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1 | INTRODUCTION

| Karol Ann T. Baldo | Paul Mark B. Medina

Abstract

The ongoing pandemic caused by a novel coronavirus, Severe Acute Respiratory
Syndrome Coronavirus 2 (SARS-CoV-2), affects thousands of people every day
worldwide. Hence, drugs and vaccines effective against all variants of SARS-CoV-2
are crucial today. Viral genome mutations exist commonly which may impact the
encoded proteins, possibly resulting to varied effectivity of detection tools and
disease treatment. Thus, this study surveyed the SARS-CoV-2 genome and pro-
teome and evaluated its mutation characteristics. Phylogenetic analyses of SARS-
CoV-2 genes and proteins show three major clades and one minor clade (P6810S;
ORF1ab). The overall frequency and densities of mutations in the genes and pro-
teins of SARS-CoV-2 were observed. Nucleocapsid exhibited the highest mutation
density among the structural proteins while the spike D614G was the most com-
mon, occurring mostly in genomes outside China and United States. ORF8 protein
had the highest mutation density across all geographical areas. Moreover, mutation
hotspots neighboring and at the catalytic site of RNA-dependent RNA polymerase
were found that might challenge the binding and effectivity of remdesivir. Mutation
coldspots may present as conserved diagnostic and therapeutic targets were found
in ORF7b, ORF9b, and ORF14. These findings suggest that the virion's genotype and
phenotype in a specific population should be considered in developing diagnostic

tools and treatment options.
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and targeted viral treatment. The scientific community has then been

in haste to develop vaccines and therapeutic drugs to combat the

Coronavirus disease 2019 (COVID-19) presented with pneumonia-
like symptoms surfaced from a seafood market at Wuhan, Hubei
Province in China in December 2019, and has since spread across the
globe.> According to the WHO, it has affected 213 countries and
territories with 23,057,288 people infected and 800,906 deaths
worldwide.? Mitigation of this public health crisis can be accom-

plished through effective public health safety protocols, vaccines,

Christian Luke D. C. Badua and Karol Ann T. Baldo contributed equally to this study and are
co-first authors.

COVID-19.
COVID-19 is caused by a novel coronavirus, the Severe Acute

41t is a

Respiratory Syndrome Coronavirus 2 (SARS-CoV-2).
positive-sense RNA virus, like SARS-CoV and Middle East respiratory
syndrome coronavirus, with a genome size of 29,903 nucleotides.’
Figure 1 shows the comparison of the genes and proteins between
SARS-CoV-2 and SARS-CoV (2003). Most of its genome codes for
ORF1ab (~72%) which is involved in viral replication and patho-
genesis, while other ORFs code for structural proteins (spike [S],

envelope [E], membrane glycoprotein [M], and nucleocapsid [N]).
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FIGURE 1 SARS-CoV-2 structure, and comparison of the genomes and proteomes of SARS-CoV-2 (2019) and SARS-CoV (2003). (A)
Structure of the SARS-CoV-2, the etiologic agent of COVID-19. Information on these proteins is publicly available from the COVID-19 UniProt
Resource (https://covid-19.uniprot.org/). (B) Comparison of the genomes and proteomes of SARS-CoV-2 and SARS-CoV (2003). COVID-19,
coronavirus disease 2019; SARS-CoV, severe acute respiratory syndrome coronavirus

Genes for accessory proteins are also present in SARS-CoV-2 as with
SARS-CoV, however, some of the proteins coding for these accessory
proteins (ORF3a, ORF7b, ORF8, and ORF10) are yet to be identified
for their function.>” Mutations in coronaviruses are expected to
have mutation rates ranging between 10™° and 1073 substitutions
per nucleotide site per cell infection (s/n/c).8’ Accordingly, in-
formation can be obtained from SARS-CoV-2 genomes coming from
initial cases in Wuhan, China up to the recent submissions.
Determining mutation hotspots and coldspots in SARS-CoV-2
may provide insights on their effects on the properties (i.e., virulence,
infectivity, and severity) and characteristics of SARS-CoV-2. Hence,
drugs, vaccines, and diagnostics effective against SARS-CoV-2 var-
iants are crucial today in containing the COVID-19 pandemic. This
study provides an overview of mutation characteristics at the coding
and noncoding regions of the SARS-CoV-2 genome, as well as the

mutations in the translated proteins.

2 | MATERIALS AND METHODS

2.1 | Collection of SARS-CoV-2 genomes

Publicly available genomes from 31 countries submitted to the National
Center for Biotechnology Information (NCBI) nucleotide database and
the GISAID EpiCoV™ database by January 19, 2020 to May 15, 2020,
were collected for the study (Table S1). Gathering of 151 publicly
available “complete” and/or “partial” (genome length > 29,700 nucleo-
tides = complete; genome length < 29,700 nucleotides = partial) gen-
omes of SARS-CoV-2 (reference sequence NC_045512, GenBank) was
conducted from March 12, 2020 to May 15, 2020. There were two data
collection points in this study: genomes from both databases that were
submitted from December 2019 to March 2020 (86 genomes) and
December 2019 to May 2020 (65 additional genomes). Manual
grouping of these sequences according to three geographic areas was
made for ease of analysis. China-derived samples were classified under

the “China,” United States-derived samples were classified under the
“USA,” while the genome sequences from other countries besides
United States or China were classified under the “Others.” The overall
data set containing all the samples from China, United States, and
Others is referred as the “Total.”

2.2 | Nucleotide and amino acid variant detection
Each genome sequence was aligned to NC_045512 using the
MAFFT.'%** The default parameters as presented in the web tool
were used for the multiple sequence alignment. The nucleotide
variants from the reference sequence (NC_045512) were manually
annotated and were re-evaluated using the “Low Frequency Variant
Detection” tool of the CLC Genomics Workbench 20.0.3. (QIAGEN
Bioinformatics, Aarhus, Denmark). Mutations from both the coding
and noncoding regions were recorded.

Using the nucleotide mutations, the resulting amino acid muta-
tions throughout the proteome of SARS-CoV-2 were determined.
The amino acid changes were automatically annotated using the
“Map Reads to Reference” tool and a subsequent run in the “Low
Frequency Variant Detection” tool in the CLC Genomics Workbench
20.0.3. The resulting proteome from each SARS-CoV-2 genome was
created and edited using CLC Genomics Workbench 20.0.3. The
whole proteome was then aligned for phylogenetic analysis, and for

identification of the resulting amino acid mutations.

2.3 | Construction of phylogenetic trees

A phylogenetic tree based on the translated protein-coding genes of
SARS-CoV-2 was constructed using the same command-line in
IQ-TREE version 1.6.12 and was also edited, and visualized using
MEGA X.'?"> The phylogenetic tree was constructed using an ul-
trabootstrap method considering 1000 and considered 151 genomes
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for the construction of the said tree.’> '* The resulting tree was
edited and visualized using MEGA X.**

2.4 | Data analysis

Mutation hotspots were identified as genome sites with two or more
occurring mutations; on the other hand, mutation coldspots are
those with no occurring mutations. The characterization of nucleo-
tide mutations was done in terms of the nature of the nucleotide
substitution (transition or transversion) and insertion and deletions
(indel). The mutation densities (Equation 1) in the genome and pro-
teome of SARS-CoV-2 were determined.

Mutation density = number of mutations
+ size of genomic (ntlength) or proteomic

(aa length) region (1)

Amino acid substitutions were characterized according to the
nature of change that occurred (e.g., leucine to isoleucine would be
classified under “Similar Change,” serine to phenylalanine would
be classified under “Polar <> Neutral,” aspartic acid to serine would be
classified under “Charged <> Polar,” while glutamic acid to glycine
would be “Charged <> Neutral”). Furthermore, amino acid substitu-
tions leading to residues with similar nature were classified as
“Similar Change,” while those substitutions that did not produce amino

acids with similar nature were classified under “Dissimilar Change.”

3 | RESULTS

The mutations in the genome and proteome of SARS-CoV-2 are de-
scribed per geographic area (China, United States, and Others) in two
time points (December 2019-March 2020; December 2019-May 2020).
This section starts with a presentation of the phylogenetic data according
to the nucleotide sequences and amino acids of SARS-CoV-2. Then, the
nucleotide substitution types (transversions, transitions, and InDels) were
identified per geographic area in the two time points. This was followed
by a presentation of the amino acid substitutions due to nucleotide
mutations. Finally, remarkable mutations and mutation patterns in the
proteins of SARS-CoV-2 (S glycoprotein, ORF8, and N) were reported.

3.1 | Nucleotide and amino acid-based
phylogenetic analyses of SARS-CoV-2 show three
major clades of SARS-CoV-2 and a minor clade
(P6810S ORF1ab)

The phylogenetic analysis of mutations in different regions was analyzed
using MAFFT software and three major clades were identified. As shown
in Figure 2, the L3606F (ORF1ab) is characterized by the color pink,
P4715L (ORF1ab)/D614G (S) is highlighted by the color green, and L84S
(ORF8)/S2839S (ORF1ab) is denoted by the color blue. The largest

among these clades were the L84S (ORF8), having 43 samples. This was
caused by a transition substitution in the ORF8 gene (T28144C) leading
to an L84S substitution in the ORF8 protein. L84S (ORF8) had four
subclades; two of these subclades had subclades as well (Figure 2B). The
second-largest major clade was the P4715L (ORF1ab)/D614G (S) having
two subclades. These subclades were identified as R203K and G204R
(N), and the G57H (ORF3a)/T265| (ORF1ab)/S3384L (ORF1ab). Lastly,
the L3606F (ORF1ab) major clade contained 19 samples; 52.63% of
these samples were from the “Others” geographic area, 36.84% were
from the United States, while 10.53% were from China. This clade also
has a subclade represented by the V378| mutation (ORF1ab; Figure 2B).

A transversion substitution (29868G>C) in the 3-untranslated
region (UTR) of the SARS-CoV-2 genome was identified which defined
the occurrence of a nucleotide-based clade. This clade also contained a
subclade bearing a missense mutation in the 2-O-ribose methyl-
transferase (nsp16) of ORFlab (20692C>T; P6810S). Overall, the
mutations classifying this clade were identified in five China-derived

samples, while P6810S has not been identified in current literature.

3.2 | The proportion of transitions, transversion,
and indels in SARS-CoV-2 genome is similar among
the geographical areas

The genomic mutation profile of SARS-CoV-2 was evaluated, and the
distribution of the mutations across the viral genomes from different
geographical areas is summarized in Figure 3A. Overall, in total,
674 nucleotide mutations were identified using genome samples
collected from December 2019-May 2020 (Table 1).

Generally, mutation frequencies among the geographical areas
followed 3:1 transition to transversion ratio (Figure 3B,C), in which
the C>T substitution was most common (44.7%), followed by T>C
(13.95%). Interestingly, ORF3a and 3’ UTR genes had higher trans-
version density than transition similar between the two timepoints;
while G>T transversion (10.83%), was the third most frequently
occurring nucleotide change. Altogether, approximately similar pro-
portions of nucleotide change types were observed between gen-
omes among the geographical areas collected from December to
March 2020 versus December-May 2020 (Figures 3B,C). These
findings may suggest that the genomic mutation characteristics of
SARS-CoV-2 from the earlier timepoint may not be significantly
varied from the later period (e.g., between March and May 2020).

Among the SARS-CoV-2 genomic regions, the UTRs yielded the
highest mutation density, with 7.5 x 10~ mutation density at the
5.UTR and 2.5x 1072 mutation density at the 3~UTR among all
geographical areas, for both timepoints (Figure 3D,E). Notably, indels
were found mostly at the UTRs. As shown in Figure 4B, no UTR
mutations were common among all areas, while mutations common
between United States and Others are at 5-UTR (241C>T) and
3-UTR (29742G>T and 29870C>A); and between China and Others,
26delA and 28C>T at the 5-UTR were common. Overall, the UTRs
are consistently densely mutated suggesting that these genome re-
gions are mutation prone regions of the SARS-CoV-2 genome.
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FIGURE 2 Phylogenetic tree of 151 SARS-CoV-2 from genomes collected from March 12, 2020 to April 2020 from NCBI GenBank™

and GISAID EpiCoV®. (A) Phylogenetic tree based on the genomes of SARS-CoV-2. (B) Phylogenetic tree based on the proteins of SARS-CoV-2.
Individual viral samples are represented as dots. Samples under the geographic cluster “China” are colored red, blue for sequences under the
geographic cluster “USA,” while for the “Others” geographic cluster, these are colored black. SARS-CoV-2, severe acute respiratory syndrome

coronavirus 2; NCBI, National Center for Biotechnology Information

3.3 | Most amino acid substitutions in
SARS-CoV-2 genomes from the United States and
Others geographic areas resulted to residues with a
similar nature (“Similar Change”) for both time points

The impact of overall genomic mutation characteristics in the viral
proteins were then investigated from the genomic data and the de-
scription of these will be according to geographic area and will be
magnified towards the differences between the two time points.
Most of the nucleotide mutations in the SARS-CoV-2 genome
(62.01%) lead to missense mutation in their proteins. Genome

reference positions or nucleotide mutation hotspots 11083
(ORF1ab; nspé), 26144 (ORF3a), and 28144 (ORF8) were common
among all geographical areas (Figure 4A).

Most of the amino acid substitutions in China were “Polar «—
Neutral” changes (66.67%) for the first time point, while this pro-
portion decreased at the second time point (57.14%), with an addi-
tion of deletion mutations (1.43%). There was also an increase in
substitutions where residues had a “Similar Change” in nature (e.g.,
valine «— isoleucine; 18.52% - 12/2019-03/2020; 31.43% - 12/
2019-04/2020). These data could be seen in Figure 5B. Furthermore,
the mutation hotspots based on mutation densities also changed in



1706 W] JOURNAL OF BADUA €T AL
( A) Mutation frequency plots in SARS-CoV-2 genome regions ( B) Proportion of nucleotide mutation types in SARS-CoV-2 genomes (C) Proportion of nucleotide mutation types in SARS-CoV-2 genomes.
(Collection Date: December 23, 2019 - April 19, 2020) (Collection Date: December 23, 2019 - March 12, 2020) (Collection Date: December 23, 2019 - April 19, 2020)
Total China Total
(N=86) (N=26) (N=130) s
323 0.00 193 e
. Total . Lioi) 4016 2463 2653
2 (N=150) 1 [
69.84 7344
35 7276 LEGEND: 7211
pe " - © Transition
5 ® ©Transion  ©Transversion  lndel s aners i uea otrers
£ o Pl oindel =20 e
g . s e
= L1710 é‘M w 23.39“ 2575
15 |
10 77.42 7101 7419 7239
B i T, 1 s
o",'. oncomon oo & o oor oo nosmmn s o s 0 @ 00w wiees ow o & swemens o wnd o ik e B - " "
[ T— N Types of nucleotids mutations in SARS-CoV-2 genome regions (Collection Date: December 23, 2019 - March 12, 2020)
SUTR Reference position 0&%3@”‘ C:QUTR goss Total g China
SES o%g"ﬁ'( 3 oTransition  © Transversion  ®Indel :::z oTransifon o Transversion @ Indel
fos Zoor
@ cnina goz Son
i (=50) g £
o5 2004
16 £ o1 £oos
a S 002
o §oos £ 001
Ve OTnsitn  OTransversion  Olndet LI oo = = : T S,
g 5 S & g S K & b 8
£ R FLELE S FLBES SFE FLEE L L
& X &
8 «® A *
? 05 -
R ol usA goss Others
2 os oTransition @ Transversion Indel £ ©Transiion o Transversion @ Indel
s 5 § o0
£ £
! I S s g 03 £ 008
0 2oz g
W 502 S
20 £ 015 %
usa & ]
(N=50) 04 8 001
w s § oo 5
® ) 5, |
H S E S T N o ST S ] R AR &N s
N - S N
M e‘ﬁé@e‘" & FEELE TEEES S & FEEE L&E S
gn OTmnsifon  oTraneversion  olndel &
A ) one ) .
& Types of nucleotide mutations in SARS-CoV-2 genome regions (Collection Date: December 23, 2019 - April 19, 2020)
. T Total A% China
£ | ] % 035 > 2
4 H :: oTrnsiion  ©Transversion  ®Indel e ©Tansiion o Transversion ¢ ndel
2 0
o W Zos 02
20 Others %.0.3 015
50, 02 o1
8 ¢ & ol u
B 0.05
16 § i £05 g
. 0 3
T I A I P L LN S o o - W P
" 2 S s FEEE TEE LSS SFELL N FLLE SFLES
31 OTransiion  Transversion  lndel & & s
H
g it usa oz otrars
i 2 04 ©Transition ©Transversion @ indel o1 © Transition © Transversion @ Indel
: P - I
‘ g os
p - § oz 06
e Lt ool s > oor
(R ] i
|| 01 0.02
§ 005 g- =
5, - g o m .
2 & & e ¥ ° S0 o 2 R A N
SIS FEEE TLL LS S & FLEEL TLLES
& &
B &

FIGURE 3 Characterization of nucleotide mutations in SARS-CoV-2. SARS-CoV-2 genomes were identified independently, and mutations
were considered to occur spontaneously. Mutations were identified by identifying substitutions in the SARS-CoV-2 reference genome NCBI
GenBank™ accession ID: NC_045512. (A) Nucleotide mutation frequency plot in total (overall), and in geographical clusters: China, United
States, and Others. (B) Proportion of the nucleotide mutation types in SARS-CoV-2 genomes submitted on December 23, 2019-March 11,
2020, and (C) December 23, 2019-April 19, 2020. These were grouped as total, China, United States, and other. (D and E) Mutation density
profiles of total SARS-CoV-2 genomes and clustered geographically: China, United States, and Others between the two time points. Mutation
markers are colored according to the type of nucleotide change, that is, transition (blue), transversion (green), indel (violet). The maximum
genome coverage of read-mapped genomes for variant detection is indicated (e.g., N = 150 in total for overall data set). SARS-CoV-2, severe
acute respiratory syndrome coronavirus 2; NCBI, National Center for Biotechnology Information

China, where mutations in the Spike glycoprotein, Protein 3a,
Membrane protein, ORF6 protein, and ORF10 protein appeared in
the second time point (Figure 5C).

In the United States, the proportions of the type of amino acid
substitutions did not change drastically (Figure 5). “Polar < Neutral”
mutations were almost similar between the two time points (36.36%
12/2019-03/2020; 36.57% 12/2019-04/2020), while “Similar
change” mutations changed minimally (46.75%12/2019-03/2020;
47.01% - 12/2019-04/2020).). “Similar change” mutations had the

highest frequency among the mutation types in United States sam-

ples. Mutation density presented in bar graphs show that there was
an appearance of amino acid substitutions in the M and ORF7a
proteins (Figure 5C).

For the Others geographic area, there is a great change in the
proportions of mutations that are “Polar «— Neutral,”“Charged «—
Polar,” and “Charged «— Neutral” (Figure 5B). The proportion of “Polar
«— Neutral” mutations in the earlier time point was higher than that
of the second time point (31.71% — 22.49%) as shown in Figure 5B.
The proportion of “Charged < Polar’ and “Charged «- Neutral’
mutations increased between the two time points (4.88% — 7.10%
“Charged «— Polar”; 4.88% — 18.34% “Charged «<- Neutral”). Ap-
pearance of mutations in the M protein and ORFé protein occurred
in the Others geographic area according to the mutation density
graphs (Figure 5C), with the appearance of “Similar Change” sub-
stitutions in the second time point for the ORF8 protein and
N protein as compared to the initial time point (Figure 5C).
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(A)Number of SARS-CoV-2 genome positions (B) Number of SARS-CoV-2 genome positions

with missense and indel mutations
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FIGURE 4 Commonly occurring hotspots were identified per geographical clusters (China, United States, and Others) and results were
summarized as the number of SARS-CoV-2 genome positions with (A) missense and indel mutations at the protein-coding regions and (B)
detected mutations at the untranslated regions (UTRs), mainly, 5" and 3-UTR

The total count of amino acid substitutions in the proteins of SARS-
CoV-2 was 381. From the data that was collected at the earlier time-
point, most of the mutations in the proteins were classified under
“Similar Change” (44.83%), while insertions were the least frequent
(1.15%). In addition of data from the later study timepoint, “Similar
Change” mutations were most frequent however with decreased pro-
portion (43.45%); and insertions was also the least frequent then at
0.84% proportion. The breakdown of the mutations in the SARS-CoV-2
proteins based on the collected genomes are shown in Figure 5A.

Overall, there was an observed shift in the proportions of the
different classes of amino acid mutations between the two collection
periods and geographic areas. There was an increase in proportion of
“Similar Change” mutations in China between the two collection
periods, while deletion mutations emerged at later time (Figure 5A).
In comparison with United States, the proportion of the classes of
amino acid mutations were generally unchanged. Prominent muta-
tions have been found and further evaluated in this study in a spacio-
temporal perspective, which involve both structural and non-
structural proteins of SARS-CoV-2.

34 | The D614G substitution in the spike
glycoprotein is the most frequently occurring
mutation among the structural proteins and occurred
mostly in the Others geographic area

In samples from China, the D614G substitution did not occur, in both
time points (Figure 5A), however, in the United States samples, there
was an increase in the frequency of the D614G mutation (npg1ac =1
— Npe1ac = 8; Figure 5A). The same pattern was seen in the Others
geographic area (Npg14g = 4 — Npe1ac = 18). The mutation density of
the spike glycoprotein increased in all of the geographic areas (China,
United States, and Others areas, based on Figure 5C).

The D614G substitution in the Spike glycoprotein (S) occurred
five times in the sample population from the data collected at earlier

time and occurred 26 times from the overall total data. This mutation
occurred with the P4715L (ORF1ab) mutation (Figures 2B and 5A).
The D614G is a result of a transition mutation in the S gene of
SARS-CoV-2 (23403A>G) and classified as “Charged——Neutral’ aa
mutation. The mutation density S based on earlier data was 0.01414
mutation events/aa length of S glycoprotein, while this value ap-
proximately doubled based on the overall data. In addition, four
other hotspots in the spike protein were detected in this study
(Table 1). These data may suggest that the S variant occurred outside
of China and is more observed in separate countries and in the
United States.

3.5 | ORF7b protein coldspots and ORF8 protein
hotspots are conserved among all geographical areas

Among the geographical areas, no mutations were found in ORFé,
ORF7a/7b, ORF9b, ORF10, and ORF14 proteins by the earlier study
timepoint, hence considered as coldspots at that period (Figures 3D
and 5B). On the other hand, at the later time point, only ORF7b,
ORF9b, and ORF14 proteins were identified as mutation coldspots
(Figures 3E and 5B). Note that it may be due to limitations in an-
notation of various viral genome regions that no mutations were
detected in ORF9b and ORF14 proteins, as the study based the
identification of genes and proteins from publicly available annota-
tion to reference sequence (NCBI GenBank™ Accession ID:
NC_045512). All in all, the ORF7b gene/protein was observed to
have no mutations in all geographical region and between the study
timepoints, therefore this gene may be potentially conserved in
SARS-CoV-2.

Prominently, ORF8 protein presented the highest mutation
density among nonstructural proteins (0.223 mutations/aa site in
overall total), similar in all geographical areas similar in two time-
points (Figures 3D,E and 5B). Collectively at the later timepoint, its
mutation density almost doubled. Along with the increased in
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mutation densities in other notable sites: doubled in nsp3 (0.072
mutations/aa site by March-0.136 mutations/aa site by May), and
quadrupled in the RNA-dependent-RNA polymerase (RDRP) (0.0139
mutations/aa site by March-0.0515 mutations/aa site by May). The
recurrence of ORF8 mutations were attributed to L84S which con-
sistently was the most frequently occurring in China and United
States (Figures 3A and 5A). In Others, however, the most recurrent
mutation varied that was G251V in protein 3a in earlier timepoint,
while P4715L in RDRP by the later timepoint (Figures 3A and 5A).
This may suggest that the distinctive abundance of ORF8 mutations
is generally similar among different areas, as its collective frequency
increases over time.

3.6 | The Nucleocapsid Phosphoprotein (N)
exhibited the highest mutation density among the
structural proteins of SARS-CoV-2

For both time points, N had the highest mutation density (0.02148 for
earlier data; 0.1122 for overall data). Twelve nucleotide sites considered
as hotspots in N, comprising 48% of the mutations in N (Table 1). Mu-
tation densities of the other structural proteins are shown in Figure 5B.
Interestingly, 10 SARS-CoV-2 samples had a substitution mutation in
nucleotide positions 28881-28883 (GGG>AAC). This nucleotide muta-
tion led to two amino acid substitutions (R203K and G204R). The ear-
liest recorded SARS-CoV-2 genome having this mutation was from
Florida, USA (February 28, 2020; accession ID: MT276330) while the
other nine genomes that have this mutation come from the Others
geographic area (Israel, Peru, Brazil, Greece, Czech Republic, and Ar-
gentina). However, the order of mutation densities of structural proteins
among geographic areas varied, with the Others geographic area having
N as the third highest mutation density for the overall data (Figure 5C).
These suggest that the mutation in the N protein did not occur initially in

China but occurred first from the United States.

4 | DISCUSSION

4.1 | Presence of a novel mutation and a high
frequency mutation in SARS-CoV-2

Nsplé is responsible for the messenger RNA capping of the

coronavirus genome, primarily to protect from host recognition.*®

According to the crystal structure of nsp16, the domain of P6810 in
nspl16 is unknown, however, it is characterized as part of a bend in
nsp16. Proline exhibits conformational rigidity projected to result to
a kink; its substitution may cause a change in the steric conformation
of the aforementioned bend.’® In addition, one of the immediate
surrounding amino acids of nsp16-nsp10 complex that is proximal to
P6810 is a tryptophan at aa position 7029 of ORF1ab.*¢ Substitution
of serine (P6810S) might exhibit an enhanced interaction for hy-
drogen bonding with tryptophan.'”*® There is a need to further in-
vestigate this mutation to determine its significance in host evasion.
It is important also to further evaluate its prevalence in the Chinese
population, and in the global population to fully understand its im-
plications in the function of nsp16.

The increased recurrence of L84S mutation may suggest that
this variant might be favorable for virus' survival across geographical
regions.>’? The subclades of L84S have mutations that may affect viral
replication, immune evasion, viral release, and virion assembly."?°-%°
Further research may ascertain the changes in the function of ORF8 due
to this mutation, in virus replication, as well as potential changes in

immune evasion and viral release.

4.2 | Comparison of mutations in different
SARS-CoV-2 studies reveal similarities and
differences in mutation patterns

Observations in this study are consistent with the general pattern
where transitions are more prevalent over transversions, perhaps
due to steric considerations.”*?° Interestingly, mutations in ORF3a
(modulating host immune response), and 3’-UTR (RNA stability and
translation) consists largely of transversions, suggesting that these
regions may be more erroneous than other regions and more prone
to random substitution of transversions.”* This might suggest that
there are changes in virulence and replication stability across global
regions.

Differences in findings may be observed based on previously
published literature, using the mutation landscape of SARS-CoV-2.
A study by Pachetti et al.?® described that a mutation in RDRP
(nt14408) increased in count, 7 (February) to 10 (cumulative by
March). This was consistent with this study's findings with greater
recurrence; 4 occurrences (March) to 26 (cumulative by May). In
addition, another research by Kim et al.?° also described the low
frequency of mutations in E, M, and ORF7a, similar by this study's

FIGURE 5 Characterization of amino acid mutations in SARS-CoV-2. Collection dates refer to the collection dates according to the
annotated date of collection from GISAID or NCBI GenBank. (A) Comparison of the amino acid mutations according to the nature of the change
in charge between earlier and overall data, and across different geographic clusters (China, United States, and Others). (B) Proportion of the
nature of the change in amino acid charge and Indels that occurred in the total sample population, and for the geographic clusters between
earlier and overall data. (C) Comparison of the mutation density profiles between earlier and overall data. Red indicates mutation density values
resulting in amino acids having dissimilar nature to the reference, while blue indicates the mutation density values that resulted in amino acids
having similar nature to the reference. The maximum genome coverage of read-mapped genomes for variant detection are indicated (e.g.,

N =150 in overall total for overall data set). SARS-CoV-2, severe acute respiratory syndrome coronavirus 2; NCBI, National Center for

Biotechnology Information
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result. Other studies such as this described high frequency of mu-
tations in ORFlab and may be attributed to the relatively high
genome length of the region. To address this, this study normalized
the factor of gene length and presented the data through mutation
densities of each gene in SARS-CoV-2. Discrepancies in mutation
frequencies between this study and that of Tiwari and Mishra®’
may be attributed to the following reasons: (1) In this study, a single
frequency of a mutation is already considered a valid mutation. In
contrast to Tiwari and Mishra's?’ study, mutations should occur at
least three times before these were considered as legitimate mu-
tations. (2) Since the samples considered in this study were col-
lected at a later time during the pandemic, thus providing more
time and opportunity for the virus to accumulate mutations. In
contrast to Tiwari and Mishra's study where samples were collected
earlier into the pandemic, less time for the virus to accumulate

mutations.?”

4.3 | Implications of identified mutations in
SARS-CoV-2 to treatment options and diagnostics

Remdesivir is currently at Phase 3 of COVID-19 clinical trials, which
is known to inhibit RDRP.?® The active component of remdesivir (GS-
441524, adenosine nucleotide analog) binds to RDRP catalytic site
and halts nucleic acid eIongation.29 The missense mutation (D722Y)
occurred at the catalytic site along with neighboring variants (V472D
and L469S), a change from an acidic to a nonpolar residue, may
potentially result to increase in hydrophobicity at the region, leading
to a more elusive conformation. This potential impact may sig-
nificantly influence the RDRP conformation which might challenge
the effectivity of remdesivir.>° Hence, SARS-CoV-2 RDRP mutations,
especially considering regional variability, should be further in-
vestigated on their potential effect on RDRP structure and function
to support the use of remdesivir.

The absence of D614G mutation in China while it was abundant in
the Others geographic area suggest potentially variable effectiveness of
vaccines and neutralization factors that target the RBD among different
geographic areas. Alternatively, relatively conserved regions in Spike
heptad 1-heptad two repeats, may present as potential drug or vaccine
targets, inhibiting viral entry. As shown in this study, mutations in
the Spike glycoprotein could confer alterations in its domains which
may be involved in epitope recognition (i.e., RBD, S1-N terminal domain)
of neutralizing antibodies (nAbs).>>*? Hence, binding of the potential
nAb with putative SARS-CoV-2 epitopes may be hindered. Further
studies should be done to evaluate putative effectiveness of
neutralizing monoclonal antibodies against SARS-CoV-2.

The changes in the mutation frequencies and densities in N imply
that the evolution of the genes and proteins of N over time in dif-
ferent landmasses is beneficial for the adaptation of SARS-CoV-2 as
it spreads globally.>?> Currently, the WHO, and the Centers for
Disease Control and Prevention recommend the use of N1 and N2
genes in COVID-19 surveillance.>® Recent publications have criti-
cized the use of these genes in COVID-19 diagnosis using reverse
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transcriptase-polymerase chain reaction (RT-PCR) because of its
relatively high mutation index.>**> There are variants that fall in the
forward primer for N3, and in the reverse primer of N1, (nt 28688).%¢
This was a hotspot mutation in the genome and proteome of SARS-C-
oV-2, as observed in this study. These support that the variations in
N may pose difficulties in diagnosis using N-targeted primers for
quantitative RT-PCR.

The SARS-CoV-2 genomes used in this study are assumed to
have come from individuals undergoing COVID-19 testing and be-
fore any of them received antiviral treatment. Since SARS-CoV-2
genomes from individuals who have received antiviral treatment are
not currently available, comparisons on the mutation patterns be-
tween these two groups cannot be determined yet, but speculations
can be made. Mutations in the virus can exist and persist in the
absence of selective pressure, therefore the diversity of mutations is
high and no variants exist with unusually high frequencies. This is
likely the phenomenon we have observed, with a few exceptions like
L84S (ORF8), D614G (S), and L3606F (ORF1ab). However, antiviral
drugs can serve as selective pressure against certain types of mu-
tations in the viruses, possibly reducing the overall diversity of the
virus, but at the same time, increasing the frequencies of a select few
virus variants that are resistant to the antiviral drug. These variants
may be more dominant in the population and this may affect the
overall patterns and frequencies of mutations in SARS-CoV-2.

In conclusion, this study highlights the importance of the char-
acterization of both nucleotide and amino acid mutation landscape in
SAR-CoV-2 to identify hotspots and coldspots that may be significant in
the effectivity of diagnostic tools and treatment options for COVID-19,
over the different areas worldwide as the pandemic continues.
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