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Editorial perspective: Viruses in wastewater: Wading into the knowns and unknowns 

The COVID-19 pandemic has posed immense challenges to the fields 
of public health, economy and education worldwide. Yet, its trans-
mission and attenuation in the environment are not fully elucidated. 
What we do know is that the water and wastewater treatment plants 
(WTPs/WWTPs) are most susceptible to viral contamination specifically 
during the current COVID-19 outbreak. Although knowledge about 
SARS-CoV-2 in sewage and WWTPs is limited (Foladori et al., 2020), 
SARS-CoV-2 is likely to be rapidly inactivated under increased temper-
ature and by disinfectants such as bleach, ethanol, benzylalkonium 
chloride, povidone-iodine and chloroxylenol (Chin et al., 2020). The 
application of secondary disinfection measures, like dosing of chlora-
mines to maintain a certain residual chlorine level in the distribution 
network adds to further protection from contamination (Bhowmick 
et al., 2020). However, as municipal network receives huge amount of 
wastewater from asymptomatic patients and treated sewage from hos-
pitals, SARS-CoV-2 from improperly disinfected wastewater might 
persist for a prolonged time in pipelines, in turn becoming a secondary 
source of transmission (Zhang et al., 2020). Therefore, we must make 
sure the wastewater coming out of the SARS-CoV-2 infected areas should 
be properly disinfected in order to reduce the impact on the receiving 
water bodies. This brings in the need for careful consideration of 
disinfection and removal strategies for SARS-CoV-2 from contaminated 
waters (Kitajima et al., 2020). 

In terms of pathogen removal in WTPs and WWTPs, there are two 
factors affecting the efficacy, namely how long the pathogen stays in the 
system and how quickly it dies (Curtis, 2003). The former is governed by 
the hydraulic flow regime and the latter depends on factors such as 
ecology in the engineered system or persistence of the pathogen strain 
itself. An effective treatment method should be one that has the poten-
tial to destruct pathogenic cells and remove the nutrients to prevent 
regrowth or recontamination. This requires an enhancement of tradi-
tional water and wastewater treatment units including coagulation, 
filtration, activated sludge and biofilms to remove particles and facili-
tate adsorption, as well as disinfection strategies such as chlorination 
and ultraviolet. Regardless of the strategy used, these multibarrier 
treatment approaches need to be well-operated to prevent dissemination 
of SARS-CoV-2 into the environment, in turn safeguarding public health. 

Since viruses such as SARS-CoV-2 can be shed through feces to enter 
into wastewater, continuous and systematic monitoring of wastewater 
may provide early warning signs and will potentially identify undiag-
nosed or successive disease at the population level, thus alerting public 
health officials on the on-going or future viral disease outbreaks. This is 
often termed as wastewater-based epidemiology (WBE), which is 
defined as an approach initially focused on the analysis of chemical 
pollutants, and subsequently including also the biomarkers in raw 

wastewater (Choi et al., 2018). WBE has been recognized as a promising 
tool for the rapid, non-invasive mass surveillance of infectious diseases 
at the population level with minimum costs. WBE can be used as “early 
warning signs” of the presence of infected individuals in the area of 
interest (Asghar et al., 2014; Hellmér et al., 2014). Fecal shedding of 
SARS-CoV-2 RNA from COVID-19 patients has been widely reported 
(Holshue et al., 2020; Wu et al., 2020; Xiao et al., 2020). It can persist in 
stool for up to 31 days (Zheng et al., 2020), and has been detected in 
both hospital sewage (Wang et al., 2020) and raw wastewater (Ahmed 
et al., 2020; Randazzo et al., 2020). The lowest number of infected in-
dividuals in a community detected by WBE is expected to correlate with 
the size of the community being served by the waste treatment plant/-
sewage line. However, the lowest proportion of population infected and 
is detectable by the test is expected to vary across waste treatment 
plants/sewage lines, with variability explained by the additional dilu-
tion effects arising from rainwater and industrial waste input. Once the 
lower limit of detection for the prevalence of fecal shedders is deter-
mined, the total prevalence of infected individuals in the community (i. 
e., including those not shedding the virus in feces) could be calculated. 
Additionally, the number of copies of the viral particles enumerated in 
sewage samples needs to be correlated with the prevalence of infected 
individuals in the population. 

Monitoring for SARS-CoV-2 directly in wastewaters was proposed as 
a means to complement the current clinical surveillance, and/or to serve 
as an early warning of (re)emergence of Covid-19 in cities (Medema 
et al., 2020). Many studies have reported the sporadic detection of 
SARS-CoV-2 in wastewater (Ahmed et al., 2020; Haramoto et al., 2020; 
La Rosa et al., 2020; Randazzo et al., 2020; Sherchan et al., 2020), 
correlated the virus concentration with the known number of clinical 
cases, and made claims of WBE being a sensitive tool for early outbreak 
detection. However, the definition of “early outbreak detection” is still 
debatable since there is still no actual information of all the infected 
cases present in the community. Without knowing the actual detection 
limits of WBE, and by that, we mean the minimal number of positive 
cases needed in each community to achieve a confident detection of 
SARS-CoV-2 from the sewage networks; we are handicapped by our 
abilities to determine how early into the outbreak WBE can truly tell us. 

Furthermore, for WBE to detect future outbreak of new viruses, the 
current approach of quantitative PCR may not be entirely suitable. 
Quantitative PCR is a targeted approach which requires viral targets to 
be known first so that primers/probes can be designed accordingly to 
detect them. Instead, non-targeted approaches, for instance omics-based 
sequencing, may be needed to infer the unknown. However, omics- 
based approaches will need to be improved for their bioinformatic da-
tabases and analytical pipelines to enhance both the qualitative and 
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quantitative detection of low abundance pathogens (Hong et al., 2020). 
Most importantly, WBE needs to be a long-term continuous effort to 
determine first, the baseline abundances of pathogens, and then moni-
tored for any deviations from baseline. In this manner, WBE can serve as 
a warning mechanism to relevant stakeholders. 

After being shed into feces and urine, coronaviruses are exposed to 
the wastewater environment for hours to days before they reach 
wastewater treatment facilities. It is important to understand how 
persistent the viruses or the viral RNA are in the wastewater environ-
ment so that the total viruses shed by the infected population can be 
estimated based on the viral load in the samples. Appropriate epidemic 
models that capture key transmission processes and the most sensitive 
factors impacting the fate and transport of viral particles are needed for 
hazard identification and risk assessment. Temperature, average in- 
sewer travel time and per-capita water use were identified as three pa-
rameters that have significant impact on virus detectability (Hart and 
Halden, 2020). Lagging indicators of infection are important for policy 
makers to make inferences about the next stage of the pandemic. Kaplan 
et al. developed a transmission epidemic model for the estimation of 
COVID-19 incidences based on the detected concentrations of 
SARS-CoV-2 RNA in municipal sewage sludge by incorporating proba-
bility distributions for indicator-specific time lags from infection into the 
transmission dynamics, and estimated that the hospital admission lags 
the detection of viral RNA in sewage sludge by 4.6 days on average 
(Kaplan et al., 2020). Researchers in Paris found that the decrease in 
confirmed COVID-19 cases lagged that of the wastewater viral RNA 
loads by about eight days (Wurtzer et al., 2020). A study in the United 
States also reported that the concentrations of SARS-CoV-2 RNA in 
sewage sludge reached peak three days before that of hospital admission 
and seven days before that of community cases (Peccia et al., 2020). 

Considering the time lag from infection to detecting virus in waste-
water, WBE would significantly benefit if monitoring can be conducted 
in situ and in real time. However, due to the difficulty of real-time in situ 
monitoring of pathogens such as virus and bacteria in water and 
wastewater, monitoring of general wastewater quality parameters 
including oxygen, pH, redox potential (ORP), conductivity (salt con-
tent), nutrient and turbidity could serve as indirect indicators for WBE. 
For centralized municipal water and wastewater treatment facilities, 
different types of monitoring technologies have been developed, 
including colorimetric, chromatographic, biometric and electro-
chemical sensors (Ahmad et al., 2016; Ensafi et al., 2009; Kalluri et al., 
2009; Xu et al., 2016). However, all these sensors require frequent 
calibration, maintenance and replacement. For decentralized and 
distributed onsite water and wastewater facilities, sensors capable of 
accurate and continuous monitoring of water quality are needed for 
long-term maintenance free application (Crespo, 2017; Lee et al., 2006). 
Existing electrochemical and optical sensors still have lifespan problems 
with the longest duration of less than one month in real wastewater 
(Huang et al., 2019). In addition, wireless sensor networks should be 
developed for water infrastructure to assure early warning of water 
quality abnormity across networks and execute swift control and deci-
sion making (Bourgeois et al., 2003; Kadir et al., 2020). 

In conclusion, this editorial perspective asks that future research in 
these areas be considered:  

- We currently have limited data on SARS-CoV-2 removal and/or 
inactivation by wastewater and water treatment processes. In the 
future, one research need is a better understanding of drinking water 
disinfection efficacy and stability in inactivating and removing 
SARS-CoV-2 to help minimize waterborne viral infection (Bhowmick 
et al., 2020). 

- Another research need is to investigate the persistence and inacti-
vation mechanisms of SARS-CoV-2 including predation, UV, sun-
light, and disinfection in wastewater and receiving waters.  

- Nationwide and international wastewater surveillance campaigns 
should be carried out to better understand temporal and spatial 

dynamics of disease prevalence, molecular epidemiology and evo-
lution of the virus, and efficacy of public health interventions.  

- Development of new tools that facilitate in-situ real time monitoring 
of pathogens in wastewater and water matrices. 
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