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A B S T R A C T   

While many epidemiological models were proposed to understand and handle COVID-19 pandemic, too little has 
been invested to understand human viral replication and the potential use of novel antivirals to tackle the 
infection. In this work, using a control theoretical approach, validated mathematical models of SARS-CoV-2 in 
humans are characterized. A complete analysis of the main dynamic characteristic is developed based on the 
reproduction number. The equilibrium regions of the system are fully characterized, and the stability of such 
regions is formally established. Mathematical analysis highlights critical conditions to decrease monotonically 
SARS-CoV-2 in the host, as such conditions are relevant to tailor future antiviral treatments. Simulation results 
show the aforementioned system characterization.   

1. Introduction 

By December 2019, an outbreak of cases with pneumonia of un-
known etiology was reported in Wuhan, Hubei province, China (Lu, 
Stratton, & Tang, 2020). On January 7, a novel betacoronavirus was 
identified as the etiological agent by the Chinese Center of Disease 
Control and Prevention (CCDC), and subsequently named as Severe 
Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) (Gorbalenya, 
2020). On February 11, the World Health Organization (WHO) named 
the disease as Coronavirus disease 2019 (COVID-19) (Who, 2020). 
Although prevention and control measures were implemented rapidly, 
from the early stages in Wuhan and other key areas of Hubei Who, 2020, 
the first reported cases outside of China showed that the virus was 
starting to spread around the world (whotimeline, 2020). 

On March 11, with more that 111.800 cases in 114 countries, and 
4921 fatalities cases, COVID-19 was declared a pandemic by the WHO 
(whotimeline, 2020). So far, with more than 7.000.000 total cases 
confirmed in 213 countries and territories (Coronavirus disease 2019; 
COVID-19), and an estimated case-fatality rate (CFR) of 5.7% (H1N1 
pandemic, CFR < 1%) (Who, 2020), the potential health risks are 
evident. 

The virus spreads mainly from person-to-person through respiratory 

droplets produced when an infected person coughs, sneezes or talks 
(How covid-19 spreads). The nonexistence of vaccines or specific ther-
apeutic treatments, preventive measures such as social and physical 
distancing, hand washing, cleaning and disinfection of surfaces and the 
use of face masks, among others, have been implemented in order to 
decrease the transmission of the virus. 

Epidemiological mathematical models (Acuna-Zegarra, 
Comas-Garcia, Hernandez-Vargas, Santana-Cibrian, & 
Velasco-Hernandez, 2020; Alanis, Member, Hernandez-vargas, Nancy, 
& Ríos-rivera, 2020; Giordano et al., 2020; Read, Bridgen, Cummings, 
Ho, & Jewell, 2020) have been proposed to predict the spread of the 
disease and evaluate the potential impact of infection prevention and 
control measures in outbreak management (Anderson, Heesterbeek, 
Klinkenberg, & Hollingsworth, 2020). However, mathematical models 
at in-host level that could be useful to understand the SARS-CoV-2 
replication cycle and interaction with immune system as well as the 
pharmacological effect of potential drug therapies (Liu et al., 2020a; 
Mitjà & Clotet, 2020) are needed. So far, there are approximately 109 
trials (including those not yet recruiting, active, or completed) to asses 
pharmacological therapy for the treatment of COVID-19 in adult pa-
tients (Sanders, Monogue, Jodlowski, & Cutrell, 2020), including anti-
viral drugs (i.e. Hydroxychloroquine, Remdesivir, Lopinavir/Ritonavir, 
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Ribavirin), immunomodulatory agents (i.e. Tocilizumab) and immuno-
globulin therapy, among others. Recently, Hernandez-Vargas & Velas-
co-Hernandez, 2020 proposed different intra-host mathematical models 
(2 based on target cell-limited model, with and without latent phase, and 
another considering immune response) for 9 patients with COVID-19. 
Numerical results in Hernandez-Vargas & Velasco-Hernandez, 2020 
showed intra-host reproductive number values consistent to influenza 
infection (1.7-5.35). 

Although models in Hernandez-Vargas & Velasco-Hernandez, 2020 
have been fitted to COVID-19 patients data, a control theoretical 
approach is needed to characterize the model dynamics. Even when the 
equilibrium states are known, a formal stability analysis is needed to 
understand the model behavior and, mainly, to design efficient control 
strategies. Note that the target cell model has been employed previously 
taking into account pharmacodynamic (PD) and pharmacokinetic (PK) 
models of antiviral therapies (Boianelli, Sharma-Chawla, Bruder, & 
Hernandez-Vargas, 2016; Hernandez-Mejia, Alanis, 
Hernandez-Gonzalez, Findeisen, & Hernandez-Vargas, 2019), and this 
can be potentially done also for COVID-19. 

In this context, the main contribution of this article is twofold. First, a 
full characterization of equilibrium and stability proprieties is per-
formed for the COVID-19 target cell-limited model (Hernandez-Vargas 
& Velasco-Hernandez, 2020). Then, formal properties concerning the 
state variables behavior before convergence - including an analysis of 
the virus peak times - are given. A key aspect in the target cell model for 
acute infections shows some particularities such as it has a minimal 
nontrivial stable equilibrium set, whose stability does not depend on the 
reproduction number. On the other side, assuming a basic reproduction 
number greater than 1, the virus would not be cleared before the target 
cells decreases below under a given critical value, which is independent 
of the initial conditions. 

The article is organized as follows. Section 2 presents the general in- 
host target cell-limited model used to represent SARS-CoV-2 infection 
dynamic. Section 3 characterizes the equilibrium sets of the system, and 
establishes their formal asymptotic stability, by proving both, the 
attractivity of the equilibrium set in a given domain, and its ϵ − δ 
(Lyapunov) local stability. Then, in Section 4, some dynamical proper-
ties of the system are stated, concerning the values of the states at the 
infection time t = 0. In Section 5 the general model for the SARS-CoV-2 
infection is described and the general characteristics of the infection are 
analyzed. Finally, Section 6 gives the conclusion of the work, while 
several mathematical formalisms - necessary to support the results of 
Sections 3 and 4 - are presented in the Appendices. 

1.1. Notation 

R and I denote the real and integer numbers, respectively. The real 
vector space of dimension n is denoted as Rn. Rn

≥0 represents the vectors 
of dimension n whose components are equal or greater than zero. The 
distance from a point x ∈ Rn to a set 𝒳⊂Rn is defined by 
‖ x‖𝒳 := infz∈𝒳‖ x − z‖2 where ‖ ⋅ ‖2 denotes the norm-2. The open ball 
of radius ϵ around a point x ∈ Rn, with respect to set 𝒳 , is defined as 
Bϵ(x) := {z ∈ 𝒳 :‖ x − z ‖2< ϵ}. For the real function f(z) = zez, the so- 
called Lambert function is defined as the inverse of f( ⋅ ), i.e., W(z) :=
f − 1(z) in such a way that W(f(z)) = z. 

2. SARS-CoV-2 in-host mathematical model 

Although incomplete by definition, mathematical models of in-host 
virus dynamic improve the understanding of the interactions that 
govern infections and, more importantly, permit the human intervention 
to moderate their effects (Hernandez-Vargas, 2019). Basic in-host 
infection dynamic models usually include the susceptible cells, infec-
ted cells, and the pathogen particles (Ciupe & Heffernan, 2017). Among 
the most used mathematical models, the target cell-limited model has 

been employed to represent and control HIV infection (Legrand et al., 
2003; Perelson, Kirschner, & De Boer, 1993; Perelson & Ribeiro, 2013), 
influenza (Baccam, Beauchemin, Macken, Hayden, & Perelson, 2006; 
Hernandez-Mejia et al., 2019; Larson, Dominik, Rowberg, & Higbee, 
1976; Smith & Perelson, 2011), Ebola (Nguyen, Binder, Boianelli, 
Meyer-Hermann, & Hernandez-Vargas, 2015), dengue (Nikin-Beers & 
Ciupe, 2015; 2018) among others. 

In this work, we consider the mathematical model proposed by 
Hernandez-Vargas & Velasco-Hernandez, 2020 given by the following 
set of ordinary differential equations (ODEs) : 

U̇(t) = − βU(t)V(t), U(0) = U0, (2.1a)  

İ(t) = βU(t)V(t) − δI(t), I(0) = I0 = 0, (2.1b)  

V̇(t) = pI(t) − cV(t), V(0) = V0, (2.1c)  

where U [cells], I [cells] and V [copies/mL] represent the susceptible cells, 
the infected cells, and the virus load, respectively. The parameter β 
[(copies/mL)− 1day− 1] is the infection rate of susceptible cells by the 
virus. δ [day− 1] is the death rate of infected cells. p 
[(copies /mL)day− 1cells− 1] is the replication rate of free virus from the 
infected cells. c [day− 1] is the degradation (or clearance) rate of virus V. 
The effects of immune responses are not explicitly described in this 
model, but they are implicitly included in the death rate of infected cells 
(δ) and the clearance rate of virus (c) (Baccam et al., 2006). 

The parameter values of the target cell model were fitted by Her-
nandez-Vargas & Velasco-Hernandez, 2020 using viral kinetics reported 
by Wölfel et al. (2020) in patients with COVID-19. The Differential 
Evolution (DE) algorithm was shown to be more robust to initial guesses 
of parameters than other mentioned methods (Torres-Cerna, Alanis, 
Poblete-Castro, Bermejo-Jambrina, & Hernandez-vargas, 2016). Akaike 
information criterion (AIC) was used to compare the goodness-of-fit for 
models that evaluate different hypotheses in Hernandez-Vargas & 
Velasco-Hernandez, 2020. The target cell model showed better fitting 
than exponential growth and logarithmic decay models as well as the 
target cell model with eclipse phase (Hernandez-Vargas & Velasco--
Hernandez, 2020). 

The model (2.1) is non-negative, which means that U(t) ≥ 0, I(t) ≥
0 and V(t) ≥ 0, for all t ≥ 0. If we denote x(t) := (U(t), I(t), V(t)), then the 
states are constrained to belong to the invariant set: 

X :=
{

x ∈ R3
≥0

}
(2.2) 

Another meaningful set is the one consisting in all the states in X 

with strictly positive amount of virus and susceptible cells, i.e., 

𝒳 := {x ∈ X : U > 0, V > 0} (2.3)  

Note that the set 𝒳 is an open set. 
The initial conditions of (2.1) are assumed such at a healthy steady 

state before the infection time t = 0, i.e., V(t) = 0, I(t) = 0, and U(t) =
U0, for t < 0. At time t = 0, a small quantity of virions enters to the host 
body and, so, a discontinuity occurs in V(t). Indeed, V(t) jumps from 0 to 
a small positive value V0 at t0 = 0 (formally, V(t) has a discontinuity of 
the first kind at t0, i.e., limt→0− V(t) = 0 while limt→0+V(t) = V0 > 0). The 
same scenario arises, for instance, when an antiviral treatment affects 
either parameter p or β. The jump of p or β can be considered as a 
discontinuity of the first kind. In any case, for the time after the 
discontinuity, the virus may spread or be cleared in the body, depending 
on its infection effectiveness. The following (mathematical) definition is 
given 

Definition 1. (Spreadability of the virus in the host) Consider the sys-
tem (2.1), constrained by the positive set X, at some time t0, with U(t0) 
> 0, I(t0) ≥ 0 and V(t0) > 0 (i.e., x(t0) = (U(t0),I(t0),V(t0)) ∈ 𝒳). Then, it 
is said that the virus spreads in the host for t > t0 if there exists at least 
one t* > t0 such that V̇(t∗) > 0. 
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The latter definition states that the virus spreads in the body host if V 
(t) has at least one local maximum. On the other hand, the virus does not 
spread if V(t) is strictly decreasing for all t > t0. As it will be stated later 
on (Property 1), limt→∞V(t) = 0 for system (2.1), independently of the 
fact that the virus reaches or not a maximum (this is a key difference 
between acute and chronic infection models (Ciupe & Heffernan, 2017; 
Hernandez-Vargas, 2019)). 

The infection severity can be related with the virus spreadability 
established in Definition 1. Liu et al. (2020b) have shown that patients 
with severe COVID-19 tend to have a high viral load and a long virus 
shedding period. The mean viral load of severe cases was around 60 
times higher than that of mild cases, suggesting that higher viral loads 
might be associated with severe clinical outcomes. Furthermore, they 
found that the viral load of severe cases remained significantly higher 
for the first 12 days after the appearance of the symptoms than those of 
corresponding mild cases. Mild cases were also found to have an early 
viral clearance, with 90% of these patients repeatedly testing negative 
on reverse transcription polymerase chain reaction (RT-PCR) by day 10 
post symptoms onset (pso). By contrast, all severe cases still tested 
positive at or beyond day 10 pso. In addition, Zheng et al. (2020) re-
ported (from a study with 96 SARS-CoV-2 patients, 22 with mild and 74 
with severe disease) a longer duration of SARS-CoV-2 in lower respira-
tory samples of severe patients. For patients with severe disease the virus 
permanence was significantly longer (21 days, 14-30 days) than in pa-
tients with mild disease (14 days, 10-21 days; p=0.04). Moreover, 
higher viral loads were detected in respiratory samples, although no 
differences were found in stool and serum samples. While these findings 
suggest that reducing the viral load through clinical means and 
strengthening management should help to prevent the spread of the 
virus, they are preliminary and it remains controversial whether virus 
persistence is necessary to drive the dysfunctional immune response 
characteristic of COVID-19 patients (Tay, Poh, Rénia, MacAry, & Ng, 
2020). 

Remark 1. Note that the virus spreadability may or may not cause a 
severe infection (a disease that eventually causes host death) which 
depends on how much time the virus is above a given value. 

To properly establish conditions under which the virus does not 
spread for t > 0 (i.e., after the infection time t = 0) the so-called in-host 
basic reproduction number is defined next. 

Definition 2. The intra-host basic reproduction number ℛ is defined 
as the number of infected cells (or virus particles) that are produced by 
one infected cell (or virus particle), at a given time. Its mathematical 
expression is given by: 

ℛ(t) := U(t)
βp
cδ
. (2.4) 

Particularly, for t = 0, this number describes the number of infected 
cells produced by one infected cell, when a small amount of virus, V0, is 
introduced into a healthy stationary population of uninfected target 
cells, U0, 

ℛ0 := U0
βp
cδ
. (2.5)  

A discussion about the way this value is obtained is given in Ap-
pendix 2. The relation between the basic reproduction number at the 
infection time (ℛ0) and the virus spreadiblity is stated in the next 
theorem. 

Theorem 2.1. Consider the system (2.1), constrained by the positive set X,

at the beginning of the infection, i.e., U(0) = U0 > 0, I(0) = 0 and V(0) =
V0 > 0 (i.e., x(0) = (U(0), I(0),V(0)) ∈ 𝒳). Then, a sufficient condition 
(not necessary) for the virus not to spread is given by ℛ0 < 1. 

Proof. In Theorem 4.1, Section 4, it is shown that if the virus spreads, 
then ℛ0 > 1. This means that (contrapositive of the statement) if ℛ0 ≤ 1 

(particularly, ℛ0 < 1), then the virus does not spread in the host body. □ 

Before proceeding with a full dynamic analysis of system (2.1), let us 
define first the so-called critical value of the susceptible cells, which is a 
threshold to properly understand the spread of the virus. 

Definition 3. The critical value for U, 𝒰c, is defined as 

𝒰c :=
cδ
pβ

=
U0

ℛ0
, (2.6)  

which, for fixed system parameters β, p, δ and c, is a constant. Note 
that U(t) < 𝒰c if and only if ℛ(t) < 1, for every t ≥ 0. 

2.1. Equilibrium set characterization 

By equating U̇, İ and V̇ to zero in (2.1), it can be shown that the 
system only has healthy equilibria of the form xs = (Us,0, 0), with Us 
being an arbitrary positive value, i.e., Us ∈ [0, ∞). Thus, there is only one 
equilibrium set, which is the disease-free one, and it is defined by 

𝒳 s :=
{
(U, I,V) ∈ R3 : U ∈ [0,∞), I = 0, V = 0

}
. (2.7)  

To examine the stability of the equilibrium points in 𝒳 s, system (2.1) can 
be linearized at a general state xs ∈ 𝒳 s. From (2.1) we have U̇ =

f(U, I,V), İ = g(U, I,V), V̇ = h(U,I,V). Then, the Jacobian matrix is given 
by 

J =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

∂f
∂U

∂f
∂I

∂f
∂V

∂g
∂U

∂g
∂I

∂g
∂V

∂h
∂U

∂h
∂I

∂h
∂V

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎝

− βV 0 − βU

βV − δ βU

0 p − c

⎞

⎟
⎟
⎠,

which evaluated at any point xs ∈ 𝒳 s reads 

As =

⎛

⎝
0 0 − βUs
0 − δ βUs
0 p − c

⎞

⎠,

with Us ∈ [0, ∞). Then, the eigenvalues (λ1, λ2, λ3) are given by the 
solution to Det(As − λI) = 0, i.e., 

λ
[
− λ2 − (c+ δ)λ + (βUsp − cδ)

]
= 0.

The first eigenvalue is trivially given by λ1 = 0. The other two, are given 
by: 

λ2,3 = −

(c + δ) ±

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(c + δ)2
+ 4cδ

(
Us
𝒰c
− 1

)√

2
.

To analyze the eigenvalues qualitatively, note that for Us = 𝒰c 

λ2,3 = −
(c + δ) ± (c + δ)

2
,

which means that λ2 = 0 and λ3 = − (c+δ) < 0 (given that c, δ > 0). 
Furthermore, λ2 < 0 and λ3 < 0 for Us < 𝒰c; and λ2 > 0 and λ3 < 0 for 
Us > 𝒰c. Since the maximum eigenvalue is the one dominating the sta-
bility behavior of the equilibrium under consideration, it is possible to 
infer how the system behaves near some segments of 𝒳 s. The first 
intuition is that the equilibrium set 

𝒳 1
s :=

{
(U, I,V) ∈ R3 : U ∈ [0,𝒰c), I = 0, V = 0

}
, (2.8)  

is stable, and that the equilibrium set 
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𝒳 2
s :=

{
(U, I,V) ∈ R3 : U ∈ [𝒰c,∞), I = 0, V = 0

}
, (2.9)  

is unstable. These are just intuitions, given that one of the eigenvalues of 
the linearized system is null and so the linear approximation cannot be 
used to fully determine the stability of the nonlinear system (Theorem of 
Hartman (1982); Perko (2013)). To formally prove the asymptotic sta-
bility of 𝒳1

s in a given domain, it is necessary to show its global attrac-
tivity (in such domain) and local ϵ − δ stability. 

3. Asymptotic stability of the equilibrium sets 

A key point to analyze the general asymptotic stability (AS) of system 
(2.1) is to consider stability of the complete equilibrium sets 𝒳1

s and 𝒳2
s ,

and not of the single points inside them (as defined in Definitions 5, 6 
and 7, in Appendix 1). As it is shown in the next subsections, there is no 
single AS equilibrium points in this system, although there is an AS 
equilibrium set (i.e., 𝒳1

s ). 
As stated in Definition 7, in 1, the AS of 𝒳1

s requires both, attractivity 
and ϵ − δ stability, which are stated in the next two subsections, 
respectively. Then, in Section 3.3 the AS theorem is formally stated. 

3.1. Attractivity of set 𝒳1
s in 𝒳

Before proceeding with the formal theorems of the attractivity of 𝒳1
s ,

let us consider the following key property of system (2.1) concerning the 
attractivity of 𝒳 s. 

Property 1 (Attractivity of. 𝒳 s) Consider system (2.1) constrained by 
the positive set X, at some arbitrary time t0, with U(t0) > 0, I(t0) ≥ 0 and V 
(t0) > 0 (i.e., x(t0) = (U(t0),I(t0),V(t0)) ∈ 𝒳). Then, U∞ := limt → ∞U(t) is 
a constant value smaller than U(t0), I∞ := limt→∞I(t) = 0 and V∞ :=

limt→∞V(t) = 0, which means that x(t) = (U(t), I(t),V(t)) tends to some 
state in 𝒳 s. 

Proof. Since U̇(t) ≤ 0 for all t ≥ 0 and all (U(t0), I(t0),V(t0)) ∈ 𝒳 , by 
(2.1a) U(t) is a decreasing function (no oscillation can occur). Since U 
(t0) > 0 and V(t0) > 0, then U∞ = limt→∞U(t) is a constant value in [0, U 
(t0)). Given that U(t) converges to a finite fixed value, then U̇(t) = 0 as t 
→ ∞ by (2.1a). This implies - by the same Eq. (2.1a) - that U(t)V(t) = 0 
as t → ∞ and, so, from Eq. (2.1b), that İ(t) = − δI(t) as t → ∞. Then I∞ =

limt→∞I(t) = 0. Finally, by Eq. (2.1c)), V̇(t) = − δV(t) as t → ∞. Then V∞ 

= limt→∞V(t) = 0, which completes the proof. □ 

Property 1 states that 𝒳 s is an attractive set for system (2.1), in 𝒳 , but 
not the smallest attractive set. Next, conditions are given to show that 
the smallest attractive set is given by 𝒳1

s . 

Theorem 3.1 (Attractivity of. 𝒳1
s ) Consider system (2.1) constrained by 

the positive set X. Then, the set 𝒳1
s defined in (2.8) is the smallest attractive 

set in 𝒳 . Furthermore, 𝒳2
s , defined in (2.9), is not attractive. 

Proof. The proof is divided into two parts. First it is proved that 𝒳1
s is 

an attractive set, and then, that it is the smallest one. 
Attractivity of 𝒳1

s : 
The attractivity of 𝒳 s in 𝒳 was already proved in Property 1. So, to 

prove the attractivity of 𝒳1
s in 𝒳 (and to show that 𝒳2

s is not attractive) it 
remains to demonstrate that U∞ ∈ [0, 𝒰c). From system (2.1), by 
replacing (2.1a) in (2.1b), it follows that 

İ(t) = βU(t)V(t) − δI(t) = − U̇(t) − δI(t), (3.1)  

which implies that 

I(t) =
(

−
1
δ

)(
İ(t)+ U̇(t)

)
. (3.2) 

Rearranging (2.1c) yields 

V(t) =
1
c

(
pI(t) − V̇(t)

)
. (3.3) 

Then, replacing (3.2) in (3.3), we have 

V(t) =
[

p
(

−
1
δ

)(
İ(t)+ U̇(t)

)
− V̇(t)

]
1
c
. (3.4) 

Finally, by substituting (3.4) in (2.1a), and multiplying by 1/U(t) 
both sides of the equation (without loss of generality we can assume that 
U(t) ∕= 0), it follows that 

1
U(t)

U̇(t) =
βp
cδ

U̇(t) +
βp
cδ

İ(t) +
β
c
V̇(t). (3.5) 

This latter equation can be integrated, for general initial conditions 
U0, I0 and V0, as follows: 

ln
(

U(t)
U0

)

=
βp
cδ

(U(t) − U0) +
βp
cδ

(I(t) − I0) +
β
c
(V(t) − V0). (3.6) 

Now, by defining U∞ := limt → ∞U(t), I∞ := limt → ∞I(t), V∞ := limt → 

∞V(t), and recalling from Property 1 that I∞ = V∞ = 0, the latter equa-
tion for t → ∞, reads 

ln
(

U∞
U0

)

= βp
cδ (U∞ − U0) +

βp
cδ (I∞ − I0) +

β
c (V∞ − V0)

=
βp
cδ

U∞ − ℛ0 −
βp
cδ

I0 −
β
c
V0

=
βp
cδ

U∞ − ℛ0 +𝒦0,

(3.7)  

where ℛ0 :=
βp
cδU0 (as it was defined in (2.5)) and 

𝒦0 := −
β
c

(p
δ
I0 +V0

)
. (3.8) 

Note that ℛ0 is a function of U0 while 𝒦0 is a function of I0 and V0 
and, furthermore, ℛ0 > 0 and 𝒦0 < 0 for every x0 = (U0, I0, V0) ∈ 𝒳 . 
Then, after some manipulation, (3.7) reads 

−
βp
cδ

U∞e−
βp
cδU∞ = −

βp
cδ

U0e− ℛ0 e𝒦0 = − ℛ0e− ℛ0 e𝒦0 . (3.9) 

Now, by denoting 

Fig. 1. Lambert function. W(z) has two branches, denoted as Wp (in blue) and 
Wm (in red). Both branches are defined for z ∈ [ − 1/e,0]; however limz→0− Wp =

0 while limz→0− Wm = − ∞, which means that only the branch Wp will be used in 
our analysis, as it is shown in the proof of Theorem 3.1. 
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z = z(ℛ0,𝒦0) := − ℛ0e− ℛ0 e𝒦0 , (3.10)  

and 

y := −
βp
cδ

U∞, (3.11)  

the latter equation can be written as 

W(z) = y, (3.12)  

or 

W
(
− ℛ0e− ℛ0 e𝒦0

)
= −

βp
cδ

U∞, (3.13)  

where W( ⋅ ) is a Lambert function. Fig. 1 shows the graph of such a 
function, where it can be seen that it has two branches, denoted as Wp 
and Wm. However, W(⋅) = Wp(⋅) in this case, since Wm→ − ∞ for z→0− ,

which has not biological sense. Note that U∞ is a finite value in [0, U0). 
Also − 1/e < z(ℛ0,𝒦0) ≤ 0 for ℛ0 > 0 and 𝒦0 < 0 (Fig. 2 shows a plot of 
function z(ℛ0,𝒦0) for negative values of 𝒦0 and positive values of ℛ0), 
and Wp maps (− 1/e,0] into (− 1, 0], which implies that 

1 > − W(z(ℛ0,𝒦0)) ≥ 0, (3.14)  

for ℛ0 > 0 and 𝒦0 < 0. Thus, by (3.13), it follows that 

U∞ = −
cδ
βp

W
(
− ℛ0e− ℛ0 e𝒦0

)

= − 𝒰cW
(
− ℛ0e− ℛ0 e𝒦0

)

∈ [0,𝒰c),

(3.15)  

which completes the proof. 
𝒳1

s is the smallest attractive set: 
It is clear from the previous analysis, that any initial state x0 = (U0,

I0,V0) in 𝒳 converges to a state x∞ = (U∞, 0,0) with U∞ ∈ [0,𝒰c). This 
means that 𝒳2

s is not attractive in 𝒳 . Let us consider now a state xs ∈ 𝒳1
s 

and an arbitrary small ball of radius ϵ > 0, w.r.t. 𝒳 , around it, 
Bϵ(xs) ∈ 𝒳 . Take two arbitrary initial states x0,1 = (U0,1, I0,1,V0,1) and 
x0,2 = (U0,2, I0,2,V0,2) in Bϵ(xs), such that U0,1 ∕= U0,2 and V0,1 ∕= V0,2. 
These two states converge, according to Eq. (3.15), to x∞,1 = (U∞,1,0, 0)
and x∞,2 = (U∞,2,0, 0), respectively, with U∞,1,U∞,2 ∈ [0,𝒰c). Given that 
function z(R, K) is monotone (injective) in ℛ0 (and so in U0) and W(z) is 
monotone (injective) in z, then U∞,1 ∕= U∞,2. This means that, although 
both initial states converge to some state in 𝒳1

s , they necessarily 

converge to different points. Therefore neither single states xs ∈ 𝒳1
s nor 

subsets of 𝒳1
s are attractive in 𝒳 . So, 𝒳1

s is the smallest attractive set and 
the proof is concluded. □ 

Remark 2. Note that 𝒳1
s and 𝒳2

s are in the closure of the open set 𝒳 ,

which is not in 𝒳 . In other words, Theorem 3.1 shows that any initial 
state in 𝒳 converges to a point onto the boundary of 𝒳 that does not 
belong to 𝒳 . Furthermore note that, an initial state of the form (U0, 0, 0), 
U0 > 𝒰c, (i.e., a state in 𝒳2

s ) cannot be attracted by any set since it is an 
equilibrium state (every state in 𝒳2

s will remain unmodified). This is the 
reason why it is not possible to consider the attractivity of 𝒳2

s in 𝒳 . 

3.2. Local ϵ − δ stability of 𝒳1
s 

The next theorem shows the formal Lyapunov (or ϵ − δ) stability of 
the equilibrium set 𝒳1

s . 

Theorem 3.2. Consider system (2.1) constrained by the positive set X. 
Then, the equilibrium set 𝒳1

s defined in (2.8) is locally ϵ − δ stable. 

Proof. Let us consider a particular equilbrium point xs := (Us, 0, 0), 
with Us ∈ [0,𝒰c) (i.e., xs ∈ 𝒳1

s ). Then a Lyapunov function candidate is 
given by (similar to one used in Nangue (2019) for chronic infections) 

J(x) := U − Us − Usln
(

U
Us

)

+ I +
δ
p

V. (3.16) 

This function is continuous in X, is positive for all nonegative x ∕= xs 
and, furthermore, J(xs) = 0. Function J evaluated at the solutions of 
system (2.1) reads: 

∂J(x(t))
∂t

=
∂J
∂x

ẋ(t)=
[

dJ
dU

dJ
dI

dJ
dV

]

⎡

⎢
⎢
⎣

− βU(t)V(t)

βU(t)V(t) − δI(t)

pI(t)− cV(t)

⎤

⎥
⎥
⎦

=

[(

1 −
Us

U(t)

)

1
δ
p

]

⎡

⎢
⎢
⎣

− βU(t)V(t)

βU(t)V(t)− δI(t)

pI(t) − cV(t)

⎤

⎥
⎥
⎦

= (− βU(t)V(t)+UsβV(t))+(βU(t)V(t)− δI(t))+
(

δI(t) −
δc
p

V(t)
)

= UsβV(t)−
δc
p

V(t)=V(t)
(

Usβ −
δc
p

)

.

(3.17) 

Now, given Us ∈[0,𝒰c), with 𝒰c=
δc
βp, it follows that J̇(x(t))≤0 for 

every x∈X (note that it is not true that J̇(x(t))<0 for x ∕= xs, as shown 
next, in Remark 3). Then, J is a Lyapunov function for system (2.1), 

Fig. 2. Function z(ℛ0,𝒦0), for ℛ0 ≥ 0 and 𝒦0 ≤ 0. Note that z(ℛ0,𝒦0) > − 1 /e 
= − 0.3679 for all values of ℛ0 ≥ 0 and 𝒦0 ≤ 0. 

Fig. 3. Every point in 𝒳1
s is ϵ − δ stable but not attractive. Initial states x0 

starting arbitrarily close to xs remain (for all t ≥ 0) arbitrarily close to xs, but do 
not converge to xs. As a consequence, set 𝒳1

s is AS but the points inside it 
are not. 
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which means that each xs∈𝒳1
s is ϵ − δ stable (see Theorem A.1 in 1). 

Therefore, it is easy to see that the equilibrium set 𝒳1
s is also ϵ − δ stable, 

which completes the proof. □ 

Remark 3. Note that, in the latter proof, it is not true that J̇(x(t)) < 0 
for every nonegative x ∕= xs. If for instance, the function J̇(x(t)) is eval-
uated at x̂s = (Û,0, 0), with Û ∕= Us, we have that J̇(x̂s(t)) = 0. In fact, 
J̇(x(t)) is null along the whole U axis, given that this axis is an equilib-
rium set. This means that the (individual) states in 𝒳1

s are ϵ − δ stable, 
but not attractive. 

A schematic plot of such a behavior can be seen in Fig. 3. 

Remark 4. A similar behavior can be seen in system ẋ = Ax, when A =
[0 − 1; 0 − 1 ], or the 2-state Kermack–McKendrick epidemic model 
(Brauer, 2005; Brauer, Castillo-Chavez, & Castillo-Chavez, 2012): Ṡ =
βSI, İ = βSI − δI, being S the susceptible and I the infected individuals. In 
this latter model, ℛ0 := (δ /β)S0 and the critical value for S is Sc = δ /β. 
The AS set is given by all the states of the form xs := (Ss, 0), with Ss ∈ [0, 
Sc). Furthermore, for this system, the maximum of I occurs when S = Sc. 

3.3. Asymptotic stability of 𝒳1
s 

In the next Theorem, based on the previous results concerning the 
attractivity and ϵ − δ stability of 𝒳1

s , the asymptotic stability is formally 
stated. 

Theorem 3.3. Consider system (2.1) constrained by the positive set X. 
Then, the set 𝒳1

s defined in (2.8) is smallest asymptotically stable (AS) 
equilibrium set, with a domain of attraction given by 𝒳 . 

Proof. The proof follows from Theorems 3.1, which states that 𝒳1
s is 

the smallest attractive in 𝒳 , and 3.2, which states the local ϵ − δ stability 
of 𝒳1

s . □ 

A critical consequence of the latter Theorem is that no equilibrium 
point in 𝒳 s (neither in 𝒳1

s , nor in 𝒳2
s ) can be used as setpoint in a control 

strategy design. The effect of antivirals (pharmocodynamic), for 
instance, is just to reduce the virus infectivity (by reducing the infection 
rate β) or the production of infectious virions (by reducing the replica-
tion rate p) (Hernandez-Vargas, 2019). So, the previous stability analysis 
is still valid for such controlled systems, since only a modification of 
some of the parameters defining 𝒰c is done. In such a context, only a 
controller able to consider the whole set 𝒳1

s as a target (a set-based 
control strategy, as zone MPC (Ferramosca, Limon, González, Odloak, 
& Camacho, 2010; González et al., 2020, To appear)) will be fully suc-
cessful in controlling system (2.1). Further details concerning antiviral 
treatments are given next, in Section 4.1. 

4. Characterization for different initial conditions 

In this section some further properties of system (2.1) concerning its 
dynamic are stated, based on the initial conditions at the infection time t 
= 0. The objective is to fully characterize the states behavior in a 
qualitative way, including the times at which the virus and the infected 
cells reach their peaks. First, Property 2 states some characteristics of U∞ 
for different initial conditions. Then, Theorem 4.1 states a general 
relationship between the peak times of V and I and the time at which U 
reaches its critical value 𝒰c. 

Property 2. Consider system (2.1), constrained by the positive set X, at 
the beginning of the infection, i.e., U(0) = U0 > 0, I(0) = 0 and V(0) = V0 
> 0 (i.e., x(0) = (U(0), I(0),V(0)) ∈ 𝒳). Consider also that V0 is small 
enough to describe the beginning of the infection. Then,   

1. U∞ → 0 when U0 → ∞ or U0 → 0.  
2. U∞→𝒰c when U0→𝒰c.  

3. 0 < U∞(U0,1, I0,V0) < U∞(U0,2, I0,V0) < 𝒰c, for initial conditions 
U0,1 < U0,2 < 𝒰c.  

4. 0 < U∞(U0,2, I0,V0) < U∞(U0,1, I0,V0) < 𝒰c, for initial conditions 
𝒰c < U0,1 < U0,2. 

Proof. If I0 = 0 and V0 ≈ 0 then 𝒦0 ≈ 0. Therefore W(− ℛ0e𝒦0 − ℛ0 ) ≈

W(− ℛ0e− ℛ0 ), and U∞ ≈ − 𝒰cW(− ℛ0e− ℛ0 ) by (3.13).  

1. W(− ℛ0e− ℛ0 )→0 when − ℛ0e− ℛ0 →0, which means that either ℛ0→0 
or ℛ0→∞. This implies that U0 → 0 or U0 → ∞, respectively.  

2. W(− ℛ0e− ℛ0 )→ − 1 when − ℛ0e− ℛ0 → − 1/e, which is true if ℛ0→1 
or, the same, when U0→𝒰c.  

3. z(ℛ0) = − ℛ0e− ℛ0 is strictly decreasing for ℛ0 ∈ (0, 1) (note that 
ℛ01 :=

cδU0,1
βp and ℛ02 :=

cδU0,2
βp are in (0,1), since they are smaller than 

𝒰c), while − Wp(⋅) is strictly decreasing in ( − 1/e,0). So, 0 < − Wp(−

ℛ01e− ℛ01 ) < − Wp(− ℛ02e− ℛ02 ) < 1, which implies that 0 < U∞(U0,1,

I0,V0) < U∞(U0,2, I0,V0) < 𝒰c.  
4. z(ℛ0) = − ℛ0e− ℛ0 is strictly increasing for ℛ0 ∈ (1,∞), while − Wp(⋅)

is strictly decreasing in ( − 1/e, 0). So, 0 < − Wp(− ℛ02e− ℛ02 ) < −

Wp(− ℛ01e− ℛ01 ) < 1, which implies that 0 < U∞(U0,2, I0, V0) <

U∞(U0,1,I0,V0) < 𝒰c. Fig. 4 shows U∞ as a function of U0, taking V0 as 
a parameter. □ 

Theorem 4.1. (Virus behavior from the infection time) Consider system 
(2.1), constrained by the positive set X, at the beginning of the infection, i.e., 
U(0) = U0 > 0, I(0) = 0 and V(0) = V0 > 0. If the virus spreads (according 
to Definition 1), then ℛ0 > 1 + α(0), for some α(0) > 0 (or, the same, 
U0 > 𝒰c) and there exist positive times ̌tV , t̂ I, tc and ̂tV , such that ̌tV < t̂ I <

tc < t̂V , where ̌tV and ̂tV are the times at which V(t) reaches a local minimum 
and a local maximum, respectively, ̂t I is the time at which I(t) reaches a local 
maximum, and tc is the time at which U(t) reaches 𝒰c. Furthermore, V̇(t) < 0 
for all t > t̂V. 

Proof. First, note that V̇(0) = pI(0) − cV(0) < 0 since the initial con-
ditions are I(0) = 0 and V(0) > 0. Even more, assuming the virus 
spreads, which means that V(t) reaches a local maximum at some time 
t̂V > 0. Therefore, V(t) must reach a local minimum at some 0 < ťV < t̂V. 

Now, by Lemma 1 in Appendix 3, it is ℛ(̌tV) > 1 and ℛ(̂tV) < 1,
respectively, and it is easy to see that ℛ(t) is a decreasing function, so it 
follows that ℛ0 > ℛ(̌tV) > 1. Then there exists α(0) > 0 such that ℛ0 >

Fig. 4. According to Eq. (3.13), U∞(U0) is plotted for different values of V0. All 
parameters are equal to 1 for simplicity, which means that 𝒰c = 1. 
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1 + α(0) and, besides, 0 < ťV < tc < t̂V . 
From the minimum and maximum conditions of V, at times ̌tV and ̂tV ,

we have V̇(̌tV) = 0, V̈(̌tV) > 0 and V̇(̂tV) = 0, V̈(̂tV) < 0, respectively. 
After some algebraic computation, it is easy to see that İ(̌tV) > 0 and 
İ(̂tV) < 0, which means that I(t) must reach a maximum at some time ̂t I,

fulfilling ̌tV < t̂ I < t̂V. Moreover, it must be 

İ
(

t̂ I

)

= βU
(

t̂ I

)

V
(

t̂ I

)

− δI
(

t̂ I

)

= 0. (4.1) 

Given that V̇(t) > 0 for ̌tV < t < t̂V (it goes from its minimum to its 
maximum), then by (2.1.a), I(̂t I) >

c
p V(̂t I). Replacing this latter condi-

tion in (4.1), it follows that 
(

βU
(

t̂ I

)

−
δc
p

)

V
(

t̂ I

)

> βU
(

t̂ I

)

V
(

t̂ I

)

− δI
(

t̂ I

)

= 0, (4.2)  

which implies that ℛ(̂t I) =
βpU(̂t I)

δc > 1 and, then, ̂t I < tc. Therefore, t0 <

ťV < t̂ I < tc < t̂V , which concludes the proof. □ 

Remark 5. The value of α(0) is necessary to properly understand and 
characterize the system behavior according to the initial conditions and 
parameters. In epidemiological models (SIR, etc.), where ℛ0 > 1 is a 
necessary and sufficient condition for the disease to spread in a popu-
lation, in our case ℛ0 > 1 is not a sufficient condition for the virus to 
spread in the host body. The only thing Theorem 4.1 ensures (by its 
contrapositive) is that a sufficient condition for the virus to not spread in 
the host body at time t > 0 is given by ℛ0 < 1 (or U(0) < 𝒰c). See Fig. 6, 
lower plot, for an example. The value of α(0) can be computed numer-
ically and it is usually small in comparison with ℛ0 (for all the patients 
simulated in Section 5, α(0) < 1× 10− 4). 

To clarify the results of this section, Figs. 5 and 6 show a phase 
portrait and a state time evolution corresponding to system (2.1), when 
all parameters are equal to 1 (for simplicity), which means that 𝒰c = 1. 
The first plot (Fig. 5) depicts how every state trajectory - even those 
starting close to 𝒳2

s - converges to 𝒳1
s . As stated in Property 2, U∞ ap-

proaches 𝒰c from below, as U(0) approaches 𝒰c from above. Also it can 
be seen how the virus load starts to decrease only once U(t) is smaller 
than 𝒰c, as stated in Theorem 4.1. On the other hand, the second plot 
(Fig. 6) shows the time evolution of U, I and V, for two different initial 
conditions. In the upper plot, initial conditions are selected such that 1 +

α(0) < ℛ0, while in the lower plot, the initial conditions produce 1 <

ℛ0 < 1+ α(0). As it can be seen, only in the first case the virus spread in 
the host body (i.e., V̇(t) > 0, for some t > 0), as stated in Theorem 4.1. 

4.1. Remarks concerning antivirals treatments 

Even though the analysis of potential antiviral treatments is out of 
the scope of this work, in this section some comments concerning the 
implications of Theorem 4.1 (and the system characterization) will be 
made. The antiviral effect can be modeled as a reduction of the virus 
infectivity in the presence of reverse transcriptase inhibitors (by 
reducing the infection rate β) and/or as a reduction in the production of 
infectious virions in the presence of protease inhibitors (by reducing the 
replication rate p). Let us assume that the antiviral pharmacodynamics 
(PD) corresponding to an antiviral is modeled as p(1 − η(tr)) (the anal-
ysis for β is almost the same), being η(tr) ∈ (0, 1) the effectiveness of the 
antiviral and tr the time of treatment initiation. The antiviral pharma-
cokynetics (PK) is not considered for simplicity, which means that the 
antivirals instantaneously modify η at time tr. Then, as the virus mono-
tonically goes to zero only once U(t) is below Uc, the antiviral will be 
effective (in the sense that the virus load starts decreasing as the treat-
ment begins, and it does not increase again) only if the value of η(tr) is 
such that U(tr) < 𝒰c(tr) := cδ

p(1− η(tr))β (i.e., such that ℛ(tr) < 1+

α(tr) ≈ 1). This condition defines a threshold for the antiviral effec-
tiveness (say, a minimal critical value ηc(tr)) that may explain, from a 
pure mathematical point of view, why some antiviral may not work for 
some patients. 

From a control theory point of view, the assertions made in Theorem 
4.1 means that a control strategy devoted to steers V(t) to zero at any 
time by administering a time-variant dose of antivirals (for instance by 
using η(t) < ηc(t), for t > tr), may be counterproductive. Indeed, to slow 
down V(t) by decreasing p or β, implies that 𝒰c =

cδ
pβ increases, but also 

soften the decreasing behavior of U(t). As a result, the time tc (and so, the 
virus peak time ̂tV) may be delayed, which means that V(t) is maintained 
in a high level for a longer time. According to preliminary simulations, 
the delay of the virus peak may be significantly long for antiviral with 
maximal effectiveness smaller than the critical value. 

Fig. 6. Time evolution of U, I and V, with unitary parameters β, δ, p, c, for 
initial conditions U0 = 3, I0 = 0,V0 = 0.2 (upper plot) and U0 = 1.2, I0 = 0,V0 

= 0.12 (lower plot). 

Fig. 5. Phase portrait of system (2.1), with unitary parameters. Empty circles 
represent the initial states, while solid circles represent final states. Note that 
only the initial states with U0 > 𝒰c = 1 corresponds to scenarios with ℛ0 > 1. 
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5. Characterization of the SARS-CoV-2 target cell model 

In this section, the model parameters in (2.1) will be associated to the 
patients labeled as A, B, C, D, E, F, G, H and I - reported in Wölfel et al. 
(2020). The initial number of target cells U0 is estimated as approxi-
mately 107 cells (Hernandez-Vargas & Velasco-Hernandez, 2020). I0 is 
assumed to be 0 while V0 is determined by interpolation considering an 

incubation period of 7 days (note, that V0 ranges from 0.02 to 5.01 
copies/mL which is below the detectable level of about 100 copies/mL). 
Moreover, the onset of the symptoms is assumed to occurs 4 to 7 days 
after the infection time (day 0, Figs. 7 and 8). The parameters and the 
initial conditions (U0, I0 and V0, with t0 = 0 the infection time) of each 
patient are collected in Table 1. 

According to the system analysis of the previous sections, some 

Fig. 8. Susceptible cells dynamics. The continuous blue line is the simulation with parameter values presented in Hernandez-Vargas & Velasco-Hernandez, 2020. The 
patient labeling is as presented in Wölfel et al. (2020). Simulation for the patient C shows a very low value of U∞ (practically zero), which suggests that the selected 
value of U0 = 1.0e7 may be large. 

Fig. 7. SARS-CoV-2 Dynamics. The continuous blue line is the simulation with parameter values presented in Hernandez-Vargas & Velasco-Hernandez, 2020. The 
patient labeling is as presented in Wölfel et al. (2020). Vclear denotes a value of 50 [copies/ml] under which the virus is not detectable. 
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relevant dynamical values are shown in Table 2. Constant α(0) (defined 
in Theorem 4.1) is smaller than 10 × 10− 4 for all the patients, so it is not 
taken into account for the study. 

Figs. 7 and 8 show the dynamics of V and U. As expected, the states 
converge to 𝒳1

s , although significantly different behaviors can be 
observed for the different patients. From Fig. 8 it can be seen that the 
healthy cells final value U∞ is reduced in cases of patients with large 
values of ℛ0, in spite all simulations have the same initial U0. This can be 
explained from the fact that W(ℛ0e− ℛ0 e𝒦0 ) is monotonically decreasing 
for ℛ0 > 1 (see Figs. 1 and 2), and therefore, 0 < U∞(ℛ01) < U∞(ℛ02)

for R01 > R02 > 1 (see Property 2, above). Note that the susceptible cells 
of patient C converges to U∞ equals to 4.810 × 10− 10 [cell], which can be 
explained by the fact that this patient has a reproduction number (ℛ0) of 
37.57, which is 5.2 times above the cohort mean value of 7.21. Fig. 7 and 

Table 2 show that the viral load of patient C reaches the peak at 1.69 
days post infection (dpi) (40.56 hours post infection, hpi). 

Furthermore, from Fig. 7, it can be seen that for all the cases the viral 
load spreads (i.e.: the virus presents a peak) although ℛV(0) < 0 for all 
patients (i.e., I0 = 0). This can be justified since U0≫𝒰c and, therefore, 
ℛ0 will be greater than 1 + α(0) for all patients (note that, α(0) < 10 ×
10− 4). Moreover, from Table 2, we can corroborate that t̂ I > tc > t̂V 

which is in accordance to what is stated in Theorem 4.1. 
Concerning the immune response, this model makes the assumption 

that it is constant and independent on viral load as well as infected cells. 
Furthermore, neither innate or adaptive response are modeled, being the 
viral load dynamic mainly limited by target cells availability. Since 
recent studies have shown a dysfunctional immune response (i.e.: lym-
phogenia, desregulated secretion of pro-inflammatory cytokines, 
excessive infiltration of monocytes, macrophages and T cells, among 
others) (Diao et al., 2020; Tay et al., 2020), this effect should be added in 
the proposed model, in order to have a more reliable representation 
(and, eventually, a more realistic control objective). In addition, a more 
reliable standard to measure the severity of disease could be related with 
the viral spreadability as well as the deregulated inflammatory response. 

6. Conclusions 

In this work a full dynamical characterization of a COVID-19 in-host 
target-cell model is performed. It is shown that there exists a minimal 
stable equilibrium set depending only on the system parameters. 
Furthermore, it is shown that there exists a parameter-depending 
threshold for the susceptible cells that fully characterizes the virus and 
infected cells qualitative behavior. Simulations demonstrate the poten-
tial utility of such system dynamic characterization to tailor the most 
valuable pipeline drugs against SARS-CoV-2. 
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Appendix A. Stability theory 

In this section some basic definitions and results are given concerning the asymptotic stability of sets and Lyapunov theory, in the context of non- 
linear continuous-time systems. All the following definitions are referred to system 

ẋ(t) = f (x(t)), x(0) = x0, (A.1)  

where x is the system state constrained to be in X⊆Rn, f is a Lipschitz continuous nonlinear function, and ϕ(t; x) is the solution for time t and initial 
condition x. 

Table 2 
Characterization Parameters of patients with COVID-19.  

Patient 𝒰c  U∞ ℛ0  𝒦0  t̂ I  tc t̂V  Vmax 

A 1.51 × 106 1.36 × 104 6.61 − 2.17× 10− 7  10.16 10.24 10.58 1.73 × 107 

B 3.15 × 106 4.88 × 105 3.18 − 6.87× 10− 8  11.54 12.26 12.32 4.35 × 106 

C 2.66 × 105 4.81× 10− 10  37.57 − 6.89× 10− 7  1.43 1.67 1.69 1.47 × 107 

D 4.65 × 106 1.67 × 106 2.15 − 4.89× 10− 9  9.04 9.42 9.44 2.33 × 107 

E 6.94 × 106 4.58 × 106 1.44 − 3.48× 10− 9  15.02 15.16 15.24 4.03 × 106 

F 1.61 × 106 2.03 × 104 6.21 − 7.28× 10− 9  7.12 7.76 7.78 1.42 × 108 

G 6.84 × 106 4.43 × 106 1.46 − 1.1× 10− 9  14.80 14.92 15.00 1.44 × 107 

H 2.59 × 106 2.3 × 105 3.86 − 2.72× 10− 9  5.16 5.44 5.48 1.577 × 108 

I 4.08 × 106 1.14 × 106 2.45 − 3.21× 10− 10  9.28 9.38 9.50 2.60 × 108  

Table 1 
Target limited cell model parameter values for different patients with COVID-19 
(Hernandez-Vargas & Velasco-Hernandez, 2020).  

Patient β δ p c 

A 9.98× 10− 8  0.61 9.3 2.3 

B 1.77× 10− 7  14.11 20.2 0.8 

C 8.89× 10− 7  79.51 134.4 0.4 

D 3.15× 10− 8  45.51 620.2 2.0 

E 5.61× 10− 8  7.51 96.4 5.0 

F 1.41× 10− 8  37.61 995.0 0.6 

G 1.77× 10− 8  8.21 338.4 5.0 

H 1.58× 10− 8  21.11 927.8 1.8 

I 4.46× 10− 9  4.21 994.6 4.3  
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Definition 4. (Equilibrium set) Consider system A.1 constrained by X. The set 𝒳 s⊂X is an equilibrium set if each point x ∈ 𝒳 s is such that f(x) = 0 
(this implying that ϕ(t; x) = x for all t ≥ 0). 

Definition 5. (Attractivity of an equilibrium set) Consider system A.1 constrained by X. A closed equilibrium set 𝒳 s⊂X is attractive in 𝒳⊂X if 
limt→∞‖ ϕ(t; x) ‖𝒳 s = 0 for all x ∈ 𝒳 . 

Any set containing an attractive set is attractive, so the significant attractivity concept in a constrained system is given by the smallest one. 

Definition 6. (ϵ − δ local stability of an equilibrium set) Consider system A.1 constrained by X. A closed equilibrium set 𝒳 s⊂X is ϵ − δ locally stable if 
for all ϵ > 0 it there exists δ > 0 such that in a given boundary of 𝒳 s, ‖ x ‖𝒳 s < δ, it follows that ‖ ϕ(t; x) ‖𝒳 s < ϵ, for all t ≥ 0. 

Definition 7. (Asymptotic stability (AS) of an equilibrium set) Consider system A.1 constrained by X. A closed equilibrium set 𝒳 s ∈ X is asymp-
totically stable (AS) in 𝒳⊂X if it is ϵ − δ locally stable and attractive in 𝒳 . 

Theorem A.1. (Lyapunov theorem (Khalil & Grizzle, 2002)) Consider system A.1 constrained by X and an equilibrium state xs ∈ 𝒳 s⊂X. Let consider a 
function V(x) : Rn→R such that V(x) > 0 for x ∕= xs, V(xs) = 0 and V̇(x(t)) ≤ 0, denoted as Lyapunov function. Then, the existence of such a function implies 
that xs ∈ 𝒳 s is ϵ − δ locally stable. If in addition V̇(x(t)) < 0 for all x ∕= xs and V̇(xs) = 0, then xs ∈ 𝒳 s is asymptotically stable. 

Appendix B. Derivation of the basic reproduction number ℛ0 

The derivation of the basic reproduction number ℛ0 will be given by means of the concept of next-generation matrix (van den Driessche, 2017). 
Consider system (2.1) and the healthy equilibrium x0 = (U0, 0,0), which is stable in the absence of virus. Of the complete state of system (2.1), x =
(U, I,V), only two states depend on infected cells, that is I and V. Let us rewrite the ODEs for this two states in the form 

İ(t) = ℱ I(x) − 𝒢I(x)
V̇(t) = ℱ V(x) − 𝒢V(x)

where ℱ i(x), i = {I,V}, is the rate of appearance of new infections in compartment i, while 𝒢i(x), i = {I,V}, is the rate of other transitions between 
compartment i and the other infected compartments, that is 

ℱ I(x) = βU(t)V(t) and 𝒢I(x) = δI(t)
ℱ V(x) = 0 and 𝒢V(x) = − pI(t) + cV(t)

If we now define 

F =

⎡

⎢
⎢
⎢
⎢
⎣

∂ℱ I(x)
∂I

∂ℱ I (x)
∂V

∂ℱ V(x)
∂I

∂ℱV (x)
∂V

⎤

⎥
⎥
⎥
⎥
⎦

x=x0

=

[
0 βU0
0 0

]

and 

G =

⎡

⎢
⎢
⎢
⎢
⎣

∂𝒢I(x)
∂I

∂𝒢I (x)
∂V

∂𝒢V(x)
∂I

∂𝒢V (x)
∂V

⎤

⎥
⎥
⎥
⎥
⎦

x=x0

=

[
δ 0
− p c

]

then matrix FG− 1, represents the so-called next-generation matrix. Each (i, j) entry of such a matrix represents the expected number of secondary 
infections in compartment i produced by an infected cell introduced in compartment j. The spectral radius of this matrix, that is, the maximum 
absolute value of its eigenvalues, defines the basic reproduction number ℛ0. 

For the specific case of system (2.1), the next-generation matrix is given by 

FG− 1 =

⎡

⎢
⎢
⎢
⎣

βpU0

cδ
βU0

c

0 0

⎤

⎥
⎥
⎥
⎦

Therefore, the basic reproduction number ℛ0 is given by 

ℛ0 =:
βpU0

cδ 

Notice that ℛ0 coincides with the entry (1,1) of matrix FG− 1, thus meaning that ℛ0 represents the expected number of secondary infections 
produced in compartment I by an infected cell originally in I. 
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Appendix C. Technical lemma 

The next Lemma characterizes the virus minimum and maximum times, for system (2.1), in terms of the value of the reproduction number ℛ(t). 

Lemma 1. Consider system (2.1), constrained by the positive set X, at the beginning of the infection t = 0, with U(0) > 0, I(0) ≥ 0 and V(0) > 0 (i.e., x(0) =

(U(0), I(0),V(0)) ∈ 𝒳). 
Then,   

1. if V(t) reaches a local minimum at time t∗V > t0, then ℛ(t∗V) > 1,

2. if V(t) reaches a local maximum at time t∗V > t0, then ℛ(t∗V) < 1, and  

3. if V(t) reaches an inflection point at time t∗V > t0 (a point in which V̇ = 0 and V̈ = 0), then t∗V = tc, where tc is the (unique) time at which ℛ reaches 1 (i.e., 
ℛ(tc) = 1 or, the same, U(tc) = 𝒰c). 

Proof. Any of the three hypothesis (V(t) reaches a local minimum, a local maximum or a inflection point) implies that 

V̇
(
t∗V
)
= pI

(
t∗V
)
− cV

(
t∗V
)
= 0, (C.1)  

which means that 

V
(
t∗V
)
= p

/
cI
(
t∗V
)
. (C.2) 

Consider the critical case of an inflection point, i.e., 

V̈
(
t∗V
)
= pİ

(
t∗V
)
− cV̇

(
t∗V
)
= pİ

(
t∗V
)
= 0. (C.3) 

Thus İ(t∗V) = 0 which, by (2.1.b) at t∗V, is equivalent to 

İ
(
t∗V
)
= βU

(
t∗V
)
V
(
t∗V
)
− δI

(
t∗V
)
= 0. (C.4) 

Now, by (C.2), we have 
(βp

c
U
(
t∗V
)
− δ

)
I
(
t∗V
)
= 0. (C.5) 

Given that I(t∗V) > 0 (note that I(t) is positive for all t > 0), then βp
c U(t∗V) − δ = 0, or 

ℛ
(
t∗V
)
=

βp
cδ

U
(
t∗V
)
= 1. (C.6) 

This way if an inflection point does occurs at t∗V, then t∗V = tc, where tc is the time at which ℛ = 1. This proves item (iii). 
Furthermore, if V reaches a local minimum at t∗V , then V̈(t∗V) > 0 (instead of V̈(t∗V) = 0, as it is in (C.3), which by (C.2) implies that 

ℛ
(
t∗V
)
=

βp
cδ

U
(
t∗V
)
> 1. (C.7) 

This proves item (i). 
On the other hand, if V reaches a local maximum at t∗V , then V̈(t∗V) < 0 (instead of V̈(t∗V) = 0, as it is in (C.3)), which by (C.2) implies that 

ℛ
(
t∗V
)
=

βp
cδ

U
(
t∗V
)
< 1. (C.8) 

This proves item (ii). □ 
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