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ABSTRACT
Background: Unlike papillary thyroid cancer (PTC), anaplastic thyroid carcinoma (ATC) is extremely 
aggressive and rapidly lethal without effective therapies. However, the differences of master regulators 
and regulatory networks between PTC and ATC remain unclear.  
Methods: Three representative datasets comprising 32 ATC, 69 PTC, and 78 normal thyroid tissue samples 
were combined to form a large dataset. Differentially expressed genes (DEGs) were identified and 
enriched by limma package and gene set enrichment analysis, respectively. Subsequently, protein– 
protein interaction network and transcription factors (TFs) regulatory network were constructed to 
identify gene modules and master regulators. Further, master regulators were validated by RT-PCR and 
western blot. Finally, Kaplan-Meier plotter was applied to evaluate their prognostic values. 
Results: A total of 560 DEGs were identified as ATC-specific malignant signature. The regulatory network 
analysis showed that nine master regulators were significantly correlated with three gene modules and 
potentially regulated the expression of DEGs in three gene modules, respectively. Furthermore, CREB3L1, 
FOSL2, E2F1 and CAT were significantly associated with overall survival of thyroid cancer patients. FOXM1, 
FOSL2, MYBL2, AVEN and E2F1 were unfavorable factors of recurrence-free survival (RFS), while CAT was 
a favorable factor of RFS. RT-PCR and western blot confirmed that six TFs were obviously up-regulated in 
ATC tissues/cell line as compared with PTC and normal thyroid tissues/cell lines, respectively. In addition, 
19 ATC-specific kinases were identified to illustrate the potential post-translational modification. 
Conclusions: Our findings provide a comprehensive insight into malignant mechanism of ATC, which 
may indicate their value in the future investigation of ATC.
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Introduction

Thyroid cancer has become one of the most frequently diag
nosed cancers worldwide, which is responsible for 5.1% of the 
total estimated female cancer burden in 2018.1 Differentiated 
thyroid cancer (DTC), especially the papillary thyroid cancer 
(PTC), is the major type of thyroid cancer and has more than 
90% cure rates. In contrast, anaplastic thyroid carcinoma 
(ATC) is one of the most aggressive endocrine malignancies 
that makes up 40% of all thyroid cancer deaths. The mean 
survival of ATC is only 6 months.2 Unlike other thyroid can
cers, the high frequency of extrathyroid extension, lymph node 
metastasis and distant metastasis in ATC patients underscores 
their extreme virulence.3 Moreover, ATC is refractory to radio
iodine ablation and traditional chemotherapy. Therefore, iden
tifying the molecular differences of master regulators and 
regulatory networks between ATC and PTC are desperately 
needed.

In recent years, considerable studies have been made to 
elucidate the genetic complexity of ATC. Von Roemeling 
et al compared the mRNA expression in 12 ATCs and 13 
normal thyroid tissues. They found aberrant lipid metabolism 

in ATC and identified fatty acid metabolism constituent stear
oyl-CoA desaturase 1 (SCD1) as a novel oncogenic factor 
specifically correlated with aggressive thyroid cancer.4 Tomas 
et al examined gene expression profiles of 60 thyroid tumors 
(11 ATC and 49 PTC) and 45 normal thyroid tissues and 
proposed a thyroid index that could distinguish PTCs from 
ATCs.5 Using the same dataset, Hebrant et al demonstrated 
a 9-gene aggressive signature that clearly separated PTC and 
ATC. They also found several pathological features including 
dedifferentiation, glycolytic phenotypes, and epithelial to 
mesenchymal transition were much stronger in ATC.6 

Although these important advances have been achieved, the 
differences of master regulators and regulatory networks 
between ATC and PTC still remain mystic.

Large cohort gene expression studies provide a powerful 
tool in revealing novel oncogene pathways. Instead of indivi
dual studies, combining microarray gene expression data from 
multiple laboratories or array platforms can largely reduce 
systematic biases among different data sets. The rarity of 
ATC has leaded to the limitation of large cohort research, 
and small patient sample numbers, disease heterogeneity, 
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and/or technical factors may cause inconsistent results between 
studies. To overcome the shortage, we integrated datasets from 
multiple studies to identify genes and pathways that uniquely 
and specifically changed in ATC.

In the current study, we screened the gene expression pro
files from three datasets comprising 32 ATC, 69 PTC, and 78 
normal thyroid tissue samples. The differentially expressed 
genes (DEGs) commonly shared by ATC and PTC were iden
tified by the intersection of two comparisons. The ATC-specific 
malignant signature was screened by comparing ATC with 
normal thyroid tissue and PTC. Furthermore, gene set enrich
ment analysis was carried out to annotate the biological func
tion of ATC-specific DEGs. Subsequently, transcription factors 
(TFs) regulatory network were constructed to identify the 
differences of master regulators between ATC and PTC. The 
prognostic relevance of ATC-specific master regulators in thyr
oid cancer were analyzed. Then, the expressions of ATC- 
specific master regulators were validated in independent 
patient samples. Finally, ATC-specific kinase landscape and 
the kinase-TFs regulatory network were also constructed.

Methods

Microarray data

Three representative microarray datasets (GSE29265, 
GSE65144, and GSE33630) comprising 32 anaplastic thyroid 
carcinomas (ATC), 69 papillary thyroid cancer (PTC), and 78 
normal thyroid tissue samples were acquired from the Gene 
Expression Omnibus (GEO, http://www.ncbi.nlm.nih.gov/geo/ 
). The microarray dataset of GSE29265 included 9 ATC, 20 
PTC and 20 normal thyroids. The GSE65144 had 12 ATC and 
13 normal thyroids,4 and the GSE33630 dataset contained 
11ATC, 49 PTC and 45 normal thyroids.5 In addition, PTC 
samples in GSE29265 were consisted of 10 radiation-exposed 
and 10 non-exposed tissues. The PTC samples in GSE33630 
comprised 22 radiation-exposed and 27 non-exposed tumors. 
These three datasets were all based on platform GPL570 
(Affymetrix Human Genome U133 Plus 2.0 Array).

Data processing and identification of DEGs

To generate a large dataset, three microarrays described above 
were integrated together by surrogate variables analysis (sva) 
package. The sva package was widely applied for removing 
batch effects in high-throughput experiments.7 Removing 
batch effects and estimating surrogate variables in differential 
expression analysis have been shown to reduce dependence, 
stabilize error rate estimates, and improve reproducibility.8 

The CEL files of three microarrays were merged and batches 
were adjusted by ComBat function. Robust Multichip Average 
algorithm was applied to conduct the background correction, 
normalization, and log2 transformation. Empirical Bayes 
method depending on the limma package was performed to 
identify ATC-specific genes by separately comparing ATC with 
PTC and normal thyroid samples.9 For multiple testing, 
P values were adjusted by the Benjamini-Hochberg False 
Discovery Rate (FDR) algorithm. Additionally, the thresholds 
for DEGs filtration were set as |log2 fold change (FC)|≥1 and 

FDR<0.05. The consistent DEGs between ATC versus PTC and 
ATC versus normal thyroid tissues were considered as ATC- 
specific genes and were selected for further analysis.

Function annotation and pathway enrichment of DEGs

The R packages clusterProfiler, org.Hs.eg.db, and ggplot2 were 
applied to conduct Kyoto Encyclopedia of Genes and Genomes 
(KEGG) enrichment and Gene ontology (GO) annotation of 
the fundamental DEGs in thyroid cancer.10 P values were 
adjusted using the Benjamini-Hochberg FDR method. The 
threshold was set as P < .05 and qvalue<0.2 to indicate statis
tically significant difference.

The Gene set enrichment analysis (GSEA) java software was 
used to interpret the biological function of ATC-specific genes 
under default settings (1000 permutations).11 Eight major 
MSigDB (version 6.2) gene sets containing hallmark gene 
sets, positional gene sets, curated gene sets, motif gene sets, 
computational gene sets, GO gene sets, oncogenic gene sets 
and immunologic gene sets were chosen to perform GSEA.

Construction of protein–protein interaction (PPI) network 
and analysis of modules

Search Tool for the Retrieval of Interacting Genes (STRING, 
http://string-db.org/) database is widely applied to retrieve the 
PPI and to construct the PPI network.12 The PPI network of 
ATC-specific DEGs was constructed by STRING and visua
lized by Cytoscape (v3.6.1). Then, Molecular Complex 
Detection (MCODE) was used to identify the key modules in 
the resulting PPI network.13 The degree cutoff was set as five 
and k-core was set as two. Moreover, ClueGO was used to 
generate pathway interaction networks of each module.

Regulatory network construction and master regulator 
analysis

In order to identify the master regulators that targeted ATC- 
specific modules, the Cytoscape plugin iRegulon was applied to 
construct regulatory network.14 The plugin previously 
described by Janky et al was depended on the typical ranking- 
and-recovery algorithm. The parameters were set to default 
when predicting TFs. Furthermore, TFs with normalized 
enrichment score (NES) >5 or targeting more than half of 
gene sets were chosen to generate the regulatory network. 
Additionally, Pearson correlation analysis between TFs and 
three modules were performed, respectively. TFs with 
Pearson r < −0.5 or >0.5 were considered as ATC-specific 
master regulators.

Screening of ATC-specific kinases and the phosphosite 
markers

To identify the ATC-specific kinases, the protein kinase list was 
retrieved from human kinome database (kinase.com) and was 
intersected with ATC-specific DEGs.15 Further, PhosphoSitePlus 
(https://www.phosphosite.org) online tool was applied to 
retrieved the substrates of ATC-specific kinases. Finally, sequence 
logo was applied to indicate the phophosite markers. To construct 
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the kinase-TFs interaction network, both ATC-specific kinases 
and master regulators were input into the STRING database to 
construct the PPI network.

Experimental validation of master regulators

To validate the master regulators identified above, 15 samples 
including six non-tumorous tissues, six PTC, and three ATC 
were acquired from patients with surgical resection. 
Pathological diagnosis of specimens was conducted at the 
time of assessment. Expression of candidate genes were 
detected by RT-PCR. Briefly, Trizol (Invitrogen, San Diego, 
CA, USA) was applied to extracted the total mRNA of each 
tissue. Subsequently, RNA was treated by the RT reagent kit 
(TAKARA, Dalian, China) and amplificated by the SYBR 
Premix Ex Taq Kit (TAKARA, Dalian, China). All the reactions 
were determined in triplicate. The primers were detailly listed 
in supplementary data (Table S1). The expression level of 
mRNA was calculated basing on the 2−ΔΔCt method. Results 
were expressed as the means ± standard deviation. Differences 
of multiple groups were calculated by One-way ANOVA 
within GraphPad Prism 5 software (GraphPad Software, Inc., 
La Jolla, CA, USA), respectively. P value <.05 was considered to 
be statistically significant. In vitro experiments were conducted 
in 8505 C (DSMZ, Cat# ACC-219), BCPAP (DSMZ Cat# ACC- 
273), and Nthy-ori 3–1 (ECACC, Cat# 90011609) cell lines. 
Western blot was employed to detect the protein expression of 
candidate TFs. The following primary antibodies were used: 
primary antibodies against E2F1, FOSL2, and AVEN were 
purchased from ABclonal (Wuhan, China). Anti-CREB3L1 
antibody was from Abcam (Cambridge, USA). Antibodies 
against FOXM1 and B-Myb were purchased from Proteintech 
(Rosemont, USA), while anti-GAPDH antibody was obtained 
from Santa Cruz Biotechnology (Dallas, USA).

Kaplan-Meier survival analysis of master regulators in 
thyroid cancer

To assess the prognostic value of master regulators in thyroid 
cancer, a total of 502 patient samples with thyroid carcinoma 
from TCGA were split into two cohorts using the best cutoff of 
expression value computed by Kaplan-Meier plotter (www. 
kmplot.com).

Results

Patient samples and clinicopathological features

The clinicopathological features of patient samples from 
three microarray datasets were collected. The age, gender, 
and tumor size of ATC samples were not provided in three 
datasets. In GSE29265, there were 14 classical, 5 follicular, 1 
solid PTC subtypes. The mean tumor size of PTC was 
2.0 cm (0.6–6.0 cm). The PTC samples in GSE33630 com
prised 21 classical, 16 follicular, 12 solid subtypes, and the 
mean tumor size was 2.2 cm (0.5–5.2 cm). The GSE65144 
dataset only contained pathology variant of ATC. In the 
samples prepared for RT-PCR validation, the mean tumor 
sizes of PTC and ATC samples were 1.4 cm (0.6–2.0 cm) 

and 10.3 cm (7.0–14.0 cm), respectively. The clinicopatho
logical information of patients was listed in Table 1.

Identification and gene function annotation of 
fundamental DEGs in thyroid cancer

To generate a large dataset, three microarray datasets contain
ing GSE33630, GSE29265 and GSE65144 were downloaded 
and merged together with background correction (Figure S1 
(a)). Batch effects were removed by sva package (ComBat 
function) (Figure S1(b)). The boxplots showed that the median 
values of gene expression profile were almost at the same level 
after normalization, indicating that the pre-processing dataset 
was sufficient for the subsequent analysis (Figure S1(c)). Then, 
we also evaluated the potential effect of radiation exposure on 
the data analysis. No DEGs (FDR<0.05, |log2 FC|≥1) between 
sporadic and radiation-exposed PTC were found in the com
bined dataset or even in the original datasets (data not shown). 
Furthermore, the gene signatures of radiation exposure raised 
by Handkiewicz-Junak et al were also validated in the current 
analysis.16 As shown in Figure 1(a-c), these ten genes exhibited 
small differences between sporadic and radiation-exposed PTC 
both in the combined dataset and in the original datasets, 
indicating the radiation exposure factor in the current dataset 
has limited effect on our data analysis.

In order to explore the fundamental genes required for 
thyroid cancer, DEGs that commonly changed in ATC and 
PTC were identified. Compared with normal thyroid tissues, 
a total of 338 consistently changed DEGs (157 up-regulated 
and 181 down-regulated genes) were found in ATC and PTC 
(Figure 1(d-e)). These DEGs were likely to play substantial 
roles in thyroid cancer initiation and progression.

The biological function of thyroid cancer related DEGs 
were then annotated by GO (biological process). The up- 
regulated DEGs were associated with extracellular matrix 
organization, extracellular structure organization, cell- 
substrate adhesion, negative regulation of cell adhesion, 
response to vitamin, extracellular matrix disassembly, posi
tive regulation of cell adhesion, endoderm development, 
endoderm formation, and response to nutrient levels 
(Figure 1(f)). The down-regulated DEGs were mainly 
enriched in thyroid hormone generation, thyroid hormone 
metabolic process, muscle organ development, kidney devel
opment, urogenital system development, hormone metabolic 
process, renal system development, muscle tissue develop
ment, phenol-containing compound metabolic process, and 
striated muscle tissue development (Figure 1(g)). Pathway 
enrichment by KEGG suggested that the up-regulated DEGs 
were associated with ECM-receptor interaction, viral myocar
ditis, rheumatoid arthritis, tuberculosis, toxoplasmosis, pro
tein digestion and absorption, focal adhesion, Epstein-Barr 
virus infection, inflammatory bowel disease (IBD), and amoe
biasis (Figure 1(h)). The down-regulated DEGs were enriched 
in TGF-beta signaling pathway and thyroid hormone synth
esis (Figure 1(i)). These enriched pathways or biological pro
cesses indicated pathological signals commonly occurred 
throughout both benign and aggressive thyroid cancer, 
which may be required for thyroid tumorigenesis and 
progression.
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Identification of ATC-specific DEGs

In order to identify the malignant signatures that specifically 
expressed in ATC, comparisons were made to discover con
sistently changed genes (FDR<0.05, |log2 FC|≥1) in ATC as 
compared with normal or PTC group. A total of 315 up- 
regulated DEGs and 245 down-regulated DEGs were obtained 
by the intersection of two comparisons (Figure 2(a-b)). 
Additionally, only 43% (315/732) up-regulated and 36% 
(245/677) down-regulated DEGs (ATC versus normal 
group) were consistently changed in the comparison of ATC 
and PTC. Moreover, 87% (315/363) up-regulated and 57% 
(245/427) down-regulated DEGs in ATC (ATC versus PTC) 
were consistently changed in the comparison of ATC and 
normal group (Figure 2(a-b)). These results indicated that 
part of DEGs between ATC and PTC were redundantly iden
tified, and applying intersection with DEGs between ATC and 
normal group could generate more specific ATC-associated 
malignant signature. Then, a heatmap of the top 10 up and 
down-regulated DEGs was displayed and these 20 DEGs 
could clearly distinguish ATC from normal thyroid tissues 
and PTC (Figure 2(c)).

Gene set enrichment analysis of ATC-specific DEGs

To explore the biological function of ATC-specific DEGs, 
gene set enrichment analysis (GSEA) was implemented 
between ATC and PTC groups to interpret gene expression 
profiles. By setting eight major MSigDB gene sets as refer
ences, 1135 and 344 gene sets are up-regulated in ATC and 
PTC, respectively. Moreover, 767 gene sets are significant at 
FDR < 25% in ATC, and 43 gene sets are significantly 
enriched at FDR < 25% in PTC. The top 20 gene sets that 
positively or negatively correlated with ATC are shown in 
Figure 3(a). Gene sets including FISCHER DREAM 
TARGETS, SOTIRIOU BREAST CANCER GRADE 1 VS 3 
UP, FISCHER G2 M CELL CYCLE, KOBAYASHI EGFR 
SIGNALING 24 HR DN, ROSTY CERVICAL CANCER 
PROLIFERATION CLUSTER, GSE15750 DAY6 VS DAY10 
TRAF6KO EFF CD8 T CELL UP, GO MITOTIC CELL 
CYCLE, SHEDDEN LUNG CANCER POOR SURVIVAL 
A6, GO CELL CYCLE PROCESS, and BASAKI YBX1 
TARGETS UP were significantly correlated with ATC. The 
top 10 gene sets that negatively correlated with ATC 
were RODRIGUES THYROID CARCINOMA POORLY 
DIFFERENTIATED DN, RODRIGUES THYROID 
CARCINOMA ANAPLASTIC DN, CHARAFE BREAST 
CANCER LUMINAL VS MESENCHYMAL UP, DODD 
NASOPHARYNGEAL CARCINOMA UP, HOLLERN EMT 
BREAST TUMOR DN, SCHAEFFER PROSTATE 
DEVELOPMENT 48 HR UP, MODULE 180, COLDREN 
GEFITINIB RESISTANCE DN, CHARAFE BREAST 
CANCER BASAL VS MESENCHYMAL UP, and SMID 
BREAST CANCER BASAL DN. The top 10 enriched gene 
sets that positively or negatively correlated with ATC were 
plotted and displayed in Figure 3(b-k).

Construction of PPI network

To systematically analyze the function of ATC-specific DEGs, 
the STRING database was applied to generate the PPI network. 

Figure 1. Identification and biological function annotation of thyroid cancer 
associated DEGs. (a-c) Expression of radiation signature in sporadic and radiation- 
exposed PTC from GSE29265, GSE33630, and combined dataset. (d-e) Consistently 
up- and down-regulated DEGs in ATC and PTC by comparing to normal thyroid 
tissues. (f-g) GO Biological Process annotation of up- and down-regulated DEGs, 
respectively. Top ten significantly enriched GO terms with lowest q value were 
plotted. (h-i) Pathway enrichment of up- and down-regulated DEGs by Kyoto 
Encyclopedia of Genes and Genomes (KEGG), respectively. Top ten significantly 
enriched pathways with lowest q value were plotted.

Figure 2. Identification of ATC-specific malignant signatures. (a) Intersection of 
consistently up-regulated DEGs in ATC as compared with normal thyroid tissues or 
PTC. (b) Intersection of consistently down-regulated DEGs in ATC as compared 
with normal thyroid tissues or PTC. (c) Heatmap of top 10 up and down-regulated 
DEGs in ATC.
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The Figure 4 showed that ATC-specific PPI network com
prised 404 nodes interacting via 3395 edges. The top 5 nodes 
with highest degree in the PPI network were TOP2A 
(degree = 92), BIRC5 (degree = 77), CDK1 (degree = 75), 
CCNB1 (degree = 75), CCNA2 (degree = 73).

Module analysis and gene function annotation

To identify the core modules in the PPI network, the Cytoscape 
plugin MCODE was employed. The Module 1 contained 59 key 
nodes, which were enriched in p53 signaling pathway, cell cycle, 
and progesterone-mediated oocyte maturation (Figure 5(a-b)). 
Moreover, CDK1, CCNB2 and CCNB1were commonly involved 
in three pathways described above. The Module 2 consisted of 
27 nodes, and they were associated with Staphylococcus aureus 
infection pathway, IL-17 signaling, and protein digestion and 
absorption (Figure 5(c-d)). Additionally, CXCL1 and CXCL8 
were commonly shared by protein digestion and absorption and 
IL-17 signaling pathway. The Module 3 comprised 24 nodes, 
which were related with complement and coagulation and 
Staphylococcus aureus infection (Figure 5(e-f)). C1QA, C1QB 
and C1QC participated in both pathways above.

Master regulators and regulatory network of ATC-specific 
DEGs

To demonstrate the master regulators that directly targeted the 
genes of three modules in ATC-specific PPI network, we used 

iRegulon to predict the transcription factors (TFs) and their 
targets. A total of 13 TFs were strongly enriched in the regu
latory network of Module 1 (Figure 6(a)). Intriguingly, 
FOXM1was not only a target of regulators, but also a master 

Figure 3. Gene Set Enrichment Analysis (GSEA) of ATC-specific DEGs. (a) The top 
20 gene sets that positively or negatively correlated with ATC. (b-f) Enrichment 
plot of top 5 enriched gene sets that up-regulated in PTC. (g-k) Enrichment plot of 
top 5 enriched gene sets that up-regulated in ATC. NES, normalized enrichment 
score.

Figure 4. The protein-protein interaction network of ATC-specific DEGs. The PPI 
network was constructed by STRING and visualized by Cytoscape. Red nodes 
represented up-regulated DEGs. Blue nodes represented down-regulated DEGs.

Figure 5. Module analysis of PPI network and gene function annotation. (a, c, e) 
Three most scored Modules in the PPI network were identified by MCODE 
algorithm. (b, d, f) Gene enrichment of Modules and construction of pathway 
interaction network were analyzed by GO (biological process) and KEGG in 
ClueGO.
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regulator of Module 1. NFYB, E2F1, E2F4, E2F2, TFDP3 and 
SIN3A were the TFs of FOXM1. Meanwhile, FOXM1 was 
significantly up-regulated in ATC and targeted more than 
90% genes of Module1. NFYC, NFYB and FOXM1 were the 
top three TFs with normalized enrichment score (NES) of 
12.859, 12.784 and 10.912, respectively. A total number of 19 
TFs were considered as master regulators in the regulatory 
network of Module 2 (Figure 6(b)). The highest NES in 
Module 2 were RELA (NES = 8.701), DDX4 (NES = 6.968) 
and CREB3L1 (NES = 6.298). In the regulatory network of 
Module 3, 10 TFs were identified, among which STAT6 
(NES = 5.989), NKX2-6 (NES = 5.584), FOSL2 (NES = 5.327) 
were the top three enriched master regulators (Figure 6(c)).

Correlation analysis of master regulators and modules

To identify the specific master regulators of three modules in 
the PPI network, we compared the expression profiles of all 
predicted TFs to expression profiles of targeted modules and 
analyzed the correlation between regulators and regulated 
genes. Depending on the correlation analysis, we found 
a total of 11 TFs were significantly correlated with three mod
ules. In Module 1, E2F1, FOXM1, MYBL2 and TFDP1 were 
positively correlated with Module 1, while NFYA was nega
tively correlated with Module 1 (Figure 7(a)). We noted that 
FOXM1 exhibited the highest correlation with Module 1 
(Pearson r = 0.84, P value <.0001). Moreover, as the regulated 
target of E2F1, FOXM1 also exhibited high correlation with 

E2F1 (Pearson r = 0.79, P value <.0001) (Figure 7(a)). 
Additionally, we found that NFYA negatively correlated with 
Module 1 (Pearson r = −0.52; P value < .0001) (Figure 7(a)). 
The expression of NFYA was obviously declined in ATC tis
sues, which suggested that NFYA may function as a repressor 
gene of Module 1 (Figure 7(b)). In Module 2, three TFs were 
positive correlation with Module 2, including AVEN, 
CREB3L1 and DAB2 (Figure 7(c)). Additionally, the master 
regulator CAT showed negative correlation with Module 2 
(Pearson r = −0.72; P value < .0001). CAT was also negatively 
correlated with CREB3L1 (Pearson r = −0.58; P value < .0001) 
and DAB2 (Pearson r = −0.5; P value < .0001) (Figure 7(c)). 
AVEN, CAT, CREB3L1, and DAB2 were significantly changed 
in ATC as compared with normal and PTC group (Figure 7 
(d)). There were two TFs exhibited high correlation with 
Module 3, containing FOSL2 and MEF2A (Figure 7(e-f)). 
Moreover, FOSL2 also showed positive correlation with 
MEF2A (Pearson r = 0.6; P value < .0001).

The landscape of ATC-specific kinase and phosphosite 
markers

Dysregulations or mutations of kinases are known to play a causal 
role in tumorigenesis and cancer progression. Considerable stu
dies are trying to turn these targets into valid drug candidates for 
emerging cancer therapies. In the present study, we also identified 
19 ATC-specific kinases (14 up-regulated and 5 down-regulated 
kinases) that significantly changed in ATC as compared to PTC 
and normal tissues (Figure 8(a)). These 19 ATC-specific kinases 

Figure 6. Identification of master regulators in regulatory network of ATC-specific 
modules. (a-c) Results of the regulatory analysis with iRegulon on three most 
scored modules. The red nodes represented regulated targets. The blue node was 
regulator and/or regulated target. The light cyan nodes indicated transcription 
factors.

Figure 7. Correlation analysis of master regulators and three modules. (a, c, e) 
Pearson correlation analysis of TFs and modules. (b, d, f) The expression profile of 
TFs with Pearson r > 0.5 or < −0.5 were queried from microarray dataset. Results 
were showed as means ± SD in each group. * P < .05, ** P < .01, *** P < .001.
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exhibited distinct expression manners as compared with PTC and 
normal tissues. Then, we also predicted the phospho-targets of 14 
up-regulated kinases. Protein kinases including AurA (encoded 
by AURKA), TTK, MELK, Chk1 (encoded by CHEK1), NEK2, 
and CDK1 phosphorylated the threonine, serine and tyrosine sites 
of their substrates, while IRAK1, NEK6, BUB1B, BUB1, PBK, and 
CDK6 targeted the threonine and serine for phosphorylation 
modification (Figure 8(b)). CSF1R and PDGFRA were tyrosine- 
specific kinases for their substrates. Finally, the consensus 
sequences of kinase substrates were depicted by sequence logo 
to suggest their phophosite markers (Figure 8(b)). Except for 
BUB1B, the sequence logo of all kinases could be retrieved from 
PhosphoSitePlus database.

Experimental validation of candidate TFs and construction 
of kinase-TFs regulatory network

The expression pattern of candidate TFs were then validated by 
RT-PCR in ATC, PTC and normal thyroid tissues (Figure 9 
(a-i)). The results showed that E2F1, FOXM1, MYBL2, AVEN, 
CREB3L1 and FOSL2 were significantly up-regulated in ATC 
when comparing with PTC and normal groups. CAT exhibited 
down-regulated trend in ATC. The expression level of NFYA 
was inconsistent with the microarray data, which may be due 
to the limitation of ATC sample numbers. Furthermore, six 
significant expressed TFs were also examined by western blot 
using cell lines. E2F1, FOXM1, B-Myb (encoded by MYBL2), 
AVEN, CREB3L1 and FOSL2 were obviously up-regulated in 
ATC cell line when comparing with PTC and normal cell lines 

(Figure 9(j)). These results suggested that the identified TFs 
may act as master regulators during the malignant progression 
of thyroid cancer.

To provide a comprehensive view of mechanism underlying 
ATC aggressiveness, the kinase-TFs regulatory network was 
constructed. Among the 19 ATC-specific kinases, we only 
enrolled 14 up-regulated kinases and left the remaining five 
down-regulated kinases. The results indicated that several mas
ter regulators potentially interacted with protein kinases and 
may bear phosphorylation modification (Figure 9(j)). DAB2 
and FOSL2 showed single interaction with CDK1 and TRIB1, 
respectively. FOXM1 may be regulated by NEK2, MELK, 
AURKA, PBK, BUB1B, BUB1, CHEK1, and TTK. MYBL2 
exhibited interaction with AURKA, MELK, CDK6, CDK1, 
and BUB1. Moreover, E2F1 showed potential interaction with 
CDK1, CDK6, and IGF1R. This regulatory network suggested 
that master regulators may facilitate the aggressive progression 
of thyroid cancer in coordination with protein kinases.

Survival analysis of ATC-specific master regulators

To evaluate the prognostic relevance of nine ATC-specific 
master regulators in thyroid cancer, the recurrence-free survi
val (RFS), overall survival (OS) and the best cutoff of gene 
expression were calculated by the Kaplan-Meier plotter. As 
shown in Figure 10, high expressions of CREB3L1 
(P = .0024), FOSL2 (P = .02), and E2F1 (P = .00015) were 
negatively associated with OS, while high expression of CAT 

Figure 8. Identification of ATC-specific kinases and the phosphosite markers. (a) 
Heatmap of 19 featured kinases with expression values in different thyroid 
samples. (b) Phospho-target and the sequence logo of up-regulated protein 
kinases were listed.

Figure 9. Experimental validation of candidate master regulators and construction 
of kinase-TFs interaction network. (a-i) The expression level of candidate master 
regulators was determined by RT-PCR. The sample numbers of each group were 6 
normal thyroid tissues, 6 PTC and 3 ATC, respectively. NT, normal thyroid tissues. * 
P < .05, ** P < .01, *** P < .001. (j) Western blot analysis of candidate master 
regulators in Nthy-ori 3–1 (human thyroid follicular epithelial cell line), BCPAP 
(PTC cell line), and 8505 C (ATC cell line). (k) The PPI network of kinases and TFs. 
Red nodes indicated TFs, cyan nodes indicated protein kinases. TFs, transcription 
factors.
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(P = .045) was positively associated with OS. The analysis of 
RFS suggested that FOXM1 (P = .000053), FOSL2 (P = .048), 
MYBL2 (P = .000031), AVEN (P = .0067), and E2F1 (P = .0033) 
were unfavorable factors of prognosis, whereas CAT (P = .026) 
was a favorable factor of prognosis. Though these nine master 
regulators were identified from ATC, the prognostic relevance 
of these genes in thyroid cancer indicated their potential roles 
in facilitating tumor progression.

Discussion

In contrast to PTC, the extremely poor prognosis and limited 
therapeutic effect of ATC have caused considerable concern. 
Researchers have been focusing on the genomic or transcrip
tomic alteration in ATC leveraging different technologies.4,6,17 

However, the rarity and heterogeneity of ATC may raise con
founding results in individual studies. In the current study, we 
generated a large dataset from three independent studies to 
explore the differences of regulatory networks between PTC 
and ATC. In accordance with the transcriptomic studies (data 
deposited as GSE65144) from Von Roemeling and colleagues,4 

our current dataset also showed that the oncogenic gene SCD1 
was significantly increased by 5.0 and 2.4-fold in ATC as 

compared to normal tissues and PTC, respectively. Given that 
the radiation-associated thyroid cancer was reported to possess 
distinct molecular and driver mutation signatures,16,18,19 we 
also explored the potential effect it could have on the data 
analysis. Under the current filtration criteria, no DEGs between 
sporadic and radiation-exposed PTC were found in our ana
lyses, which was consistent with previous finding by Detours 
et al.20 Though studies pointed out that there were small but 
significant differences between sporadic and radiation-exposed 
PTC,16 our results indicated that the radiation factor elicited 
limited effect on the following analysis. Taking together, these 
results suggested that our combination of multiple datasets 
after removing batch effects could be feasible and sufficient 
for data analysis.

The malignant feature of ATC was driven by its complex 
molecular evolution. Identification of ATC-specific DEGs 
could provide a comprehensive view on tumor aggressiveness. 
In our current study, intersection of two comparisons was 
made to discover genes uniquely expressed in ATC as com
pared with normal or PTC groups. Gene set enrichment ana
lysis indicated that dysregulation of cell cycle, cell mitosis, cell 
proliferation, immune status, and signatures in advanced can
cer were significantly correlated with ATC. Module analysis 
and gene function annotation also suggested that one of the key 
modules was associated with cell cycle. Though several studies 
have pointed out that cell cycle genes were highly activated in 
ATC,21,22 our research provided the transcription factor reg
ulatory network of modules and identified E2F1, FOXM1, 
MYBL2, TFDP1 and NFYA as potential master regulators of 
cell cycle associated module. The RB-E2F1 pathway and MMB- 
FOXM1 complex are critical for controlling G1/S and G2/M 
gene expression, respectively.23 In consistence with in vitro 
results from Onda et al,24 our tumor tissue validation also 
showed that E2F1 was significantly up-regulated in ATC. 
Moreover, our analysis illustrated the potential transcription 
targets of E2F1, which may be the mechanism of tumor cell 
cycle dysregulation. Transcription factor DP-1 (encoded by 
TFDP1) coordinates with E2F proteins to promote the tran
scription of E2F target genes and to regulate cell cycle. Recent 
studies indicated that abnormal expression of TFDP1 was 
involved in several cancers,25-27 while its role in ATC remains 
unclear. Taking together, these master regulators and their 
potential targets formed complex cell cycle gene regulatory 
networks, which may be responsible for rapid progression 
of ATC.

Aggressive cancers get the ability to manipulate their tumor 
microenvironments. In contrast to PTC, the excessive deposi
tion of extracellular matrix was specifically found in ATC. 
Collagens were essential for regulating ECM-receptor interac
tion and protein digestion and absorption, which is thought to 
contribute to tumor malignancy. Strikingly, our results showed 
that the collagen family members constituted nearly 41% (11/ 
27) nodes of Module 2. However, how these collagens were 
substantially up-regulated in ATC remained mystic. The TF 
regulatory network analysis indicated that CREB3L1, AVEN, 
DAB2, and CAT were the potential novel regulators of collagen 
family in ATC. CREB3L1 is a transcription factor of the CREB/ 
activating transcription factor family. Recent studies showed 
that CREB3L1 participated in protein secretory pathway, and 

Figure 10. Prognostic relevance of nine ATC-specific master regulators in thyroid 
cancer. Overall survival (OS) and recurrence-free survival (RFS) of nine ATC-specific 
master regulators in thyroid cancer were retrieved from Kaplan-Meier plotter. 
Curves stratified by expression of FOXM1, CREB3L1, FOSL2, CAT, MYBL2, NFYA, 
DAB2, AVEN, and E2F1, respectively. Patients were split into low-expression group 
and high-expression group, according to the expression of nine genes above. Log- 
rank test was used to evaluate significance.
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monoallelic and biallelic CREB3L1 variant lead to mild and 
severe osteogenesis imperfecta, respectively.28,29 Moreover, 
Feng et al demonstrated that CREB3L1 was a key downstream 
mediator of PERK-driven invasion and metastasis in breast 
cancer.30 Our results revealed that transcriptional regulation 
of collagen family by CREB3L1 may be essential for the malig
nant feature of ATC, which holds promise for it to become the 
candidate target of ATC. The researches of CREB3L1, AVEN, 
DAB2, and CAT in ATC are limited, and our findings may 
illustrate their potential function and prognosis value in tumor 
progression.

Protein kinases are promising drug targets due to their 
essential functions in tumor initiation and progression. We 
identified 19 ATC-specific kinases and constructed kinase- 
TFs regulatory network. CDK1 was one of the top five hub 
genes that significantly increased in ATC. The CDK1, 2, 5, 
and 9 selective inhibitor dinaciclib caused cell cycle arrest 
in the G2/M phase and inhibited thyroid cancer cell 
proliferation.31 Recently, a phase 3 trial investigating the 
safety and efficacy of dinaciclib was conducted in patients 
with relapsed/refractory chronic lymphocytic leukemia.32 

The anti-leukemic activity of dinaciclib provided potential 
strategy for ATC treatment. Moreover, the kinase-TFs reg
ulatory network showed that CDK1 could interact with 
DAB2, FOSL2, MYBL2, and E2F1, which indicated 
a comprehensive mechanism in kinase-mediated tumor 
aggressiveness. PBK (PDZ-binding kinase) was critical 
kinase with highest fold change (log2 FC = 1.88, 
FDR = 2.37 × 10−14) among 19 ATC-specific kinases. 
Overexpression of PBK were associated with tumorigenesis 
and metastasis in various types of cancer. The expression of 
PBK contributed to poor outcome of esophageal squamous 
cell carcinoma, colorectal cancer, and gastric cancer,33-35 

while the role of PBK had not been specifically implicated 
in ATC. As the selective inhibitors of PBK have shown 
their promising anti-cancer effects in preclinical models of 
aggressive cancers,36-38 the dramatic increase of PBK in 
ATC and its interaction with FOXM1 indicated PBK may 
act as another potential target for ATC.

In conclusion, our integrative transcriptomics study 
revealed malignant signatures in ATC and their clinical rele
vance in thyroid cancer. Several transcription factors were 
considered as the master regulators of ATC-specific DEGs in 
the regulatory network. Moreover, ATC-specific kinase land
scape and kinase-TFs regulatory network were identified, 
which may provide new insights into malignant mechanism 
of ATC. It should be noted that there are some factors may still 
need to be considered in the future, such as sample asymmetry 
in three datasets, the potential effect of radiation-exposed PTC 
on data analysis. Notwithstanding the limitation, these findings 
provide an emerging rationale supporting the particular value 
of ATC-associated master regulators in future investigation.
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