To more closely examine the impact of recombination rate
on our results, for each demographic model we binned all of
the realBGS simulationaccording tomeanrecombination rate
across the simulated chromosome. Five bins were used: one
bin reserved for the fairly small number of replicates with a
recombination rate of zero, and the four quartiles among

simulations with a nonzero recombination rate. In Figure 9,
we show the fraction of examples misclassified as selective
sweeps of either type by S/HIC for each recombination bin
and in each case compare to the misclassification rate for
neutral simulations (rightmost bar). The results of this same
analysis for the real BGS–weak-CNEmodel is shown in Figure
S34. We see that for most of the human recombination rate
bins there is no significant elevation of the false-positive rate
relative to neutral simulations, although this may in part be
due to inadequate statistical power, with one exception being
the no-recombination bin for the weak-CNE simulations (P=
0.04), and a trend toward higher false-positive rates in rep-
licates with less recombination is seen in the human equilib-
rium simulations. However, in Drosophila, the effect of
recombination is clear: regions with no recombination or in
the lowest nonzero recombination rate bin account for the
majority of false-sweep calls by S/HIC, and outside of these
two bins the false-positive rate is �0. Thus, the small but
significant elevation in false-positive rate produced by BGS
in Drosophila seems to be driven entirely by low- or nonre-
combining regions.

BGS does not mimic sweeps in larger
simulated chromosomes

Until this point, we have limited our analysis to simulated
chromosomes 1.1 Mb and 110 kb in length for humans and
Drosophila, respectively; these lengths were chosen to match

Figure 7 Patterns of diversity produced by different models of linked selection under the Sheehan and Song (2016) model of African D. melanogaster
population size changes. (A) Values of three estimators of u in regions experiencing a recent hard sweep at the center of the window. (B) Values of these
estimators in regions with a recent soft sweep at the center. (C) Values in regions where purifying selection is acting on a central 5-kb element. (D)
Values in regions with purifying selection acting on elements distributed across the chromosome in a manner that mirrors the locations of exons and
CNEs in randomly selected 110-kb regions in the Drosophila genome. Each panel shows windowed statistics calculated as described in theMaterials and
Methods and averaged across 1000 simulated replicates, and the mean value of each statistic across the neutral forward simulations is also shown as a
dashed line. BGS, background selection; CNE, conserved noncoding element.
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the region size that we trained S/HIC to examine. Although
this allowed us to simulate thousands of replicates, the im-
pact of BGS may be smaller in such simulations because they
do not include the effect of selection in more distant linked
regions, which also influences diversity (Comeron 2014).
Therefore, we simulated much larger chromosomes (.10-
fold larger than those described above; see Materials and
Methods), with a smaller number of replicates (100 per de-
mographic model–DFE combination) due to the greater
computational demands of these simulations. These chro-
mosomes were 12.1 and 1.21Mb in humans and Drosophila,
11 times the length of our original simulations. Average
nucleotide diversity in these simulations was qualitatively
similar to that of the smaller simulations: p per site in the
central 1.1-Mb window was 4.1 3 1024 and 4.4 3 1024

averaged across all small- and large-scale human equilib-
rium simulations, respectively, and 2.7 3 1024 and 2.6 3
1024 for the small- and large-scale simulations under the
Tennessen et al. (2012) European model; in the central
110-kb window of the Drosophila simulations, average p

was 0.0045 and 0.0044 in the small- and large-scale simu-
lations. This suggests that the simulations used in the pre-
ceding sections may be adequate for addressing the
similarity of BGS and hitchhiking models, despite the rela-
tively small chromosomes being modeled, perhaps because
the impact of selection on additional linked sites is relatively
small compared with the combined effect of direct and
linked selection within the focal window. Moreover, we do
not observe a significantly elevated false-positive rate in the
large-scale simulations when examining the central window

within the chromosome (Figure 10). In our human equilibrium
model, we observe a nominal increase in the false-positive rate
when switching from smaller to larger chromosomes (4.7% of
BGS windows misclassified as sweeps in small-scale simula-
tions vs. 5% in large-scale simulations), although this is not
significant (P = 0.81). In the European model of Tennessen
et al. (2012),we actually see a smaller false-positive rate in our
large-scale simulations (5.8% vs. 2%), but again this difference
is not significant (P = 0.16). Similarly, in our Drosophila sim-
ulations, we see no significant difference in false-positive rates
between our small- and large-scale simulations (1% vs. 0%;
P = 0.61).

Our large-scale simulations allow us to examine another
potential source of bias in our results: because we are iden-
tifying false-sweep signatures using S/HIC, which looks for
the patternof diversity consistentwith a sweep at the center of
its focal window, one concern may be that BGS produces
sweep-like signatures fairly often, but rarely with the epicen-
ter at the center of the region examined by S/HIC. Were this
the case, S/HIC would be underpowered to detect spurious
signatures resulting from BGS. To determine whether our
above analyses may have underestimated the rate at which
false-sweep signatures appear, we adopted a sliding window
approach using the large-scale simulations described in the
previous section. Specifically, we moved S/HIC across these
larger simulated chromosomes with small step sizes, asking
whether S/HICmistakes the focal window for a sweep at each
step. Using 10-kb step sizes for our human simulations and
1 kb for Drosophila, we classified 1100 windows for each
replicate with S/HIC. Importantly, by using these small step
sizes, we allow S/HIC to examine a number of possible sweep
locations within each 100-kb window (or 10-kb window in
Drosophila). We did not observe a significant increase in the
false-positive rate relative to our examination of the central
window alone (10): in our human equilibrium scenario the
false-positive rate was 6.5%, compared with 5% when exam-
ining the central window alone (P = 0.69); in the European
model Tennessen et al. (2012) the false-positive rate was
3.6%, compared with 2% when examining the central win-
dow (P = 0.59); and 0.93% vs. 0% in Drosophila (P = 1.0)
(note that these P-values may be anticonservative due to the
autocorrelation of tests of nearby windows within our larger
simulated chromosomes) (Hahn 2006). These results imply
that our primary approach of simulating larger numbers of
small chromosomes experiencing BGS should randomize the
location of any spurious sweep-like signatures, such that
S/HIC should yield an unbiased estimate of their frequency
of occurrence. Taken together, our findings suggest that BGS
does not appear to systematically mimic hitchhiking even in
larger simulated chromosomes.

BGS increases the false-negative rate for
selective sweeps

Wehave shown that realistic models of BGS do not frequently
produce sweep-like signatures. However, BGS could also
potentially confound scans for hitchhiking events by eroding

Figure 8 Confusion matrix showing the fraction of simulations under the
Sheehan and Song (2016) model of African demography in Drosophila
assigned to each class by S/HIC. The y-axis shows the true evolutionary
model of the simulated region, and the x-axis shows the model selected
by S/HIC. Thus, a given cell shows the fraction of simulated examples that
belong to a given class that were assigned to each of S/HIC’s five classes.
In the top five rows, the diagonal corresponds to correct classifications,
while in the bottom two rows (BGS examples simulated via fwdpy) there
is no possible correct classification and our concern is how often a region
is misclassified as a sweep. BGS, background selection; CNE, conserved
noncoding element.
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the signature of positive selection, thereby increasing the false-
negative rate. To address this possibility, we generated forward
simulations with recently completed hitchhiking events (see
Materials and Methods), and asked whether sweeps occurring
in concert with BGS were more difficult to detect than those
occurring on an otherwise neutrally evolving background. Be-
cause this approach was fairly computationally intensive, we
limited our analysis to a single demographic history: themodel
of human European demography of Tennessen et al. (2012).

We wished to match the selective parameters of our co-
alescent simulations, namely the selection coefficient, time
since fixation, and the initial selected frequency in the case of
soft sweeps, all of which were drawn from uniform distribu-
tions inour coalescent simulations. Therefore,we subsampled
our simulations by dividing them into discrete bins based on
these parameter values, uniformly drawing replicates for our
final data set from these bins (Materials and Methods). How-
ever, because this binning approach was fairly coarse, it may
not perfectly match the uniform distributions. Therefore, we
assessed the impact of BGS on S/HIC’s false-negative rate by
comparing classification results between two sets of forward
simulations: those including BGS and those without BGS
(Figure 11). Nonetheless, we found that our forward simula-
tions of sweeps without BGS were qualitatively similar to our
coalescent simulations in terms of the number of sweeps de-
tected (89.8% and 80.4% of forward- and coalescent-simu-
lated hard sweeps detected, respectively, and 71.1% and
79.2% of soft sweeps detected), although the fraction classi-
fied as hard or soft differed more substantially between the
two simulated data sets.

We observed a substantial deficit of sweeps detected under
BGS vs. an otherwise neutrally evolving chromosome. For
example, 71.7% of hard sweeps simulated under BGS were
classified as a sweep of either type by S/HIC, significantly
lower than the 89.8% of sweeps without BGS that were re-
covered (P = 6.72 3 10210; Figure 11). Moreover, hard
sweeps under BGS were more likely to be misclassified as
soft (46.0% vs. 35.1%; P = 0.0031). Similarly, soft sweeps
occurring in the presence of BGS were less likely to be de-
tected than thosewithout BGS (71.1% vs. 53.1%; P=0.0066).
Together, these results suggest that BGS may dull the signa-
tures of completed selective sweeps.

Discussion

Natural selection can shape patterns of genomic diversity in
many ways. BGS is a prime example of this, as its expected
patterns depend on the DFE, the locations of selected sites,
and the recombination landscape. Thus, this model suffi-
ciently flexible that one should not expect a single common
signature of BGS. This is the motivation for B-maps, which
take the DFE, recombination map, and functional DNA ele-
ment coordinates into account to predict the reduction in
diversity produced by BGS in a genome for which all of this
information has been annotated/estimated. Such maps have
been touted as an important “baseline” expectation for pat-
terns of diversity across the genome (Comeron 2014). Un-
fortunately, such maps are only predictive of the impact of
BGS on levels of expected heterozygosity (i.e., the degree of
reduction in p produced by BGS). To model the full distribu-
tion of genealogies yielded by BGS on the basis of a genome
annotation, one can use forward population genetic simula-
tions, which are becoming increasingly computationally effi-
cient (Thornton 2014; Kelleher et al. 2018; Haller et al.
2019). The present study attempts to do this by simulating
large regions designed to mimic the spatial arrangement of
functionally important sites across the genomes of humans
and Drosophila, thereby modeling the effects of both direct
and linked negative selection in these genomes. More exten-
sive simulation of chromosome-sized segments under this
approach could be used to produce analogs of the B-map
for any set of summary statistics under an arbitrary demo-
graphic history. Such an approach may prove useful as a mul-
tidimensional baseline expectation of different summaries of
diversity under BGS alone.

The goal of this study was to use forward simulation to
investigate the expected patterns of diversity created by BGS
in humans andDrosophila, and compare them to expectations
under recent hard and soft selective sweeps. We find that
some parameterizations of BGS do indeed yield a valley in
diversity similar to that expected under a sweep. These re-
sults are consistent with a previous finding that simply taking
genomic windows that are outliers with respect to p will re-
sult in a large number of false positives (Comeron 2014),
although this approach is not commonly taken in practice.

Table 1 Spearman’s correlation coefficients between various properties of the simulated region and the sum of the posterior probabilities
for diploS/HIC’s hard and soft classes

Genome and demographic
scenario

Strength of selection
on CNEs

Number of selected sites in
central window

Number of flanking
selected sites Total recombination rate

Human (equilibrium) Same as exons r = 20.038 (P = 0.90) r = 20.048 (P = 0.13) r = 20.21 (P = 2.3 3 10211)a

Human (equilibrium) 10-fold weaker r = 0.044 (P = 0.16) r = 20.027 (P = 0.38) r = 20.18 (P = 7.8 3 1029)a

Human (Tennessen) Same as exons r = 0.021 (P = 0.50) r = 20.028 (P = 0.37) r = 20.10 (P = 0.0011)a

Human (Tennessen) 10-fold weaker r = 0.020 (P = 0.53) r = 0.028 (P = 0.37) r = 20.11 (P = 2.7 3 1024)a

Drosophila (Sheehan and Song) Same as exons r = 0.05 (P = 0.085) r = 20.054 (P = 0.087) r = 2 0.15 (P = 3.9 3 1026)a

Drosophila (Sheehan and Song) 10-fold weaker r = 0.13 (P = 2.7 , 10215)a r = 20.032 (P = 0.30) r = 20.22 (P = 7.7 3 10213)a

All simulations were under either the real BGS model or the real BGS model with weaker selection on CNEs. BGS, background selection; CNE, conserved noncoding element;
recomb, recombination.
a Uncorrected P-values are shown marking correlations that are significant with a = 0.05 after Bonferroni correction.
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However, other statistics do not appear to be affected in the
same manner as p (compare the central BGS scenario to the
hard- and soft-sweep scenarios in Figure 3 and Figures S11
and S22).

Perhaps more importantly, in real genomes few regions
have an arrangement of functional elements that coinciden-
tally mirror those designed with the intention of confounding

scans for selection. Thus, if we examine the complete land-
scape of genetic variation across a chromosome, the impact of
BGS on the false-positive rate for selective sweeps should
be minimal. Instead, our results suggest that the primary
impact of BGS on scans for hitchhiking events may instead
be an elevated false-negative rate. This effect is probably due
to a combination of Hill–Robertson interference (Hill and

Figure 9 The fractions of simulations of our real BGS model misclassified as a sweep of either type for each demographic model, shown after binning
our data. The rightmost bar shows the fraction of misclassified neutral simulations for comparison, and all P-values show significance of the comparison
with neutrality. The error bars show the binomial 95% C.I.s. BGS, background selection; CNE, conserved noncoding element; recomb, recombination.
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Robertson 1966) and the shrinking of genealogies across the
chromosome, including in regions flanking selective sweeps,
caused by BGS. Both of these phenomena will cause the spa-
tial skews in patterns of polymorphism produced by hitchhik-
ing events to be less pronounced. The effect of negative
selection on selective sweep detection requires further study,
and it is possible that other approaches may be able to detect
sweeps in the presence of BGS with greater sensitivity than
S/HIC. An alternative strategy to detecting sweeps may also
be to attempt to discriminate between selective sweeps and
BGS, rather than solely considering neutrality as a baseline
(Comeron 2014).

In recent years, several methods have been devised to use
spatial patterns of multiple summaries of genetic variation
around a focal region to detect selective sweeps (Lin et al.
2011; Schrider and Kern 2016; Mughal and DeGiorgio
2018), and our results suggest that these methods should
be robust to realistic scenarios of BGS [consistent with results
from Schrider and Kern (2017) and Mughal and DeGiorgio
(2018)]. Indeed, a recent method for detecting hitchhiking
using trend-filtered regression appears to be fairly robust
even to a BGS scenario concocted to resemble selective
sweeps (Mughal and DeGiorgio 2018). Thus, our conclusions
about the separability between models of BGS and hitchhik-
ing events could be viewed as conservative. In contrast to
BGS, demographic history is likely to be an important con-
founding factor for detecting natural selection in practice
(Simonsen et al. 1995; Jensen et al. 2005; Nielsen et al.
2005). Researchers should thus continue to focus on the de-
velopment of methods that are robust to nonequilibrium de-
mographic histories, especially in cases where the true
history is unknown (Schrider and Kern 2016; Mughal and
DeGiorgio 2018); this is likely to often be the case in practice
given that demographic estimates will themselves be biased
by the impact of natural selection on polymorphism (Ewing
and Jensen 2016; Schrider et al. 2016).

We modeled our BGS scenarios after two very different
genome architectures: the human genome, in which only 5%
of sites are found within either coding or CNEs, and the D.
melanogaster genome, in which the majority of sites are un-
der direct purifying selection. Thus, we can ask whether ge-
nome structure appears to affect the degree to which BGS
mimics selective sweeps. In both our human and Drosophila
simulations, we see that in the presence of purifying selection
and BGS the majority of genomic regions would not be
expected to produce patterns of diversity consistent with a
selective sweep. This is evidenced by the fact that we observe
no elevation in our human simulations in the rate at which
regions with BGS are misclassified as sweeps by S/HIC rela-
tive to neutrally evolving regions, and that although there is
an elevation in this rate inDrosophila, it is quite subtle (#1%)
and limited to low-recombining regions as discussed below.
This suggests that in both gene-dense and gene-poor ge-
nomes, the “gene oasis” scenario modeled in our central
BGS simulations is relatively rare. However, we note that in
both our human- and Drosophila-based simulations we found
that S/HIC classifies regions as soft-linked at an increased
rate; this may imply that unmodeled sources of heterogeneity
of patterns of diversity can make it more difficult to dis-
criminate between neutral evolution and linkage to nearby
sweeps. Indeed, we previously observed a similar bias for
S/HIC in the case of demographic misspecification (Schrider
and Kern 2016).

Our study has some important limitations in that we only
examined two different DFEs (Boyko et al. 2008; Huber et al.
2017), four fixed dominance coefficients, and three different
demographic models that contain population size changes
but no migration. There are infinite possible DFEs, distribu-
tions of dominance values, and demographic histories, so
we cannot rule out the possibility that our results could
change qualitatively under particular models and parameter-
izations. However under each of the three different com-
binations of demographic history, DFE, dominance, and

Figure 10 Confusion matrix
showing the fraction of windows
from larger simulated chromo-
somes that were assigned to each
class by S/HIC. Each row shows
the results from a set of 100 sim-
ulated large chromosomes. Rows
marked “central window” show
classification results for the cen-
tral window of the simulated
chromosome only, while rows
marked “noncentral” show re-
sults averaged across each of the
remaining windows within the
chromosome.
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genome annotation examined here there is no evidence that
BGS systematically resembles selective sweeps substantially
more often than purely neutral models do. Thus, we expect
that our conclusions will hold in most genomes where the
layout of selected sites does not frequently resemble that of
our central BGS scenario. Our results do suggest that low-
recombining regions with a high density of selected sites
flanked by primarily nonfunctional DNA may be somewhat
more likely to be misclassified as sweeps and thus should be
treated with greater caution (Table 1), although our classi-
fication results imply that such confounding examples are
uncommon. Indeed, it is worth stressing that the elevated
false-positive rate under BGS in Drosophila seems to be con-
fined to regions with little to no recombination, implying
that such regions should perhaps be omitted from sweep
scans based on spatial patterns of variation; this is a logical
step given that such scans search for signatures produced by
the interplay between selection and recombination, and if
the latter is absent there is no reason to expect such a sig-
nature. Another type of region that may be problematic is
that where the recombination rate is low but only in the
central portion of the window to be classified. Although
we did not examine this possibility here, Mughal and
DeGiorgio (2018) previously showed that dramatically de-
creasing the recombination rate only in the central portion
of a region while keeping the locations of negatively se-
lected sites constant produces a modest increase in the
false-positive rate.

Our analysis also focused primarily on relatively small
simulated chromosomal regions, although we did simulate
a number of larger chromosomes and found no evidence that
they produce spurious BGS signatures at a higher rate. This
result is intuitive because, although larger chromosomes re-
sult inmore linked selection influencing a given focalwindow,
there is no reason to expect that it would produce a valley of
diversity near the center of thiswindowor create other spatial
signatures of a sweep; indeed, includingmoredistantflanking

selected sites should reduce diversity more on the edge of the
focal window than in its center.

It is also important to note that because our strategywas to
base our simulations entirely on empirical genome annota-
tions and DFEs, we are limited to considering the effect of
single-nucleotide mutations. It appears to be the case that the
DFE in noncoding regions is skewed toward weaker selection
coefficients (Racimo and Schraiber 2014), and this is a fea-
ture of our real BGS–weak-CNE model. However, our simu-
lations ignore additional mutation types such as insertions/
deletions (indel) and transposable element insertions and
other structural variants (SVs) that are probably skewed to-
ward stronger selection coefficients. In the standard real BGS
model we have the same DFE for both coding and conserved
noncoding DNA, and thus this model produces more strongly
deleterious mutations than the weak-CNE model. The fact
that both models produced very similar results for all three
species could suggest that increases to the rates and fitness
effects of deleterious mutations may not cause BGS to resem-
ble sweeps more closely. However, the impact of indels and
SVs warrants further investigation, and future efforts should
incorporate both the rates and DFEs of additional mutation
types once they are known more precisely.

We have also only considered scans for recent completed
selective sweeps. Thus, we have not examined other selection
scenarios such as balancing selection or partial selective
sweeps, although we have no reason to believe that BGS will
systemicallymirroreitherof these selective scenarios,with the
exception of very low-frequency partial sweeps that may be
indistinguishable from drifting deleterious mutations
(Maruyama 1974). We also note that a recent study examin-
ing local adaptation in populations with gene flow concluded
that BGS is unlikely to increase the fraction of false positives
produced by scans for FST outliers (Matthey-Doret and
Whitlock 2019). However, scans for other selective scenarios,
including much older selective sweeps where the signature
may have degraded considerably (Schrider et al. 2015), or

Figure 11 Confusion matrix
showing the classification results
of forward simulations of recent
hard and soft selective sweeps oc-
curring under the model of
Tennessen et al. (2012) with and
without BGS. BGS, background
selection.
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polygenic selection that in some scenarios is expected to pro-
duce more subtle shifts in allele frequencies (Jain and
Stephan 2017; Höllinger et al. 2019; Thornton 2019), may
have different propensities to be mistaken for BGS than the
hitchhiking models examined here.

Although we show that BGS affects the mean values of
several population genetic summary statistics, for most of the
statistics we examined it does not create spatial patterns
qualitatively similar to those expected under hitchhiking.
Thus, our results demonstrate that efforts to detect recent
positive selection should utilize the broader genomic spatial
context of high-dimensional summaries of variation. Impor-
tantly, sweep-detectionmethods thatuse this information (Lin
et al. 2011; Schrider and Kern 2016; Mughal and DeGiorgio
2018) rather than relying on univariate summaries or exam-
ining a narrowly defined genomic region can readily detect
sweeps in the presence of purifying selection and BGS. More-
over, our findings imply that attempts to disentangle the rel-
ative effects of hitchhiking and BGS on levels of diversity
genome-wide (Elyashiv et al. 2016; Booker and Keightley
2018) could be made even more effective by incorporating
additional summaries of variation, although this may neces-
sitate a reliance on simulated data rather than the use of
likelihood estimation. Such efforts could also help to answer
the question of to what extent hitchhiking and BGS are re-
sponsible for the limited range of neutral diversity observed
across species (Lewontin 1974; Leffler et al. 2013; Corbett-
Detig et al. 2015; Coop 2016).
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