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Abstract

Feedback on chest compressions and ventilations during cardiopulmonary resuscitation (CPR) is 

important to improve survival from out-of-hospital cardiac arrest (OHCA). The thoracic 

impedance signal acquired by monitor-defibrillators during treatment can be used to provide 

feedback on ventilations, but chest compression components prevent accurate detection of 

ventilations. This study introduces the first method for accurate ventilation detection using the 

impedance while chest compressions are concurrently delivered by a mechanical CPR device. A 

total of 423 OHCA patients treated with mechanical CPR were included, 761 analysis intervals 

were selected which in total comprised 5 884 minutes and contained 34 864 ventilations. Ground 

truth ventilations were determined using the expired CO2 channel. The method uses adaptive 

signal processing to obtain the impedance ventilation waveform. Then, 14 features were calculated 

from the ventilation waveform and fed to a random forest (RF) classifier to discriminate false 

positive detections from actual ventilations. The RF feature importance was used to determine the 

best feature subset for the classifier. The method was trained and tested using stratified 10-fold 

cross validation (CV) partitions. The training/test process was repeated 20 times to statistically 

characterize the results. The best ventilation detector had a median (interdecile range, IDR) F1-

score of 96.32 (96.26 – 96.37). When used to provide feedback in 1-min intervals, the median 

(IDR) error and relative error in ventilation rate were 0.002 (−0.334 – 0.572) min−1 and 0.05 

(−3.71 – 9.08)%, respectively. An accurate ventilation detector during mechanical CPR was 

demonstrated. The algorithm could be introduced in current equipment for feedback on ventilation 

rate and quality, and it could contribute to improve OHCA survival rates.
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I. Introduction

OUT of hospital cardiac arrest (OHCA) is an important public health problem. The annual 

incidence of treated OHCA in industrialized countries is between 35 and 60 cases per 100 

000 persons, with survival rates below 10 % [1], [2]. High-quality cardiopulmonary 

resuscitation (CPR) maintains an artificial flow of oxygenated blood by means of chest 

compressions and ventilations, and is essential to improve OHCA survival [3]. Advanced 

life support resuscitation guidelines recommend both uninterrupted and high quality chest 

compressions, and concurrent ventilations with rates of approximately 10 breaths per minute 

(min−1) after patient intubation [4]. Hyperventilation should be avoided because it increases 

intrathoracic pressure and may result in degraded hemodynamics [5]. However, 

hyperventilation during CPR is frequent with ventilation rates far exceeding the 

recommended values [6]–[8].

Chest compression detection systems are available on portable cardiac monitors. These 

technologies use accelerometers or changes in thoracic impedance to detect chest 

compressions [9]. During treatment, CPR feedback devices may help to improve rescuer 

compliance with treatment guidelines [10], [11]. After treatment, episode debriefing based 

on these recorded data may allow for retrospective performance assessment and quality 

improvement programs [12]. However, similar technologies for feedback on ventilation 

based on the impedance are not currently commercially available. The capnogram is the 

continuous measure of the partial pressure of expired CO2 in respiratory gases. Capnography 

is the standard method for detecting ventilations during CPR [13], [14], but this signal is not 

available until the placement of an advanced airway. Thoracic impedance, which is recorded 

by most defibrillators to check pad placement and to adjust defibrillation energy, also 

provides detailed information on CPR activity [15]. Thoracic impedance varies with air 

volume changes in the lungs, and can therefore be used to identify ventilations. Even when 

capnography is available, impedance-based detection of ventilations is important, either to 

improve the accuracy of capnography-based ventilation detection algorithms [13], or to 

provide indirect evidence of tidal volume and peak positive ventilation pressures that cannot 

be inferred from the capnogram [16], [17].

Impedance ventilation waveforms are varied in shape, and the impedance signal is very 

sensitive to motion artifacts [18], [19]. Furthermore, during CPR the impedance presents a 

chest compression component with a spectrum that may overlap that of the ventilation 

waveforms [20]. Before intubation, if CPR is delivered in sequences of 30 compressions 

followed by 2 ventilations (standard 30:2 CPR), ventilations can be reliably identified during 

compression pauses [16]. After intubation, chest compressions and ventilations are given 

concurrently. Several ventilation detection algorithms have been proposed for this scenario 

[13], [20], [21], frequently using the adaptive filtering techniques originally conceived to 

remove chest compression artifacts from the electrocardiogram [22], [23]. Since manual 

chest compressions are variable in rate and depth, these adaptive filters often need 

accelerometer data to model the chest compression artifact [20].

Mechanical chest compression devices ensure high-quality chest compressions and have 

become popular in OHCA treatment. To date, there is no conclusive evidence of improved 
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survival with mechanical CPR [24], [25], but the use of these devices has become 

widespread in scenarios like patient transport, invasive procedures, or prolonged 

resuscitation [26]. Mechanical chest compressions are stable in rate and depth, so there is no 

need for accelerometer data to model compressions [27], [28]. However, removing the 

mechanical chest compression component from the impedance is challenging because it has 

larger amplitudes and more spectral components than those observed during manual CPR 

[29].

The goal of this study was to determine whether an impedance-based algorithm can 

accurately detect ventilations during concurrent mechanical chest compressions. For this 

purpose, we implemented an adaptive filter to obtain the ventilation waveform from the raw 

impedance signal, designed features to characterize the impedance ventilation waveform, 

constructed an optimal model to identify true ventilations using a Random Forest (RF) with 

the best feature subset, and evaluated the performance of the model to detect ventilations and 

measure ventilation rate. A preliminary version of this work has been reported [30].

II. Materials

The study dataset was part of a large OHCA data repository collected by the Dallas-Fort 

Worth Center for Resuscitation Research, as part of the Resuscitation Outcomes Consortium 

[31]. A cohort of 567 patients treated between October 2012 and March 2016 were initially 

considered, those that contained concurrent impedance and capnography recordings as well 

as confirmed mechanical CPR according to the OHCA epistry data. Signals were acquired 

with the MRx monitor-defibrillator (Philips Medical Systems, Andover, MA, USA). The 

MRx measures impedance by applying a 32 kHz alternating current through the 

defibrillation pads and measuring the resulting voltage. The impedance signal was digitized 

with a sampling rate of 200 Hz and an amplitude resolution of 0.74 mΩ per least significant 

bit. The capnogram was acquired using Microstream (sidestream) technology, and the signal 

was sampled at 40 Hz with 0.004 mmHg resolution. Finally, mechanical chest compresions 

were given using the LUCAS-2 chest compression device (Physio-Control Inc / Jolife AB, 

Lund, Sweden), that delivers piston-driven compressions at a fixed rate of 100 min−1 and 

predefined depth between 1.5 – 2 inches. All signals from the MRx device were converted to 

an open format using custom Matlab (MathWorks Inc., Natick, MA) tools.

Signal intervals with confirmed LUCAS-2 use were extracted from the initial 567 patients. 

Chest compressions were automatically detected in the impedance signal using the algorithm 

proposed by Ayala et al [32], and LUCAS-2 use was identified when the chest compression 

rate was fixed at 100 min−1 with small variability (see Fig 1b). The inclusion criteria for the 

intervals was: minimum duration of 100 s with mechanical CPR, interpretable impedance 

and capnography signals, and no pauses in chest compressions longer than 20 s. In the 

dataset there were 8 917 min of confirmed mechanical CPR use with concurrent chest 

compressions, from which 5 884 min were used. Two were the main reasons to exclude 3 

033 min. First, the lack of a proper gold standard to annotate ventilations because 

capnography was either unavailable (2 642 min) or strongly artefacted and thus 

uninterpretable (177 min). Second, low quality impedance or disconnections of the 

impedance channel (391 min). The latter give an estimate of how often impedance was 
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unusable for ventilation detection during mechanical CPR (4.4% of the available minutes). 

So finally, 761 analysis intervals from 423 patients were included in the study, with a median 

(interquartile range, IQR) time of mechanical CPR per patient of 13 (8 – 19) minutes, and a 

median (IQR) duration of the analysis intervals of 5.4 (3.2 – 10.6) minutes. The median 

(IQR) proportion of time with concurrent compressions per patient was 98.6 (96.9 – 100)% 

in our data, so most of the time ventilations were provided concurrently with mechanical 

CPR.

The capnogram was used to annotate ground truth ventilations. First, the delay between the 

impedance and the capnogram caused by gas transport in the sampling tube (sidestream) was 

visually assessed and corrected. The delay in the capnogram line was different for each 

patient, with a median (IQR) value of 3.3 (3.1–3.5) s. Then, for each ventilation the 

insufflation (downfall) and expiration (uprise) onsets were automatically detected in the 

capnogram using the algorithm introduced by Aramendi et al [14] (see Fig 1c), and then 

manually inspected and revised. The revised annotations were considered the ground truth 

ventilations. The time interval between the onsets of inspiration and expiration marked the 

window for which ventilation detections in the impedance were considered correct (see Fig 

1d). As shown in the figure, the window for correct detections was prolonged by 1-sec after 

expiration onset to properly count those cases in which the impedance peak occurred shortly 

after expiration had started. In total, 34 864 true ventilations were annotated in the 

capnogram, with a median (IQR) of 72 (43 – 108) ventilations per patient.

III. Methods

The ventilation detection method is composed of the three stages shown in Fig 2. First, the 

raw impedance signal is filtered to obtain the ventilation waveform component. Then, 

impedance fluctuations are detected and their peak times (tpi) identified using a greedy peak 

detector. The start and end of the fluctuation are calculated and its waveform is characterized 

by a vector of features xi. The greedy detector is designed to detect all candidate 

ventilations, with the tradeoff of producing many false positive detections. So the final stage 

is a machine learning classifier based on the waveform features to discriminate true 

ventilations (green) from false positives (red).

A. Signal preprocessing

The raw impedance signal was first downsampled to fs = 50 Hz to ease the design of the 

filters and reduce the computational load. In what follows n is the sample index so time is t = 

n · Ts, where Ts = 20 ms is the sampling period. A high-pass filter with 0.05 Hz cut-off 

frequency was used to remove the DC component, and a low pass filter with a 2.5 Hz cut-off 

was used to remove high frequency residuals, including the high frequency components 

caused by chest compressions. Both filters were designed as 4-tap Butterworth filters, and 

zero-phase filtering was deployed. Finally, the most critical element was a Least Mean 

Squares (LMS) filter used to remove chest compression components.

The LMS algorithm was used in the classical configuration to cancel harmonic interferences 

[33], but adapted to mechanical chest compression components following the model 
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introduced by Isasi et al [28]. The block diagram of the filter is shown in Fig 3, which 

follows the notation used in this subsection. The assumption is that after high pass and low 

pass filtering, the impedance signal contains two additive components:

s(n) ≈ sv(n) + sc(n) (1)

where sv(n) and sc(n) are the ventilation and compression components, respectively. These 

components are uncorrelated since they represent two independent treatments, compressions 

by the mechanical device and ventilations by the rescuer. The compression component is 

modeled as a quasi-periodic signal using a truncated Fourier-series representation with 

fundamental frequency fc = 1.667 Hz (100 min−1), and time-varying amplitudes ak(n) and 

bk(n) to adapt to changes in the impedance signal:

sc(n) = ∑
k = 1

N
ak(n)cos kωcn + bk(n)sin kωcn (2)

where ωc = 2πfc/fs = 0.209 is the discrete angular frequency of the LUCAS-2 chest 

compressions, and N is the number of harmonics in the model. In matrix notation the chest 

compression component is sc(n) = x⊤(n)w(n), where:

x(n) = cos ωcn , sin ωcn …cos Nωcn , sin Nωcn ⊤, (3)

w(n) = a1(n), b1(n)…aN(n), bN(n) ⊤ (4)

are the reference signal (harmonics) and coefficient vectors, respectively. The LMS 

algorithm computes the w(n) coefficients to minimize the mean squared error E{|e(n)|2} 

between the desired signal d(n) = s(n) and the estimated chest compression component ŝc(n):

e(n) = s(n) − x⊤(n)w(n), (5)

so the error signal is then the estimated ventilation component, e(n) = sv(n). The error is 

minimized using the steepest descent algorithm, and the gradient at time n of the squared 

error is:

∇we2 = ∂e2

∂w = ∂
∂w s − x⊤w 2 = − 2ex . (6)

The filter coefficients are updated in the opposite direction, following:

w(n + 1) = w(n) + 2μe(n)x(n) (7)

where the step-size parameter μ determines the adaptation speed and tracking capabilities of 

the filter. The values for the LMS filter were set to μ = 0.15 and N = 3 after some 

preliminary tests.
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B. Greedy peak detector

A greedy peak detector was designed to detect local maxima in the impedance ventilation 

component, sv(n). For each detected local maximum i three fiducial time points were 

calculated: the start of the ventilation (tsi, insufflation onset), the peak time (tpi, end of 

insufflation), and the end of the ventilation (tei, end of expiration). As shown in Fig. 4 

(shaded intervals) an interval of approximately 5 s was defined before and after each local 

maximum to search for tsi and tei:

tpi − 5.5 < tsi < tpi − 0.45 (8)

tpi + 0.45 < tei < tpi + 5.5 (9)

These thresholds were obtained after some preliminary tests, but are sensible values 

considering how ventilations should be provided. During CPR, ventilation breaths should be 

delivered over 1 s (insufflation) [4], so a minimum of 0.45 s is a conservative threshold to 

capture even quick ventilation events. Recommended ventilation rates are 10 min−1 [4], or 

about 6 s per ventilation, so the 5.5 s threshold for insufflation/exhalation includes even very 

slow ventilations. Finally, the minimum separation between detections was fixed at ΔTm = 

1.5 s, which is sufficient for hyperventilation rates of up to 40 min−1.

Three constraints were imposed to find tsi and tei in the intervals defined in eqs (8) and (9). 

The constraints are graphically illustrated in the example in Fig. 4, and were applied in order 

to all potential timepoints in the search interval for the fiducial points. For the start of 

ventilation the constraints were:

1. tsi must correspond to the smallest impedance value in the interval (tsi, tpi).

2. The mean slope of the impedance in the interval (tsi, tsi + 0.2s), ms, and the total 

rise in impedance amplitude from tsi to tpi, As, were computed. The projection of 

that slope to the peak position had to be in the following range:

0.4 ⋅ As ≤ ms ⋅ tpi − tsi ≤ 2 ⋅ As (10)

This is a starting slope constraint relative to ventilation amplitude. Low 

projection values are usually the result of a slow baseline recovery towards zero, 

while high ones are caused by compression component residuals and signal 

distortions.

3. The rise in amplitude between tsi and the mid point to tpi (half-time rise) should 

be at least 0.4 · As, to prevent selecting tsi at some point far from the actual 

ventilation.

A similar procedure was followed for tei, but with these conditions on constraint 2:
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0.3 ⋅ As ≤ ms ⋅ tei − tpi ≤ 1.5 ⋅ As (11)

and a half-time fall of 0.2 · As for constraint 3. The values are smaller for expiration because 

ventilation waveforms in the impedance tend to be concave for insufflation and convex for 

expiration. Finally, all peaks for which tsi or tei could not be found were discarded, and for 

all the detected peaks the condition that two consecutive ventilations did not overlap was 

imposed (tei < tsi + 1).

C. Waveform Feature extraction

Fourteen features were extracted for each detected peak to characterize the ventilation 

fluctuation waveform. The first four features were the duration of insufflation and 

expiration, TIi and TEi, respectively; and the amplitude change in impedance for the 

insufflation and expiration intervals, AIi and AEi, respectively. Ten waveform moments were 

also computed, five for each ventilation phase. Let us denote by pIi and pEi the vectors with 

the samples of either the insufflation or expiration phase of ventilation i, but normalized so 

that the total sum of the samples is unity. So for the insufflation phase we have pIi of length 

LIi and for the expiration phase pEi of length LEi. Let us also denote by zi = [0, 1, 2, … , L − 

1]/L a vector of length L = LIi or L = LEi depending on the case, with equispaced values 

between 0 and 1. Then pIi or pEi can be regarded as a probability density functions in the [0, 

1] support interval, and we could compute their moments of order l as:

μIl = ∑
n = 0

LIi − 1

pIi(n) ⋅ n/LIi
l for l = 1, …, 5 (12)

μEl = ∑
n = 0

LEi − 1

pEi(n) ⋅ n/LEi
l for l = 1, …, 5 (13)

The features μI1, …, μI5 and μE1, …, μE5, form the 10 waveform features used to parametrize 

the waveform during the insufflation and expiration phases, respectively.

D. Peak classification

Potential ventilations from the greedy detector were compared to ground truth annotations, 

and labeled as true positives (yi = 1, actual ventilation) or false positives (yi = 0, no 

ventilation). When more than one peak detection fell in the interval for true positive 

detections (Fig 1d), the one with tpi closest to the expiration onset in the capnogram was 

regarded as true positive, and the rest as false positives. After peak detection and feature 

extraction data was formatted as a set of instance-label pairs xi, yi i = 1, …Np, where yi are 

the true/false ventilation labels for the detected peaks, xi ∈ ℝM contains the M features for 
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peak tpi, and Np is the number of detected peaks. The last step was to develop a Random 

Forest classifier to discriminate true from false ventilation detections.

A RF is an ensemble of nearly uncorrelated decision trees. Decision trees present some 

desirable characteristics like independence from the underlying data distribution, robustness 

to outliers, and protection from correlated and/or bad predictors. However, individual trees 

are poor classifiers, deep trees are prone to overfitting and shallow trees to underfitting. 

Aggregating the decisions of B uncorrelated decision trees boosts classifier performance 

[34]. To uncorrelate the Tb(x) (b = 1, ⋯ B) trees, these are trained with Nb bootstrap samples 

of the training data of size Nb < Np, formed by randomly sampling the data with 

replacement. In addition, the RF algorithm randomizes the feature space by randomly 

selecting a subset of Mb features at each tree split (Mb < M). The final decision of the B 
trees for the sample xi is obtained as the majority vote of the ŷi,b = Tb(xi) for b = 1, ⋯ B. We 

chose an in-bag fraction Nb/Np of 0.5, the number of trees was fixed to B = 100, and the 

number of predictors per split to the default value of Mb = M. Preliminary tests indicated 

that the choice of these RF parameters was not critical.

Data were partitioned using a 10-fold CV strategy to train and validate the classifier. At each 

iteration 9 folds were used as training data and the remaining fold as test data. The folds 

were partitioned patient wise and in a balanced way, so that each fold contained 

approximately 10% of the ground truth ventilation annotations [35]. All the calculations 

were weighted patient-wise to avoid biasing the results towards the patients with more 

ventilations in the dataset. Since the results may depend on the 10-fold CV partition used to 

train and validate the classifier, using a single 10-fold CV partition may overestimate or 

underestimate the accuracy of our method. To avoid biasing the results, the process was 

repeated 20 times with different random 10-fold CV partitions. And the accuracy metrics 

were statistically characterized using the 20 values obtained for each partition.

One of the salient characteristics of RF classifiers is a built-in feature ranking called feature 

importance. Importance was measured using the permuted out-of-bag (OOB) error. For a 

given tree, the subset of the training data left out in the bootstrap sample (out-of-bag 

samples) is used to evaluate the model’s predictions. Then the values for that feature in the 

OOB sample instances are randomly shuffled, and the decrease in prediction accuracy is 

measured. The decrease is larger for more important features. The process is repeated for all 

trees and features, resulting in a ranking of the features from the most important to the least. 

Recursive feature elimination (RFE) based on feature importance was used to reduce the 

number of features [36], [37]. Starting from a full feature model (M = 14), at each step the 

classifier was trained and the individual importance of each feature was computed. Then, the 

least important feature was removed and the process repeated until a model with a single 

feature was obtained. In this way we had 14 different models, from M = 14 to M = 1. The 

feature elimination process was carried out 200 times, once per test fold.

E. Evaluation of the detector

The performance of the ventilation detector was evaluated in terms of sensitivity (Se), 

positive predictive value (PPV) and F1-score (F1), computed as:
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Se = TP
TP+FN, PPV = TP

TP+FP, F1 = 2 Se⋅PPV
Se+PPV (14)

where TP, FP and FN are the true positive, false positive and false negative detections, 

respectively. There is a large imbalance in the number of ventilations that each patient 

contributed to the dataset, which is associated to how much time the mechanical compressor 

was used on each patient. In order make the method applicable to as many patients as 

possible, we weighted the contribution of each patient equally. This was done by calculating 

the metrics in equations (14) individually for each patient, and then averaging those values 

for the final Se, PPV and F1 for the complete set.

IV. Results

A. Classification performance

Ventilation detection was evaluated in two stages, first for the greedy detector and then after 

adding the classifier. The greedy detector outputted 55 908 detections, from which 34 615 

were actual ventilations and 21 223 were false positives. The greedy peak detector missed 

249 ventilations (0.71% of the total amount), which were regarded as false negative 

detections for the complete algorithm in the subsequent performance evaluations. The 

patient-weighted Se, PPV and F1 for the greedy detector were 99.36%, 62.04% and 76.27%, 

respectively.

The classifier corrected the false positive detections. The best compromise for simplicity and 

performance was obtained for a classifier with M = 6 features. After adding the classification 

block, the median (interdecile range, IDR) value of Se, PPV and F1 for the complete 

algorithm were 96.26 (96.15 – 96.31)%, 96.37 (96.32 – 96.43)% and 96.32 (96.25 – 

96.36)%, respectively. The effect of the number of features, M, in the performance of the 

algorithm is presented in Fig 5. The figure shows that performance was very stable for M ≥ 

6.

The selection probability for each feature was estimated as the proportion of times they were 

selected, these probabilities are shown in Fig 6. For models with more than six features all 

four amplitude-duration features were included, and the amplitude of the insufflation phase 

(AI) was the best predictor. A model that used only AI produced an F1 score of 91.85 (91.78 

– 91.94)%. No amplitude constraints were imposed on the greedy detector, so most false 

positives were caused by small impedance fluctuations, thus the importance of AI. The 

model tends to select AI over AE because of the difficulty to accurately determine the end of 

exhalation, although both predictors are very correlated (pearson correlation coefficient of ρ 
= 0.894). Waveform moments were also very correlated within the insufflation and 

exhalation phases. The smallest correlation coefficients were found between moments 1 and 

5, with values of 0.931 and 0.915 for insufflation and exhalation, respectively. Consequently, 

features μE2 and μE3 could be used interchangeably (see Fig 6), and when only one was used 

it became the second most selected feature. The selection probabilities for the moments of 

the insufflation phase were more evenly distributed.
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Finally, Fig 7 shows some typical examples of the errors made by the ventilation detection 

algorithm. Most missed detections were caused by abrupt changes in impedance, mostly 

caused by pauses in chest compressions, that produce transient effects when using the LMS 

filter, or by very shallow ventilations with short durations and possibly low insufflated 

volumes. Most false positives were caused by low frequency components in the impedance, 

such as motion artifacts caused by rescuers during treatment.

B. Analysis per patient

A relevant sub-analysis is to evaluate how the method performs for each patient, and to 

evaluate in what proportion of patients feedback on ventilations could be accurately 

provided. Fig 8 shows the distributions for the performance metrics per patient. In the 

boxplot each sample represents a patient, and for each patient the median value for the 

metric over the 20-CV partitions is represented. The proportion of patients with very low 

performance metrics (under 90%) is depicted in the right panel. As shown in the figure, 

accurate ventilation detection was possible in a large proportion of patients. The F1-score 

was above 95% for 77.1% of patients, and above 98 % for 49.4% of patients. For a few 

patients accurate ventilation detection was not possible with F1 scores under 75% (n = 8). 

For these patients the amplitude of the impedance ventilation component was small (< 0.2 

Ω), probably because the insufflated volume was low [16].

C. Feedback on ventilation rate

The most important application of a ventilation detector during OHCA treatment is to 

provide feedback on ventilation rates. For this purpose the algorithm was implemented in the 

way it would be incorporated to a monitor-defibrillator. The detector was programmed to 

analyze 1-min signal intervals, and to give feedback on that minute with no information on 

future impedance values. The ventilation rate was calculated every 15-s, that is, with a 75% 

overlap between the 1-min windows. For each window, ventilation time instants (tpi) were 

calculated using the process outlined in Fig 2. The ventilation rate for the interval was 

calculated as:

VR = 60
median Δtpi

min−1
(15)

These values were compared to those obtained from the capnogram’s ground truth 

annotations, in which ventilation instants were annotated in the exhalation onset (rise in 

CO2). The analysis included all patients, but a separate analysis was done excluding the 

patients (n = 43) with low accuracy (F1 < 90%). For those patients, the impedance had either 

long intervals of lower quality signal, and/or very low amplitude ventilation components 

which could be associated to low insufflated volumes [16]. A separate sub-analysis was done 

excluding those patients, because in those cases the actual problem is not with ventilation 

rate but with the quality of ventilations (volumes) or with the quality of the signal used to 

give feedback. The Bland-Altman plot for feedback on ventilation rate is shown in Fig 9. 

The global 90% levels of agreement (LoA) were (−0.82, 1.40) min−1 for all patients, and 

(−0.51, 1.10) min−1 when the low F1 patients were excluded. The moving average LoAs for 

different VR intervals are shown in the figure, in red when all patients were included and in 
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green after excluding low F1 patients. Rate was overestimated at rates under 6 min−1 and 

underestimated at rates above 10 min−1, although errors were small in all cases. The median 

(IDR) error and relative error in ventilation rate for all patients were 0.002 (−0.334 – 0.572) 

min−1 and 0.05 (−3.71 – 9.08)%, respectively. Excluding the low F1 patients the error and 

relative error were 0.002 (−0.204 – 0.351) min−1 and 0.06 (−2.45 – 5.11)%, respectively. So 

ventilation feedback could be provided with errors under 9% for all patients, and under 5% 

for the patients with better quality impedance, which in our dataset amounted for over 90% 

of patients.

V. DISCUSSION AND LIMITATIONS

This paper presents a new approach to impedance-based ventilation detection during 

mechanical CPR that combines adaptive signal processing and machine learning techniques. 

As shown by our results, accurate ventilation detection is possible with median (IQR) Se and 

PPV per patient of 99.2 (96.0 – 100)% and 98.3 (95.4 – 100)%, respectively (see Fig 8, left). 

Previous studies have addressed the detection of ventilations during manual CPR using the 

impedance and capnogram signals, a comparative assessment of our method to those 

methods is shown in table I. Our results are comparable to those obtained using state-of-the 

art algorithms based on the capnogram [14], and were better than those obtained for 

impedance based methods during manual CPR [13], [20], [21]. Two reasons could explain 

why results were better for mechanical than for manual CPR in impedance ventilation 

detection. First, chest compression components in the impedance are much more stable 

during mechanical CPR because the piston is at a fixed position in the patient’s chest, and 

compressions are always delivered in the same way by the machine [29]. Moreover, since 

the patient is fixed to the mechanical compressors, other movement artifacts and low quality 

signal intervals are less frequent. Second, our approach combined adaptive signal processing 

and machine learning, while the methods presented for manual CPR either relied on overly 

complex adaptive filters [20], or were based on rule-based detection of ventilations [13], 

[21]. In the future, new approaches similar to the one presented in this study could be 

demonstrated during manual CPR to exploit the potential of machine learning algorithms 

[27], and thus provide a better estimate of how accurate impedance based ventilation 

detection could be during manual CPR.

A key application of the ventilation detector is ventilation rate feedback during CPR to 

ensure compliance with the recommended rate of 10 min−1. In our data, ventilation rates 

were abnormally low, the median (IQR) ventilation rate per patient was 6.0 (4.5 – 8.0) min
−1, and rates only exceeded the recommended values in 12.5% of our patients (for a detailed 

account see supplementary materials. These low ventilation rates were associated with some 

distinct ventilation patterns (see figures in supplementary materials). In many cases the 

patients were not ventilated for intervals of up to one minute, ventilation rates were very low, 

or the ventilation pattern followed the one observed during 30:2 CPR. Interestingly, the 

ventilation rates in our data are similar to the 7 min−1 ventilation rate observed during 30:2 

CPR in a recent study [38], or to the 8 min−1 reported for the early stages of treatment 

during ALS [39]. Our data demonstrates the need for tools like the one presented in this 

study, both for feedback during treatment but also as a tool for retrospective analysis of large 
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OHCA datasets that could shed light into how patients are being ventilated in the different 

phases of a resuscitation episode.

Finally, this study has some limitations. First, the algorithm was trained and tested using a 

10-fold CV architecture and should be further validated in an independent dataset. Second, 

the algorithm was tailored to a piston driven mechanical CPR device (LUCAS-2), but there 

are other mechanical CPR technologies based on load distribution bands (the Autopulse 

system by Zoll) in which chest compression components may be different. Third, the 

algorithm can only be used during mechanical CPR and given the cost of mechanical CPR 

devices many EMS agencies still rely on manual chest compressions, although there is an 

increased trend towards the use of mechanical devices. And fourth, data was obtained from 

the Philips MRx device, so the algorithm may need to be readjusted to be used in other 

monitor-defibrillators with different impedance acquisition circuitry.

VI. CONCLUSIONS

This study demonstrates the feasibility of an accurate impedance-based ventilation detection 

during concurrent mechanical CPR. The method efficiently combines adaptive signal 

processing techniques to obtain and detect ventilation waveforms, with a machine learning 

algorithm to identify true ventilations. This ventilation detection algorithm could be used 

before advanced airway placement and capnography are available during resuscitation, but 

also to obtain additional information on ventilation such as insufflated volumes that are not 

available from the capnogram. Its use would broaden both the time feedback on ventilation 

is available, but also the available information on the quality of ventilations. Moreover, the 

method could also be used to retrospectively assess the effects of ventilations during CPR in 

OHCA outcomes, by applying the detector to large datasets of resuscitation episodes.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1: 
An example of the signals in the study dataset with: (a) the raw thoracic impedance with 

chest compressions indicated by vertical dashed lines, (b) the compression rate computed 

every 2 s, (c) the capnogram to annotate the ground truth ventilations, and (d) the ventilation 

induced changes in the impedance obtained through signal processing from the raw 

impedance in (a) and used to detect ventilations. The compression rate in (b) was used to 

confirm the use of the LUCAS-2 device, and the shaded intervals in the capnogram (c) 

correspond to the true insufflation intervals. The shaded intervals in (d) are those in which a 

detected ventilation was considered a true positive detection, and correspond to the 

insufflation intervals extended by one second.
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Fig. 2: 
Block diagram of the ventilation detection algorithm. The impedance signal s(n) is filtered to 

obtain its ventilation component sv(n). Then a greedy peak detector detects the instants of 

the potential ventilations (tpi), and a waveform feature vector xi is computed. The final 

classifier discriminates true ventilations (green) from false positive peak detections (red) 

using the waveform features.
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Fig. 3: 
Block diagram of the LMS filter used to remove the mechanical chest compression 

component from the impedance.
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Fig. 4: 
Peak detection algorithm. The shaded intervals indicate the search intervals for the start/end 

of ventilations, and the constraints on how to determine these points. In the example for 

ventilation i the first global minimum in the search interval was discarded because it did not 

meet constraint 3.
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Fig. 5: 
Performance of the detector as a function of the number of features used in the detector. For 

M ≥ 6 performance stabilizes, and the median (IDR) values are zoomed out (F1 ≥ 96.15 %) 

in the box.
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Fig. 6: 
Probability of selecting a feature ordered by the number of times features were selected.
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Fig. 7: 
Examples of incorrect ventilation detections. Each example shows the impedance in grey 

with the ventilation component superposed in blue, and the capnogram with the ground truth 

ventilations below. The ventilations output by the detector are indicated by dots and are 

shaded in green (true positive, TP) or red (false positive, FP). The missed ventilations (false 

negative, FN) are shaded in red.
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Fig. 8: 
Per patient performance metrics for all n=423 patients as boxplots (left), and for the 10% 

(n=43) of patients with lowest detection accuracy (right). The rightmost graph only shows 

the proportion of patients in the low accuracy range (< 90%).
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Fig. 9: 
Bland-Altman plot for feedback on ventilation rate (VR). Ventilation rates were computed 

using 1-min impedance signal intervals and compared to the ground truth VR obtained from 

the capnogram. Moving average levels of agreement (LoA) are shown in red for all patients, 

and in green when the patients for which the ventilation detector’s F1-score was under 90% 

were excluded (n = 43).
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TABLE I:

Comparison of the median (IQR) Se and PPV per patient of our algorithm (from Fig 8, left) during mechanical 

CPR with methods to detect ventilations during manual CPR.

Per-patient performance

Studies Se (%) PPV (%)

Impedance (manual CPR)

 Risdal et al [20] 90.6 (12.5) 97.4 (8.0)

 Alonso et al [21] 92.2 (87.4–95.8) 81.0 (67.2–90.5)

 Edelson et al [13] 78 (67–89) 87 (77–96)

Capnogram (manual CPR)

 Edelson et al [13] 82 (75–93) 91 (85–95)

 Aramendi et al [16] 99.0 (95.7–100) 97.6 (94.8–100)

Our study (mechanical CPR) 99.2 (96.0–100) 98.3 (95.4–100)
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