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DeepCycle reconstructs a cyclic cell cycle trajectory
from unsegmented cell images using convolutional
neural networks
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Abstract

The advent of single-cell methods is paving the way for an in-
depth understanding of the cell cycle with unprecedented detail.
Due to its ramifications in nearly all biological processes, the
evaluation of cell cycle progression is critical for an exhaustive
cellular characterization. Here, we present DeepCycle, a deep
learning method for estimating a cell cycle trajectory from
unsegmented single-cell microscopy images, relying exclusively
on the brightfield and nuclei-specific fluorescent signals. Deep-
Cycle was evaluated on 2.6 million single-cell microscopy images
of MDCKII cells with the fluorescent FUCCI2 system. DeepCycle
provided a latent representation of cell images revealing a
continuous and closed trajectory of the cell cycle. Further, we
validated the DeepCycle trajectories by showing its nearly
perfect correlation with real time measured from live-cell imag-
ing of cells undergoing an entire cell cycle. This is the first model
able to resolve the closed cell cycle trajectory, including cell divi-
sion, solely based on unsegmented microscopy data from adher-
ent cell cultures.
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Introduction

Single-cell technologies, including microscopy, have emerged as

methods of choice to reveal cellular biology at increasing temporal

and spatial resolutions. A key challenge of our time is to interpret a

large amount of single-cell data and put it into the context of current

biological knowledge. Brightfield and fluorescence microscopy have

been exploited for decades to gather spatial multiplexed information

about cells. Using genetically encoded systems for fluorescent

reporter proteins, such as those used in the FUCCI2 system for char-

acterization of the cell cycle, has transformed the field of cell biol-

ogy by providing a real-time single-cell microscopy-compatible

readout (Sakaue-Sawano et al, 2008). However, a key limitation of

such approaches is that they require the cells to be transformed with

a targeted fluorescent system, which only reveals the abundance or

activity of a few known proteins.

In parallel, there is a growing interest in filling our gaps of

knowledge about the cell cycle, the phenomenon integrating oscil-

lating biological processes from the genesis of a cell until its divi-

sion. This interest stems from recently discovered links of cell

cycle with other cell biology phenomena such as metabolism (Cai

& Tu, 2012) as well as its importance in disease such as cancer

(Malumbres & Barbacid, 2009; Szczerba et al, 2019), but also

from the recognition of cell cycle being a critical confounding

factor in single-cell analyses (McDavid et al, 2016). With the

increased use of spatially resolved single-cell analyses, particu-

larly microscopy (Bove et al, 2017), this has motivated recent

work on inferring the progression of a cell along its cell cycle

solely from microscopy images, without explicitly labeling the cell

cycle markers. Gut et al (2015) proposed a method for approxi-

mating cell cycle phases from fixed adherent cultures based on

features obtained from cell segmentation. This approach,

however, puts strong requirements on the cells (fixation, high-

resolution microscopy, use of several fluorescent channels) that

make them hard to combine with other types of single-cell analy-

ses, in particular to investigate dynamics of the cell cycle via, e.g.,

live or time-lapse microscopy. Eulenberg et al (2017) demon-

strated the power of deep learning to automatically extract

features from microscopy images by reconstructing a cell cycle

trajectory from flow-through microscopy images of individual

cells. While flow-through microscopy is a widespread and
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accepted technology, it cannot investigate the spatial organization

of cells and cell–cell interactions, phenomena known to be

involved in the cell cycle (Gut et al, 2015).

In light of these limitations, we have developed DeepCycle, an

open source deep neural network able to reconstruct a continuous

closed cell cycle trajectory solely based on unsegmented micro-

scopy images of adherent cells that only contain the brightfield and

Hoechst channels. To train DeepCycle, we used single MDCKII cell

fluorescent readouts of mAG-Geminin (1–110) and mKO2-Cdt1

(30–120), fluorescent proteins encoded in the FUCCI2 system

(Sakaue-Sawano et al, 2008; Streichan et al, 2014). We developed

a novel embedding strategy where cells are grouped into several

virtual classes according to their relative intensities of mAG-

Geminin and mKO2-Cdt1 markers used in FUCCI2. This provides

discrete labels which were used as classification objectives during

the network training. Ultimately, DeepCycle provides for each cell

a low-dimensional vector which is used to visualize the relation-

ships between the cells using dimensionality reduction methods.

With this approach, we demonstrated the feasibility of reconstruct-

ing a cell cycle trajectory of adherent cells from unsegmented

images. Finally, using live-cell imaging, we validated the Deep-

Cycle representation by showing a nearly perfect correlation

between DeepCycle pseudotime and the relative progression of real

time through the cell cycle (CC time) measured from cells undergo-

ing a whole cell cycle. We expect DeepCycle to enable the combi-

nation of label-free cell cycle investigation with pre-existing

microscopy-related technologies involving conventional fluores-

cent dyes. We also anticipate DeepCycle to be used together with

other cellular assays such as single-cell metabolomics where it can

help identify and compensate for the confounding influence of cell

cycle on the molecular readouts.

Results and Discussion

In order to train the DeepCycle model, we imaged unsynchronized

MDCKII cells with the FUCCI2 plasmid for over 33 h (200 acquisi-

tions separated by 10 min) (Fig 1A; Streichan et al, 2014). This

generated about 2.6 million cell images in four channels (bright-

field, Hoechst, mAG, mKO2) that were split into two groups. First,

the brightfield and Hoechst channels were used as input for the

DeepCycle model. Second, the mAG and mKO2 channels were used

for the FUCCI2 mAG-Geminin and mKO2-Cdt1 markers, respec-

tively, which provide a continuous proxy of the cells’ progression

through their cell cycle and were used to create the ground truth

for the model training (Sakaue-Sawano et al, 2008). The Deep-

Cycle model is a custom design of a deep convolutional neural

network classifier (Fig 1B; for a more detailed description of the

DeepCycle model, see Appendix Fig S1). A brightfield and Hoechst

two-channel image of an unsegmented single cell is taken as input

to the network and passed through five convolutional blocks

where it is progressively downscaled. The convolutional part is

followed by global average pooling and two fully connected layers

with 512 and 4 neurons, respectively. For each image, softmax

activation is applied after the last fully connected layer in order to

output its probability to belong to the four virtual classes. The

virtual classes are defined as pseudo-quadrants of the two-

dimensional space of the mAG-Geminin and mKO2-Cdt1 fluores-

cence intensities which have been balanced for cell count (Fig 1C).

Defining the virtual classes and using them in the objective func-

tion for our deep neural network is the key step that enabled the

reconstruction of the cell cycle trajectory. The idea behind training

with virtual classes is to tackle the lack of labeled cell cycle phases

conventionally used for supervised training. Indeed, other works

on cell cycle trajectory reconstruction rely on labeled cell phases

(Eulenberg et al, 2017) or infer phase labels from data (Gut et al,

2015). Instead, we assign cells to virtual classes based on the

FUCCI2 marker fluorescence which reflects the continuous cell

cycle progression and, compared to cell cycle phases, does not rely

on manual labeling. The accuracies for predicting the virtual

classes are reported in Appendix Fig S2. Pilot experiments aiming

to predict manually labeled cell cycle phases instead of unsuper-

vised virtual classes are discussed in the DeepCycle framework

design section of the Methods. The relevance of using a 2-channel

input image as well as the reliance on unsegmented images is

also discussed.

Next, we evaluated how the learned four-dimensional represen-

tation of each cell is related to cell cycle phases. Applying the

Uniform Manifold Approximation and Projection (UMAP) algo-

rithm to feature vectors of individual cells, we mapped 2.6 million

cell images into a two-dimensional space (Fig 1D). UMAP is an

unsupervised visualization approach representing the cells with

similar DeepCycle features closer to each other. We show that

UMAP represents all cells in a closed and almost cyclic structure.

▸Figure 1. DeepCycle reconstructs a cell cycle closed trajectory from single-cell microscopy images.

A A tiled time-lapse microscopy imaging of MDCKII cells with the FUCCI2 system was performed over the area of approximately 5 × 5 mm for 33 h followed by
automated cell tracking, generating 2.6 million individual cell images. For each track, the brightfield and Hoechst channels of unsegmented cell images centered at
the nucleus were used as input for the DeepCycle deep learning network. Four virtual classes were defined by relative intensities of the FUCCI2 channels (mKO2-Cdt1
and mAG-Geminin) and used as ground truth for training the DeepCycle network. For contrast enhancement in this figure, the fluorescent intensities of each
miniature single-cell image were clipped at their 70 percentile.

B The architecture of the DeepCycle convolutional neural network. A 2-channel cell image is transformed into 3-channel and fed into ResNet-34 pre-trained on
ImageNet. Then, a 256 feature map is generated by a conv4 block global average pooling followed by a fully connected layer and a softmax layer generating the
probabilities of a cell to belong to each of the four virtual classes illustrated in (C). The values obtained before the softmax layer are used as features for a low-
dimensional representation of the cells as visualized in (D).

C Virtual classes of cells derived from the FUCCI2 intensities (mKO2 and mAG) which serve as ground truth for training the neural network (classification accuracies are
reported in Appendix Fig S2). The virtual classes were designed to have similar numbers of cells and represent cells with different combinations of mAG and mKO2
intensities.

D The DeepCycle low-dimensional representation of the cells. Coloring cells by their corresponding FUCCI2 expression profile (green: mAG+/mKO2�; red: mAG�/mKO2+;
yellow: mAG+/mKO2+) reveals a continuous and cyclic progression through the cell cycle.
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In order to demonstrate that the learned representation indeed

organizes cells along their cell cycle progression, we colored the

cells with their respective FUCCI2 expression profile. Cells with

the highest intensity for mKO2-Cdt1 (red), characteristic of the

G0/G1 phases, group together in the upper right part. Cells with the

double expression of mKO2-Cdt1 and mAG-Geminin (yellow)

defining the early S phase are located at the bottom of the UMAP

representation. Finally, cells with the highest mAG-Geminin

intensity, characteristic of the late S/G2/M phases, group in the

left part.

Earlier, similar efforts using flow-through microscopy have

demonstrated the reconstruction of a continuous cell cycle trajectory

(Eulenberg et al, 2017). However, cell cycle trajectories in both

Eulenberg et al and Gut et al were linear and interrupted at the M

phase (cell division point), whereas our method improves over these

findings by capturing a continuous trajectory even through the

Figure 1.
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division. Reconstructing a closed trajectory demonstrates continuity

between the mother cell and its daughter cells which is captured by

the microscopy. Thus, our results illustrate the potential of advanced

image representation methods, in particular deep learning, to learn

continuous trajectories from large populations of unsynchronized

adherent cells exhibiting the full spectrum of cell cycle phases.

Figure 2. DeepCycle recovers the relative real-time progression along the cell cycle.

A The DeepCycle trajectory (blue) goes through the reconstructed latent representations of cells.
B Single-cell intensities of the FUCCI2 fluorescence markers along the DeepCycle trajectory. Scaled mean fluorescence intensities from mAG-Geminin (green) and

mKO2-Cdt1 (red) are plotted; error bars show standard deviations (average n = 89,481; total n = 2,684,453).
C In order to validate the DeepCycle pseudotime, we manually selected 50 cells that have been tracked over an entire cell cycle, as defined by the time spent between

two successive cytokineses (CC time). As an illustration, representative cells are displayed with the overlay of their FUCCI2 fluorescence intensities (green: mAG-
Geminin; red: mKO2-Cdt1). The images are arranged along their CC time, where the first image is taken just after the first cytokinesis, and the last image is taken
right before the second one. In each miniature cell image, the fluorescence intensities have been clipped at the top 70th percentile for visual clarity.

D The DeepCycle pseudotime highly correlates with the CC time for the 50 cells tracked through their cell cycle (bold and thin black lines represent the average and the
standard deviation, respectively). These cells were not part of the training set for DeepCycle. The high values of the Spearman and Kendall tau correlation coefficients
(0.97 and 0.89, respectively, two-sided P-values < 0.001, ***, n = 50) validate the ability of DeepCycle to reconstruct the relative progression of cells along their cell
cycle solely from microscopy images.
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To further investigate how FUCCI2 fluorescence intensities

change along the closed trajectory, we computed a DeepCycle trajec-

tory as a one-dimensional projection of the DeepCycle feature

vectors from the 2.6 million cell images (Fig 2A). We then defined

the DeepCycle pseudotime as the progression, from 0 to 100%, of

its trajectory from beginning to end. Figure 2B shows the average

fluorescence intensities of the mKO2-Cdt1 and mAG-Geminin mark-

ers from all single-cell images along the DeepCycle pseudotime

which coincide with fluorescence trends of the FUCCI2 system

(Sakaue-Sawano et al, 2008) (Appendix Fig S3A for our FUCCI2

measurements). This provides quantified evidence of the capacity of

DeepCycle to organize the cells along their cell cycle progression

solely based on single-cell microscopy images in the Brightfield and

Hoechst channels.

The average FUCCI2 time trends obtained from a cell population

aligned around their cytokinesis event are highly variable

(Appendix Fig S3A). This is partly explained by the well-known

heterogeneity of cellular division rates (Sandler et al, 2015) but also

due to variations in their commitment to continuously divide

(Spencer et al, 2013; Sandler et al, 2015; van Velthoven & Rando,

2019). Indeed, we have observed that the FUCCI2 intensities of a

population of 1,024 dividing cells become more heterogeneous after

cell division (Appendix Fig S3B). This could be explained by the de-

commitment of some cells to re-enter the cell cycle, as suggested by

the bimodality of both mKO2-Cdt1 and mAG-Geminin intensities

where the cells committed to divide are characterized by higher cell

cycle marker expression (Appendix Fig S3C). In addition, we have

been able to estimate that the division rate of MDCKII cells ranged

from 20 to 32 h in our experiment (min–max, over 50 cells). We

believe that this also contributes to the heterogeneous FUCCI2 inten-

sities observed across the whole population when projected on real-

time progression. To compensate for variable division rates and the

presence of quiescent cells, we manually selected 50 cells which

had performed at least two cytokineses (Fig 2C). We then displayed

the progression of the DeepCycle pseudotime along the relative

cell cycle time, the CC time (Fig 2D). We obtained almost perfect

correlations with CC time (Spearman r = 0.97, Kendall tau = 0.89;

both P-values < 0.001), thus validating the reconstructed trajec-

tory of DeepCycle and its ability to capture cell cycle-related

features from unsegmented microscopy images in an unsupervised

manner.

Reconstructing the relative cell cycle progression opens novel

avenues to investigate the cell cycle phenomenon. Our study was

enabled by time-lapse imaging for in situ analysis of cells tracked

over their cell cycle, contrary to previous reports (Gut et al, 2015;

Eulenberg et al, 2017), which used either flow-through micro-

scopy or destructive fixation protocols. The particular challenge

that we addressed in this work is that live-cell microscopy

provides worse spatial resolution and image quality compared to

imaging of fixed cells as in Gut et al (2015) who used 40x or

confocal microscopy. This puts additional requirements on the

computational methods. We demonstrated that using a combina-

tion of state-of-the-art deep learning methods for feature extrac-

tion and UMAP for manifold learning enabled the reconstruction

of a cell cycle trajectory even from 10x microscopy. We also

demonstrated the relevance of using the FUCCI2 system to recover

a cyclic trajectory that represents continuity even through the

cytokinesis moment. Importantly, by using time-lapse microscopy

and automated cell tracking, we have been able for the first time

to validate the progression of the recovered trajectory by compar-

ing it to the CC time.

We have developed DeepCycle, a deep learning-based method

able to learn a continuous closed cell cycle trajectory aligned with

the CC time, from 2.6 million single-cell microscopy images. This

achievement illustrates the ability of DeepCycle to extract relevant

biological knowledge from cell images and to intuitively represent

them in the context of the cell cycle. The cyclic nature of the learned

trajectory can provide new insights into the continuity and

preserved similarity between the mother and daughter cells. More

technically, DeepCycle enables the ability to work with live-cell

microscopy unsegmented images as well as reducing requirements

on the input images as only the brightfield and Hoechst channels

are required for prediction. This frees up fluorescent channels for

additional measurements and opens novel ways of identifying cell

cycle progression in situ in a high repertoire of microscopy experi-

ments. We hope such advances will help to understand not only the

cell cycle but also its influence on cell biology in general. We also

expect single-cell analysis to benefit from DeepCycle as the cell cycle

is a known confounder. DeepCycle would not only help predict the

cell cycle progression of each cell but would also alleviate the need

for additional cell manipulation such as population synchronization.

Ultimately, we expect DeepCycle to become a valuable tool in

microscopy and spatial single-cell analyses.

Materials and Methods

MDCKII cell culture

A fresh culture of MDCKII cells was grown for 48 h in the growth

medium DMEM + 10% FBS at 37°C, 5% CO2 in a 100 × 21 mm

Petri dish (Thermo Fisher Scientific) until a confluence of 90%. The

growth medium was replaced with 37°C phosphate-buffered saline

(PBS) 1×. The cells were then treated with 10 ml trypsin-EDTA 10%

(Sigma Aldrich) for 5 min at 37°C, 5% CO2. The cells were resus-

pended in a fresh 37°C growth medium and split at a 1:10 (v:v) ratio

in a new Petri dish and left to grow at 37°C 5% CO2 until a conflu-

ence of 30%. The cells were washed with 37°C PBS 1× three times

and incubated with Hoechst 33342 (1 lg/ml in PBS 1×) for 45 min

at 37°C, 5% CO2. The cells were washed again three times with

37°C PBS 1× and finally put back in a fresh 37°C growth medium.

The cells were then left at 37°C, 5% CO2 for 1 h prior to time-lapse

imaging.

Time-lapse microscopy

Cells were observed with the Nikon Ti-E inverted microscope

(Nikon Instruments) using the CFI Plan APO 10× Lambda objective

(NA 0.45) (Nikon Instruments) and the sCMOS PCO edge 4.2 CL

camera (pixel size = 0.66 lm) in brightfield and fluorescence

(Hoechst: 395 nm, mAG: 470 nm, and mKO2: 555 nm). The micro-

scope was controlled using the Nikon NIS-Elements software. A

custom-built incubation chamber mounted on the microscope was

set to 37°C 60% humidity and 5% CO2 for at least 1 h before

acquisition. The Petri dish containing MDCKII cells in their growth

medium at 37°C was mounted on the microscope stage. We
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designed a custom time-lapse acquisition pipeline in the Nikon

NIS-Elements software using the JOBS function. For 33 h, every

10 min, the microscope acquires a tiled acquisition of 64 fields of

view, organized in a grid pattern (8 × 8 fields) with 10% surface

overlap between them. The whole imaged area corresponds

approximately to 8,000 × 8,000px or 5 × 5 mm. For each tile posi-

tion, a software-based autofocus is performed and images are

acquired in the brightfield (exposure time, et = 7 ms), Hoechst

(et = 7 ms), GFP (et = 40 ms), and Cy3 (et = 40 ms) channels.

Stitching of tiled frames was performed using the Fiji stitching

plugin (Preibisch et al, 2009).

Cell tracking and cell filtering

We used the TrackMate Fiji plugin (Tinevez et al, 2017) for cell

tracking using their Hoechst fluorescence signal. We obtained

approximately 52,500 tracks and 2.6 million individual cell detec-

tions across all time-lapse frames. We manually filtered the tracks

by inspecting the microscopy files and obtained about 1,000 and 50

tracks with one and two cytokinesis events, respectively. The filter-

ing was performed as follows: We selected tracks for which a divi-

sion event was recorded, which we identified by a new pair of

coordinates appearing over time. As the appearance of a new pair of

coordinates in a track can be erroneous (for example, another cell

coming too close to the tracked cell can be identified as a daughter

cell once it distances itself afterward), manual curation of these

tracks was required. For each track, an image from the Hoechst

channel enclosing the whole track was generated for every time

point, allowing manual examination of the cell over time and its

potential divisions. Our GitHub repository (see “Code and Data

Availability”) contains the code that enables manual inspection of

the tracks with potential divisions as well as usage instructions.

DeepCycle design and training

The model is a custom design of a deep convolutional neural

network classifier. The structure of the DeepCycle neural net is

shown in Appendix Fig S1. It operates as follows: A 2-channel cell

image is transformed into a 3-channel image using a 1 × 1 convolu-

tional layer and fed to the ResNet-34 network pre-trained on

ImageNet. Intermediate Conv4 activations, after average pooling,

are fed into a fully connected layer and a softmax layer. The Conv5

block from ResNet-34 is not used. The final softmax layer generates

the probabilities of a cell to belong to each of the virtual classes.

The output of the fully connected layer represents a 4-component

cell feature vector used in UMAP visualization.

To obtain the virtual classes, we split the two-dimensional FUCCI2

plane into four pseudo-quadrants representing four virtual classes. It

is important to note that these classes do not approximate cell cycle

phases but rather provide discrete labels derived from the FUCCI2

intensities whose predictions are used as a cost function during the

network training. The plane is split so that the four classes are

balanced, that is, contain approximately the same number of cells

(Fig 1C, classes 1, 2, 3, and 4 contain 660,827, 679,534, 676,216, and

667,876 cells, respectively). We have experimented with larger

numbers of virtual classes but 4 proved to provide the best feature

vectors in terms of cell cycle representation. The classification model

is trained with the categorical cross-entropy loss using stochastic

gradient descent. In this work, we use the inputs to the softmax layer

(logits) as deep features, so a cell is assigned with a four-dimensional

descriptor. We trained the deep convolutional neural network on

1,083 curated single division tracks and validated the results on 50

double division tracks across 200 microscopy frames. Therefore, the

training set contains approximately 200,000 cell images, and the

evaluation set contains approx. 10,000 cell images. Each cell is

represented by a 2-channel patch (Brightfield and Hoechst),

31.68 lm × 31.68 lm (48 pixels × 48 pixels). All channels are stan-

dardized channel-wise with the frame mean and standard deviation.

The model is trained with learning rate 10�3 and batch size 32. We

achieve convergence by the 10th epoch of training. One full training

epoch on 200,000 cell images (1,000 tracks images for 200 tracks)

took about 15–20 min on a GTX-980.

DeepCycle framework design

DeepCycle pipeline implements the following steps.

1 Individual cell encoding with a four-dimensional representa-

tion. We project rectangular 2-channel images of cells (BF/

Hoechst) into four-dimensional vectors using virtual classes on

the FUCCI2 plane as targets (see Fig 1B for the DeepCycle

model overview; Appendix Fig S1 for a more detailed descrip-

tion of the DeepCycle model; Fig 1C for virtual classes;

Appendix Fig S2 for virtual class classification accuracies and

confusion matrices).

2 UMAP embedding of the encoded data (preprint: McInnes

et al, 2018). On this step, we decrease the representation

dimensionality, obtaining a two-dimensional cloud of points of

individual cells. The cloud features a visible circular structure

resembling the cell cycle (Fig 1D)

3 Self-organizing maps (SOM) were used to find a 1-dimensional

closed path in the 2-dimensional point cloud and to cluster the

data points along the path. We apply a modified version of

SOMPY, an open source Python Library for Self Organizing

Map (SOM), where we implement a cylindrical map to create a

trajectory with circular structure and spherical initialization of

the neurons. One important SOM feature is its ability to

preserve topological properties of the data. In earlier experi-

ments, we used a simple circular approximation of cell cycle

trajectory that required manual selection of the point cloud

center and did not account for data density and structure. We

found trajectory approximation using SOM superior, being a

fully automatic and data-bound approach. The resulting trajec-

tory is referred to as DeepCycle trajectory and its progression

as DeepCycle pseudotime (Fig 2A, Appendix Fig S4).

4 The Spearman correlation and Kendall’s tau were employed as

validation metrics for the model to estimate the progression of

the CC time (Fig 2D). Both methods measure the correspon-

dence of the two variables and provide an adequate statistical

estimation. The SciPy v0.15.1 Python package implementa-

tions of both measures have been used in this study.

Pilot experiments have been performed to evaluate the performance

of DeepCycle when trained on 1-channel input images with either the

brightfield (Appendix Fig S5) or the Hoechst (Appendix Fig S6) chan-

nel. We also explored whether computing fluorescence intensities from

segmented nuclei would improve the CC time prediction

(Appendix Fig S7). Finally, to demonstrate the relevance of using four
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virtual classes in an unsupervised fashion, we compare the present

results to a DeepCycle model trained on manually labeled cell cycle

phases from the FUCCI2 intensities (Appendix Fig S8). Discussion of

these pilot experiments is present in the figure captions.

UMAP manifold and pseudotime estimation

To generate the manifold projection of 2.6 million cell images, we

used a Python implementation of the Uniform Manifold Approxima-

tion and Projection (UMAP) algorithm (https://github.com/lmcinne

s/umap, v0.3.10) on the feature vector generated from the last fully

connected layer of DeepCycle (n_components = 2, n_neighbors =

300, min_dist = 0.05, and metric=“correlation”). To estimate the

DeepCycle pseudotime, we used self-organizing maps (SOM) to find

the 1-dimensional closed path inside an annular cloud of points on

the 2-dimensional UMAP plane. We use a modified version of

SOMPY, an open source Python Library for SOM, where we intro-

duce a cylindrical map shape to create a map with circular structure

and implement spherical initialization of the neurons.

Code and data availability

The data are deposited at EBI BioStudies https://www.ebi.ac.uk/

biostudies/studies/S-BSST323. The trained deep learning models as

well as the code for obtaining the DeepCycle representation and for

retraining models from new images are available at https://github.

com/alexandrovteam/DeepCycle.

Expanded View for this article is available online.
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