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Summary

Continuous response variables are often transformed to meet modeling assumptions, but the choice 

of the transformation can be challenging. Two transformation models have recently been 

proposed: semiparametric cumulative probability models (CPMs) and parametric most likely 

transformation models (MLTs). Both approaches model the cumulative distribution function and 

require specifying a link function, which implicitly assumes the responses follow a known 

distribution after some monotonic transformation. However, the two approaches estimate the 

transformation differently. With CPMs, an ordinal regression model is fit, which essentially treats 

each continuous response as a unique category and therefore nonparametrically estimates the 

transformation; CPMs are semiparametric linear transformation models. In contrast, with MLTs, 

the transformation is parameterized using flexible basis functions. Conditional expectations and 

quantiles are readily derived from both methods on the response variable’s original scale. We 

compare the two methods with extensive simulations. We find that both methods generally have 

good performance with moderate and large sample sizes. MLTs slightly outperformed CPMs in 

small sample sizes under correct models. CPMs tended to be somewhat more robust to model 

misspecification and outcome rounding. Except in the simplest situations, both methods 

outperform basic transformation approaches commonly used in practice. We apply both methods 

to an HIV biomarker study.
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1 | INTRODUCTION

We often transform continuous response variables to meet modeling assumptions, but it is 

not easy to find the optimal transformation. Box and Cox modified a method proposed by 

Tukey1,2 that provides a family of power transformations to create a monotonic function of 

the responses. The Box-Cox transformation is widely used to improve normality and 

homoscedasticity. However, the Box-Cox transformation only works for positive response 

variables. It is generally implemented in a two-stage manner (1. select transformation, 2. fit 

model to transformed response) that ignores the model uncertainty regarding the choice of 

transformation, and it is still a parametric procedure that may result in sub-optimal 

transformations.

Two transformation models have recently been proposed: semiparametric cumulative 

probability models (CPMs)3 and parametric most likely transformation models (MLTs).4 

Both approaches model the cumulative distribution function and require specifying a link 

function, which implicitly assumes the response variable follows a known distribution after 

some monotonic transformation. However, the two approaches estimate the transformation 

differently. With CPMs, an ordinal regression model is fit, which essentially treats each 

realization of the response as a unique ordered category and encodes the empirical CDF into 

the intercepts, and therefore nonparametrically estimates the transformation; CPMs belong 

to the class of semiparametric linear transformation models.5,6 In contrast, with MLTs, the 

transformation is parameterized using flexible basis functions. Conditional expectations and 

quantiles are readily derived from both methods on the outcome’s original scale. Both 

methods have been shown to be robust and flexible, and have good performance in 

estimation.3,4

The goal of this paper is to compare the CPM and MLT methods to each other to better 

understand the advantages and disadvantages of each. In Section 2, we give a brief 

introduction to linear transformation models, cumulative probability models and most likely 

transformation models. In Section 3, we describe a wide range of simulation scenarios to 

compare the methods and in Section 4 we present simulation results. In Section 5 we 

illustrate and contrast both methods using data from a study of biomarkers among persons 

living with HIV. Finally, we provide discussions and conclusions in Section 6.

2 | REVIEW OF METHODS

2.1 | Linear Transformation Models

Let Y designate a continuous response variable. The goal is to model some aspect of the 

distribution of Y as a function of a vector of covariates, X. It may be difficult to directly 

model Y , so the analyst may instead want to model a transformation of the outcome, Y* = 

h(Y), where h(·) is a monotonic transformation. A linear transformation model assumes h(Y) 

= Y* = βT X + ϵ, where ϵ ~ Fϵ is a known distribution. Let H(·) ≡ h−1(·). Then

Y = H Y * = H βTX + ϵ ,  where ϵ Fϵ . (1)
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The linear transformation model (1) can be rewritten as a cumulative probability model 

(CPM). The conditional cumulative distribution function of Y can be expressed as

F (y ∣ X) = P (Y ≤ y ∣ X)

= P H βTX + ϵ ≤ y ∣ X

= P ϵ ≤ H−1(y) − βTX ∣ X

= Fϵ ℎ(y) − βTX .

Let G = Fϵ
−1 be a link function. Then

G[F (y ∣ X)] = ℎ(y) − βTX . (2)

2.2 | Semiparametric Cumulative Probability Models

A semiparametric linear transformation model leaves the transformation, h(y), unspecified, 

estimating it nonparametrically with a step function.7 The partial likelihood approach to the 

Cox model can also be interpreted as a member of this class. We first consider the situation 

of no ties in the outcome. Without loss of generality, assume y1 < y2 < … < yn. Then for the 

observed values {yi; i = 1, 2, … , n}, the semiparametric CPM is

G F yi ∣ X = αi − βTX, (3)

where ai = h(yi).

Since α(·) is an increasing function, α1 < α2 < … < αn. The semiparametric likelihood can 

then be approximated as

L * (β, α) = ∏
i = 1

n
Fϵ αi − βTxi − Fϵ αi − 1 − βTxi , (4)

where an auxiliary parameter α0(< α1) is added in the model. L* is maximized when 

α0 = − ∞  and αn = + ∞ because Fϵ is increasing,3 so in practice α0 and αn are fixed to these 

values and maximization of L* is with respect to the other parameters.

The semiparametric cumulative probability model (3) is equivalent to the “cumulative link 

model” commonly used for the analysis of ordered categorical data,8,9 and the likelihood (4) 

is equivalent to the multinomial likelihood used for these ordinal models. In fact, 

maximizing (4) to obtain nonparametric maximum likelihood estimators (NPMLEs) for (β, 

α) can be done by treating continuous Y as if it were a discrete ordinal variable with n 
categories. The approach also works seamlessly if Y is a mixture of continuous and discrete 

data or if there are ties.3

Although in theory, semiparametric CPMs can be fit using algorithms for cumulative link 

models, in practice, most commonly used software programs employ algorithms that can 

handle only a relatively small number of discrete ordinal categories. However, this need not 
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be the case, as large portions of the score equation and Hessian matrix are zero permitting 

computational simplifications. The orm() function in the rms package in R statistical 

software allows efficient maximization of (4) for continuous Y with thousands of distinct 

levels.10,11

With the NPMLEs (β , α), one can estimate the conditional CDF, F yi ∣ X = Fϵ αi − βX . 

From the estimated conditional CDF, one can estimate conditional expectations and 

conditional quantiles. The delta method can be used to derive the standard error for the 

conditional CDF and the conditional expectation. Confidence intervals for conditional 

quantiles can be obtained using linear interpolation of the inverse of confidence intervals for 

the conditional CDF. Details are in Liu et al.3 The probability index (PI),12 defined as P(Y1 

< Y2|X1,X2) for independent and identically distributed copies (Y1,X1) and (Y2,X2), and its 

confidence interval can also be readily obtained from CPMs.6

2.3 | Most Likely Transformation Models

The motivation behind most likely transformation models is similar to that of 

semiparametric CPMs. After some transformation, h(y), the outcome is assumed to be 

linearly associated with covariates with errors following a known distribution, Fϵ, leading to 

the linear transformation model (1). This can then be re-written as the cumulative probability 

model (2). MLTs differ from semiparametric CPMs in the manner that the unknown 

transformation function, h(y), is modeled. Rather than nonparametrically estimating h(y), it 

is flexibly modeled using basis functions. Specifically, h(y) = a(y)T ϑ, where a is a vector of 

appropriate basis functions and ϑ is a vector of coefficients. The conditional cumulative 

probability model then becomes

G[F (y ∣ X)] = a(y)Tϑ − βTX, (5)

where as before, G = Fϵ
−1.

The choice of basis function is problem-specific and depends on the scale of Y . For 

continuous outcomes, the basis functions can be any polynomial or splines basis. Bernstein 

polynomials of order M can be applied on the support of y, [l, u], as

ℎ(y) = aBs, M(y)Tϑ = ∑
m = 0

M
ϑmfBe(m + 1, M − m + 1)(y)/(M + 1), (6)

where y = y − l
u − l ∈ [0, 1] and fBe(m,M) is the probability density function of a Beta distribution 

with parameters m and M. In theory, the Bernstein polynomials can approximate any 

function on an interval as long as M is big enough. Polynomial basis functions and log basis 

functions can also be used in suitable cases. The monotonicity of h can be ensured by 

constrained optimization.

A more general class of transformation models are conditional transformation models of the 

form
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G[F (y ∣ X)] = c(y, x)Tϑ, (7)

where the unknown transformation function now depends both on y and x, and c is a vector 

of basis functions conditioning on x.13 Although the MLT framework handles such 

transformations, unless noted otherwise, we will consider models of the form (5) rather than 

of the form (7).

Estimation proceeds using maximum likelihood. The likelihood of a datum C = (y, y], where 

(y, y] is a short interval around y, for a given transformation function h is14:

L(ℎ ∣ Y ∈ (y, y]) = Fϵ(ℎ(y)) − Fϵ(ℎ(y)) . (8)

For absolute continuous responses, the log-density is used as log-likelihood and the 

maximum likelihood estimator of h is called most likely transformation.4

The mlt R package is an implementation of most likely transformation models in R.15 A 

variety of increasingly complex transformation models can be built and evaluated in a 

computationally efficient way by this package. In the rest of the paper, MLT refers to the 

theoretical method rather than the package. As with semiparametric CPMs, conditional 

expectations, quantiles, and probability indices and their confidence intervals can be 

computed after fitting MLT models.

3 | SIMULATION PLAN

3.1 | Simulation Set-up

We compared semiparametric CPMs and MLTs using a wide variety of simulation scenarios. 

The basic structure for our simulations was the following:

Y * = Xβ + Zγ + ϵ,
ϵ Fϵ( . ),

Y = H Y * .

For the primary simulation setting, we set β = 1, γ = 0 with no Z included in the model, X ~ 

Binomial(p = 0.5), ϵ ~ N(0, 1), and H(y) = Inv-χ2(Φ(y), 5), where Φ is the probability 

density function of the standard normal distribution and Inv-χ2(·, 5) is the inverse of the 

CDF for a chi-square distribution with 5 degrees of freedom. H(·) was chosen in this manner 

so that there would be no obvious closed form transformation function h. All other 

simulations were some variation from this primary simulation setting.

For each setting, we varied the sample size from 50, 100, 500 to 1000 and specified the 

number of simulation replications at 10,000. CPMs and MLTs were fit with the same 

specified link function. MLTs were generally fit using Bernstein polynomials with M = 10 

unless stated otherwise.

Modifications of the primary simulation setting included the following:
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• β = 0 and 0.5.

• X ~ Binomial(p = 0.3), Uniform(−1, 1), and N(0, 1).

• ϵ ~ N(0, 1), Logistic(0, 3/π2), and Gompertz(0, 1).

• Z ~ N(0, 1) and N(X, 1); γ = 1.

• Multiple covariates Z1, … , Z6, with Z1, Z2, Z3 ~ N(0, 1), Z4 ~ N(X, 1), Z5 ~ 

N(Z1+X, 1), and Z6 ~ N(Z3−Z4, 1); γ = {1, 1, 1, 1, 1, 1}.

• H(y) = y, exp(y), and Inv-logistic(Φ(y)).

We also evaluated the two methods with data simulated from a mixed distribution, 

corresponding to a setting with a detection limit or left censoring:

H(y) = exp(y) if y > 0
0 if y ≤ 0

We also considered settings where Y was a discretized version of Y * using 5, 10, 20, and 50 

categories based on quantiles of the distribution (see details in Supplementary Materials).

Figure 1 illustrates the different transformation functions considered in these simulations. 

The Figure also includes curves illustrating how well the Bernstein polynomials 

approximate the transformation functions.

Note that the CDF in orm() is in the form G1[1 − F (y|X)] = αorm + βormX, which can be 

transformed to (2) if G(t) = −G1(1 − t), α = −αorm and β = βorm. For symmetric error 

distributions, we use the same link function in orm() as in the CPM and α = − αorm. For 

nonsymmetric error distributions, its complementary version can be used.3

3.2 | Evaluations

To evaluate the two methods, we estimated bias, mean squared error (MSE) and coverage of 

95% confidence intervals for β, as well as conditional expectations, conditional quantiles, 

and conditional cumulative distribution functions. We also computed the out-of-sample log-

likelihood based on the fitted model parameters for a separate data set of the same size 

sampled from the simulation distribution. For the purpose of comparing the out-of-sample 

log-likelihoods, the responses in MLT were categorized into short intervals (yi, yi] based on 

CPM categorization, which were the distinct observed responses of the original data. The 

likelihood was then calculated as L(H) = ∏i Fϵ H yi − Fϵ H yi .

Under correct link function specification, for ϵ ~ N(0, 1), the probit link function was used 

and when ϵ followed a logistic distribution, the logit link function was used. We used the 

cloglog link function if ϵ followed a Gompertz distribution.

Ordinary linear regression was also evaluated and compared with the two methods for 

simple transformations H(y) = y and H(y) = exp(y). All simulations and analyses were 

performed in R version 3.4.4;16 complete code is available at http://
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biostat.mc.vanderbilt.edu/ArchivedAnalyses and an abbreviated version is available at 

https://github.com/harrelfe/rscripts/blob/master/sim-continuous-ordinal.r.

4 | SIMULATION RESULTS

In general, CPMs and MLTs were quite comparable when models are correctly specified 

(i.e., correct link function and linear terms). Bias was close to 0, MSE was low, and the 

coverage probability of 0.95 confidence intervals tended to be 0.95 with increasing sample 

sizes. CPMs tended to have a slightly smaller bias for β than MLTs as the sample size 

increased. In terms of the conditional mean, CPMs generally had a smaller bias than MLTs, 

especially in large sample sizes, but MSEs were very close. Neither one had obvious 

advantages in estimating conditional quantiles. Both methods performed better estimating 

conditional medians than more extreme quantiles. CPMs generally had better performance 

in estimating conditional CDFs with a smaller bias, particularly in large sample sizes. MLTs 

tended to have slightly narrower confidence intervals. With continuous Y , the out-of-sample 

log-likelihood was larger in MLTs probably because it directly maximizes the likelihood 

whereas CPMs maximize an approximated multinomial likelihood. Details for specific 

simulation scenarios are provided below and in Supplementary Material.

4.1 | The primary setting and its modifications

Simulation results under the primary setting, with the order of Bernstein basis varying from 

M = 5 to M = 10, are shown in Figure 2 and reported in Table S.1 (in Supplementary 

Material). For β estimation, CPMs and MLTs performed similarly, resulting in minimal bias 

and 95% coverage that improved with increasing sample sizes. CPMs had slightly less bias 

and similar to lower coverage than MLT with M = 10 when estimating conditional 

expectations. For estimating conditional CDFs and medians, MLTs with M = 5 generally 

underperformed MLTs of M = 10 and CPMs. Coverage of MLT with M = 10 was slightly 

better than that of CPMs for conditional CDFs and slightly worse for conditional medians. 

At large samples, estimates of conditional medians were less biased for CPMs than MLT 

with M = 10, but more biased at small sample sizes. For most of the remaining simulations, 

CPMs were only compared with MLTs with M = 10.

For simple transformations H(y) = y and H(y) = exp(y), ordinary linear regression after the 

correct transformation (i.e., no transformation and log-transformation, respectively) had, not 

surprisingly, the best performance in estimating β with much smaller bias, particularly at 

small sample sizes. The other two methods had similar respectable performance with 

coverage near 95% at all sample sizes and MSE 10% to 30% larger than the correctly 

specified linear regression, with MSE getting closer with larger sample sizes. The results of 

β estimation for transformation H(y) = y are in Table 1. With moderate and large sample 

sizes, the results of estimated conditional expectation were very similar. More detailed 

results are shown in Supplementary Material Figure S.1, Figure S.2, Figure S.3, Table S.2, 

Table S.3, and Table S.4.

When including a covariate Z, the results are shown in Figure 3. If Z was independent of X, 

MLTs had a slightly smaller bias in β and the differences between the two methods 

decreased as the sample size got larger. MSEs and confidence interval coverage rates were 
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similar. However, if Z was dependent on X, the CPM had slightly better performance in 

estimating β than the MLT. In both scenarios, the MLT had a larger out-of-sample log-

likelihood. When including multiple covariates, some of them being independent of X while 

others being dependent on X, CPMs generally outperformed MLTs although only by a small 

amount. (See detailed results in Table S.5, Table S.6, Table S.7, and Figure S.4 in 

Supplementary Material.)

CPMs performed slightly better than MLTs when using the correct link function for 

ϵ Logistic 0, 3
π2  (See Table S.7 and Figure S.5 in Supplementary Material). Results were 

similar using correct link function for ϵ ~ Gompertz (See Table S.9 and Figure S.6 in 

Supplementary Material). Results were similar when using different distributions for X (see 

Supplementary Material Table S.10, Table S.11, Table S.12, Figure S.7, Figure S.8, and 

Figure S.9). When changing the value of β, the results were similar (see Supplementary 

Material Table S.13, Table S.14, Figure S.10 and Figure S.11).

4.2 | Link function misspecification

Under minor or moderate link function misspecification, the bias of the estimated β was 

slightly smaller in CPMs. Results were similar in other evaluation criteria (See Table S.15 

and Figure S.12 in Supplementary Material). With severe link function misspecification, 

MLTs tended to have slightly better performance in estimating β (See Table S.16, Table 

S.17, Figure S.13, and Figure S.14 in Supplementary Material). MLTs always had larger out-

of-sample log-likelihood under model misspecification.

4.3 | Mixture of discrete and continuous responses

For the mixture of discrete and continuous responses corresponding to the setting where 

values below zero were set to zero, we compared CPMs and two MLT models, one treating 

the responses as ordinary continuous responses and the second properly treating the zero 

values as left censored responses. For β estimation, the results are shown in Figure 4. For 

small sample sizes, the uncensored MLT had the smallest bias while the censored MLT and 

CPM had better confidence interval coverage rates. However, the uncensored MLT 

performed the worst when the sample size became large. CPM had the smallest bias in large 

sample sizes and it also had the largest out-of-sample log-likelihood in all sample sizes. See 

Table S.18 in Supplementary Material for more detailed results.

4.4 | Discretization of continuous response

If continuous responses are discretized into categories, the MLT can handle them as ordered 

factors (i.e., resulting in identical estimation to CPMs) or as continuous responses. 

Simulation results are in Figure 5. CPMs, in general, performed better than MLTs (Bernstein 

polynomials with β = 5) treating the discrete data as continuous. Such advantages were more 

obvious as the sample size increased. MLTs outperformed CPMs for estimated β in sample 

sizes when the number of categories was small; while CPMs always had better confidence 

interval coverage rates for β. CPMs also had larger out-of-sample log-likelihood for all 

cases.
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4.5 | Computation time

The average computing time for the primary setting based on 100 replications is shown in 

Table 2. In general, both methods are quite fast for moderate sample sizes. On average, 

CPMs ran much faster in small sample sizes while MLTs were faster in large sample sizes. 

MLTs with M = 10 took longer to run than MLTs with M = 5. This simulation and all other 

simulations were performed on a 64 bit Linux server equipped with 2 Intel Xeon X5647 

processors running at 2.93GHz, 96Gb of memory.

5 | APPLICATION EXAMPLES

To further compare the two models, we applied them to a biomarker study among people 

living with HIV (PLWH). The risks of diabetes and cardiovascular disease are higher for 

PLWH than the general population. There is interest in assessing the association between 

body mass index (BMI) and biomarkers of inflammation and metabolism among PLWH. We 

used data from 216 HIV-positive adults on antiretroviral therapy (ART) with no history of 

diabetes or myocardial infarction and with a viral load less than or equal to 400 copies/mL 

from the Vanderbilt Lipoatrophy and Neuropathy Cohort (LiNC; n=147)17 and the Adiposity 

and Immune Activation Cohort (AIAC; n=69).18 We estimated the association between BMI 

and five inflammation biomarkers: Interleuken 6 (IL-6), high sensitivity C-reactive protein 

(hsCRP), Interleuken 1 β (IL-1-β), soluble CD14 (sCD14) and leptin. The study over-

sampled overweight patients; the median BMI was 29.3 kg/m2; the range was 17.8 to 57.4. 

The analysis adjusted for age, sex, race, study location, CD4 cell count, and smoking status. 

Probit link functions were used for all biomarkers.

Figure 6 shows the distribution of IL-6, which is right skewed and has a lower detection 

limit; those below the detection limit (3%) were recorded as having a value of 0. The 

estimated transformation functions are shown in Figure 6 and are similar for the CPM and 

MLT analyses. Because it is parametrically estimated by basis functions, the transformation 

function is a smooth curve for MLT. The transformation function for CPM is a step function. 

The estimated conditional mean and median as a function of BMI are also very similar for 

the two models. The estimated PI for IL-6 for a 10 kg/m2 difference in BMI is 0.64 (95% CI 

0.58–0.69) for both CPM and MLT analyses, further demonstrating the similarity between 

models. This suggests that for a 10 kg/m2 difference in BMI, the subject with the higher 

BMI will have a 0.64 probability of having a higher IL-6.

As shown in Figure 7, the distribution of hsCRP is extremely right-skewed. The estimated 

transformation is similar between the CPM and MLT analyses, but it is not as close as it was 

in the analyses with IL-6 as the outcome. Hence, the conditional expectation and the 

conditional median as a function of BMI are comparable, but slightly different, under the 

two transformation models. The probability indices for a 10 kg/m2 increase in BMI are 0.59 

(95% CI 0.54–0.65) and 0.60 (95% CI 0.55–0.65) for CPM and MLT, respectively. 

Interestingly, if one initially log-transforms hsCRP, fits MLT, and then transforms back to 

the original scale, then the MLT estimates are much more similar to those of the CPM; 

Figure 8 shows the conditional expectation. Notice that CPM is invariant to any pre-

transformation transformation; i.e., estimates of β, expectations, quantiles, and probability 
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indices are identical whether or not one applies an initial transformation. This is an 

advantage of CPM over MLT.

The distribution of IL-1-β is shown in Figure 9. It is right skewed and a large portion (39%) 

are below the assay detection limit and assigned the value 0. We applied CPM and MLT with 

left censoring to the data. The estimated transformation functions of the two models are 

somewhat similar. There is a flat line in the transformation function for CPM, which 

corresponds to the gap around 1 pg/ml in the histogram; CPM is flexible enough to capture 

this. The estimated conditional expectations are similar between the two models, with MLT 

generating a narrower confidence interval. The results for the conditional median are also 

similar for the two models. The PIs for 10 kg/m2 difference in BMI is 0.50 (95% CI 0.44–

0.56 for CPM and 0.44–0.55 for MLT) for both CPM and MLT, suggesting there is little 

association between BMI and IL-1-β.

We also fit CPM and MLT models to assess the association between BMI and the 

biomarkers leptin and sCD14. Leptin was positively associated with BMI and sCD14 was 

negatively associated. In both cases, results from the CPM and MLT models were almost 

identical (similar to the IL-6 results); details are in Figure S.16 and Figure S.17 in 

Supplementary Material.

6 | DISCUSSION

In this paper, we have reviewed two novel transformation models, CPMs and MLTs, and we 

have compared them under a variety of simulation settings. The paper also serves as a 

validation of the two software implementations in orm() and mlt(). Both methods directly 

model the conditional CDF from which other characteristics of the distribution can be 

derived easily. Both models are linear transformation models, in that they assume that after 

some transformation, the association between response and predictors can be characterized 

linearly with errors following a known distribution. The main difference between the two 

methods lies in the estimation of the transformation. CPMs are semiparametric 

transformation models; each distinct observed response is treated as a category and an 

ordinal regression model is fit which essentially models the transformation (or equivalently 

the intercept when written as a cumulative probability model) with a step function. With 

MLTs, the transformation is parametrically modeled using flexible basis functions. MLT 

also allows for easy set-up of more complex models featuring covariate-dependent effects 

using the low-dimensional parameterization of ϑ.13,19

We ran extensive simulations to compare the two methods under different settings. The two 

methods had similar results in most cases and both methods handled complex 

transformations quite well. We had expected to see more gains in efficiency using MLT and 

more benefits in terms of robustness using CPMs; if this was the case, only minor 

differences were seen. MLTs were slightly more efficient. With larger sample sizes, the bias 

for MLTs occasionally slightly increased; this is presumably because MLTs are slightly 

misspecified with small orders (e.g. M = 10) and we kept the order constant irrespective of 

the sample size in our simulations. We ran another simulation using M = 15 with sample size 

of 1000 under the primary setting. The bias of conditional medians are −0.018 for X = 0 and 
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−0.017 for X = 1, which are much smaller than the bias using M = 10. As illustrated with the 

biomarker data, CPMs are invariant to any monotonic transformation of the outcome, which 

can be considered an advantage. The CPM and MLT approaches handle censoring 

differently, with CPMs assigning values below a detection limit the lowest rank value, 

whereas MLTs assume that they follow a distribution informed by data above the detection 

limit. Resulting conditional expectations, therefore, are slightly different with MLTs treating 

censored values as something less than the detection limit whereas CPMs compute the 

expectation as the value after transforming the data back to the original scale (i.e., 

expectations will use the numeric value assigned to values below the detection limit). For 

computation time, MLT is significantly faster for large sample sizes with large numbers of 

distinct response values.

It should be emphasized that CPMs are semiparametric linear transformation models 

(SLTMs). SLTMs have been advocated for use with time-to-event outcomes and its 

parametric counterpart mlt() was employed to estimate Cox models with time-varying 

effects in Hothorn.20 Some attempts have been made to use these models with continuous 

data,6,7 but computation has been a limiting factor. By recognizing that ordinal “cumulative 

link models” are a special case of SLTMs and that algorithms applying ordinal models can 

be sped up using a few simple tricks implemented in the function orm of the R package rms, 

SLTMs can now be efficiently estimated as CPMs. It should be noted that most 

measurements in biomedical research are discrete to within the resolution of the 

measurement method. Results from semiparametric models treating the responses as discrete 

can in a sense be considered more accurate than continuous methods that approximate 

discrete responses using a smooth probability density function.

Although not the focus of this manuscript, diagnostics and goodness-of-fit can be assessed 

for both methods using probability-scale residuals and/or the probability integral 

transformation.21,22,23 Since CPMs and MLTs both model the CDF, under proper 

specification with continuous responses, probability-scale residuals will be approximately 

uniformly distributed. Probability-scale residuals can also be used in residual-by-predictor 

plots and partial regression plots to investigate whether covariates are correctly included in 

the CPM or MLT models. Link functions can be selected based on an approach by Genter 

and Farewell.24 Details and examples are in Liu et al.3

Future studies might consider even more flexible versions of transformation models. For 

example, it may be worthwhile to develop CPMs that permit different relationships and 

different distributions for different covariate levels. Extensions of both approaches to handle 

correlated or longitudinal data, using a similar approach to Manuguerra and Heller,25 would 

also be beneficial.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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FIGURE 1. 
Transformation functions used in simulation and corresponding Bernstein polynomials 

approximation with order M
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FIGURE 2. 
Simulation results under the primary setting
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FIGURE 3. 
Simulation results when including covariate Z, which is dependent and independent of X
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FIGURE 4. 
Simulation results for mixture of discrete and continuous responses comparing CPM and 

MLT treating response as ordinary continuous responses and censoring responses.
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FIGURE 5. 
Simulation results for discretized continuous responses into 5, 10, 20 and 50 categories.
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FIGURE 6. 
Results for IL-6. A: The distribution of IL-6. B: The estimated transformation functions. C: 

The estimated conditional means and their confidence intervals. Other covariates are at their 

most frequent level or median level. D: The estimated conditional medians and their 

confidence intervals. Other covariates are at their most frequent level or median level.
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FIGURE 7. 
Results for hsCRP. A: The distribution of hsCRP. B: The estimated transformation functions. 

C: The estimated conditional means and their confidence intervals. Other covariates are at 

their most frequent level or median level. D: The estimated conditional medians and their 

confidence intervals. Other covariates are at their most frequent level or median level.
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FIGURE 8. 
The comparison of the estimated conditional mean on the original scale and the transformed 

log scale
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FIGURE 9. 
Results for IL-1-β. A: The distribution of IL-1-β. B: The estimated transformation functions. 

C: The estimated conditional means and their confidence intervals. Other covariates are at 

their most frequent level or median level. D: The estimated conditional medians and their 

confidence intervals. Other covariates are at their most frequent level or median level.
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TABLE 1

Simulation results for β estimation of transformation H(y) = y

Sample Size Method Bias MSE Coverage (%)

n=50

CPM 0.0465 0.1077 0.9400

MLT 0.0457 0.1068 0.9412

Linear Regression 0.0003 0.0824 0.9399

n=100

CPM 0.0192 0.0491 0.9448

MLT 0.0183 0.0487 0.9456

Linear Regression −0.0039 0.0403 0.9463

n=500

CPM 0.0045 0.0090 0.9532

MLT 0.0043 0.0090 0.9537

Linear Regression 0.0002 0.0080 0.9526

n=1000

CPM 0.0024 0.0046 0.9492

MLT 0.0022 0.0046 0.9498

Linear Regression 0.0001 0.0040 0.9518
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TABLE 2

Average computation time (in seconds) for CPM, MLT(M = 5), and MLT(M = 10) for the primary simulation 

setting using different sample sizes and based on 100 replications

Sample Size CPM MLT(M = 5) MLT(M = 10)

50 0.0349 0.1326 0.1729

100 0.0261 0.1360 0.1844

500 0.2909 0.2318 0.3121

1000 0.8703 0.3995 0.4416

10000 63.7773 2.8190 4.0533
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