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Here we present the mI-CLAIm checklist, a tool intended to improve transparent reporting of Al algorithms in medicine.
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The application of artificial intelligence (Al) in medicine is an old ideal=3, but methods for
this in the past involved programming computers with patterns or rules ascertained from
human experts, which resulted in deterministic, rules-based systems. The study of Al in
medicine has grown tremendously in the past few years due to increasingly available
datasets from medical practice, including clinical images, genetics, and electronic health
records, as well as the maturity of methods that use data to teach computers*-. The use of
data labeled by clinical experts to train machine, probabilistic, and statistical models is
called “supervised machine learning’. Successful uses of these new machine-learning
approaches include targeted real-time early-warning systems for adverse events’, the
detection of diabetic retinopathy®, the classification of pathology and other images, the
prediction of the near-term future state of patients with rheumatoid arthritis®, patient
discharge disposition1, and more.

These newer machine-learning methods have clear advantages, including higher levels of
performance, adaptability to more complex inputs (such as images), and scalability, over
older rules-based systems. However, older rules-based systems had one clear advantage: by
definition, the methodologies implemented in the programming code were more
interpretable by medical professionals, as these actually came from experts. Newer
methodologies have the danger of becoming more complex and less interpretable, even
when sophisticated interpretation technique are used!l. Indeed, the potential lack of method
interpretability has been called out as an area of worry}2. Unclear documentation on training
and test-cohort selection, development methodology, and how systems were validated has
added to the confusion. This is particularly important as more of these models make their
way into clinical testing and into medical products and services, with many of these already
bring approved by the US Food and Drug Administration in the past few years. More calls
for transparency of the ‘explainability’, and probably the interpretability, of machine-
learning models can be expected, as these models in other fields have shown serious
shortcomings when researchers have attempted to generalize across populations.

As the field progresses, an increasing number of machine-learning models are being tested
in interventional clinical trials, and new reporting guidelines have now been proposed for
clinical-trial protocols and trial reports involving Al as an intervention13-14, However, there
is still a need for guidelines that better inform readers and users about the machine-learning
models themselves, especially about how they were developed and tested in retrospective
studies.

In the past, ‘minimum information” guidelines have substantially improved the downstream
utility, transparency, and interpretability of data deposited in repositories and reported in
publications across many other research domains, including data on randomized control
trials1®, RNA (gene) expression, diagnostic accuracy®, observational studies!®, and meta-
analyses. Here we propose the first steps toward a minimum set of documentation to bring
similar levels of transparency and utility to the application of Al in medicine: minimum
information about clinical artificial intelligence modeling (MI-CLAIM). With this work, we
are targeting medical-algorithm designers, repository managers, manuscript writers and
readers, journal editors, and model users.
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General principles of the MI-CLAIM design

Sharing of raw clinical data is often neither possible, due to institutional patient-privacy
policies, nor advisable without such safeguards in place. Furthermore, the same methods that
are enabling new analyses of clinical data may also enable the re-identification of patients in
sometimes unpredictable ways?’. In any case, validation of the exact results is generally of
less interest than whether or not the results are validated in a new cohort of patients.
Therefore, MI-CLAIM has two purposes: first, to enable a direct assessment of clinical
impact, including fairness and bias; and second, to allow rapid replication of the technical
design process of any legitimate clinical Al study.

The six parts of the MI-cLAIM
There are six parts to the MI-CLAIM process (Fig. 1). These are outlined below.

Part 1: study design

This section describes the study as a whole. It can be broken down into four subsections: (a)
clinical setting, (b) performance measures, (c) population composition, and (d) current
baselines to measure performance against.

a. The clinical problem and the workflow by which a successful model would be
employed should be described. Formulating the exact question the algorithm is
supposed to answer, as well as how this fits into specific clinical decision-
making, is critical, to assess both accuracy and bias. A recent example of this is
how the choice of predicting future healthcare costs as a proxy for healthcare
needs induced large-scale racial bias in a population health-management
algorithm1®,

b. The performance measurements that were used to evaluate the results and how
those measurements translate into successes and failures in the clinical setting
should be described in detail. Part 4 (below) provides greater detail on
performance measurements.

C. Details should be provided that explain how representative the setting and
cohorts are of real-world settings for the clinical question at hand. Additionally,
whether it is important that performance is comparable among certain subgroups
of the cohorts (e.g., people with diabetes who also have hypertension, or all
people with type 2 diabetes) should be stated.

d. What the clinical baseline abilities are, such as current standard models or
methodologies employed in the clinical setting that can act as a proxy for the
standard of care in order to gauge how useful the new model is above and beyond
current standards, should be included.

Part 2: separation of data into partitions for model training and model testing

Models are said to be overfit if they have learned very specific patterns within the noise of
the training data that do not reflect predictive patterns in the real-world cohorts that the
model will be applied to. Information leakage occurs when information that would not be
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available to a model under real-world circumstances is used to train the model. Examples of
this include leaking information from the future into the past in time-series modeling, and
leaking information from the test set into the training set, such as the same person having
one record in the training set and another in the testing set. These two factors are the
strongest drivers of poor generalization out of sample and misrepresentations of model
efficacy. Documentation detailing the steps that were taken to prevent overfitting and
information leakage is critically important for understanding the impact and implications of
any medical Al study.

There are two main methods for testing for algorithm generalization: internal and external.
Multiple different data conventions exist for internal training and testing, such as cross-
validation, two-way splits (training, test), and three-way splits (training, validation, and test).
Testing with an external cohort from an independent clinic or hospital system is the highest
level of validation.

Within this document, we specifically define the test cohort as a group of cases, set aside at
the beginning of the study, against which the final selected model or algorithm is evaluated a
single time. We refer to all other cases as members of the training cohort, used for model
training, optimization, and selection, which allows researchers to determine the best
approach for using the training data for their specific study.

Clarity on how samples were partitioned into separate groups for training and testing at the
beginning of the study is essential. Ideally, members of the test cohort will reflect the target
clinical population, including the distribution of the clinical outcomes of interest. Methods
used to create representative test populations, such as stratified sampling and reporting a
comparison of statistics that describe the distribution of variables and outcomes within
training and testing populations, should be clearly documented. Documentation must include
how any information from the test set was excluded from all activities before the final
performance validation. For example, that information should not be considered during
feature normalization, model selection, or hyperparameter determination. Cross-validation is
not a replacement for a separate test cohort and should not be described as such.

Part 3: optimization and final model selection

With a test set established, the training cohort can now safely be used to estimate (a) the best
format of data, (b) the type of model to be used, and (c) the optimal model hyperparameters.
This section should begin with data provenance, clearly specifying where the data (in the
most raw form) originated, how the data were cleaned and formatted, and, if relevant, what
data were additionally available but not used. Transformations (such as de-identification,
feature engineering, normalization, and encoding) that were done to the data prior input of
the data into the model or algorithm should be described.

The type of models that were evaluated and the process used for selecting the top performing
combination of model type, hyperparameters, and data formatting should be clearly
described. An example statement is provided in Box 1: the process of preparing the baseline
standard-of-care models should be described in equivalent detail, and should include
information about the availability or existing use of baseline methods and data.
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Part 4: performance evaluation

Model performance should be reported at two levels. First, how does the model itself
perform (F scores, Dice coefficient, or area under the curve (AUC))? Second, how do the
model predictions translate into the most relevant clinical performance metrics (sensitivity,
specificity, positive predictive value, negative predictive value, numbers needed to treat, and
AUC)? This section will include a typical results table with the performance of the baseline
and new models tested, along with appropriate statistics for significance. If any important
subgroups of patients were identified a priori in Part 1, the performance of the baseline and
model in each of those subgroups should also be provided in an identically formatted table.

Part 5: model examination

The provision of some intuition as to how complex models are behaving is useful for many
clinical problems and typically serves many purposes. First, it may provide a ‘sanity check’
that the model reached its accuracy by focusing on relevant inputs and not by focusing on
unanticipated artifacts of the data. Second, it can uncover biases that model users should be
aware of. These biases could relate to adequate representation of clinical and social
subgroup samples during training or anticipated points of failure. Third, it provides an
understanding of how the model will behave as shifts are seen in the underlying inputs®®.
Fourth, there are many potential tasks that clinical Al models might be applied to that no
human is definitively capable of performing well20. In these cases, it may be useful to
harness what the model has learned to generate testable hypotheses to move those fields of
science forward.

The appropriate type of examination to perform is dependent upon the type of data being
used in the study and the type of model being employed. Clinical Al models accept two
broad categories of input data: structured and unstructured. Raw features for structured data
can be explicitly defined and understood by researchers; examples include medication
names, diagnoses, procedures, laboratory values, and demographic variables. Unstructured
data can be loosely defined as the absence of explicitly definable raw features. The most
common examples of unstructured data types in the clinical setting include images, whose
raw features are individual pixels; natural language, whose raw features are characters; and
time series, whose raw features are points in the series.

Visual explanations such as saliency maps2! and their equivalents can be obtained through
the use of various methods?2. Case-level coefficients, or their equivalents that provide
direction and magnitude of effect, can be generated for structured data by multiple methods
(such as MAQEC, SHAP). Sensitivity analysis for classification models should include a
description of the features of the top five cases in which the model was most confident and
correct, most confident and incorrect, and least confident. The same philosophy can be
applied to regression models through examination of the cases in which the model had the
largest error above the true answer, the largest error below the true answer, and the smallest
error. For unsupervised models, domain experts can compare learned representations to
known archetypes for fidelity.
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The results of model examination must always be considered in the context of the model’s
performance. This means that the results of the examination of a model with excellent
performance metrics for a particular clinical task should be considered more relevant than
the resulting examination of a lower-performing model for the same task. Furthermore, no
single examination or interpretation methodology is perfect. For this reason, we require that
a minimum of two of the techniques noted above be included as a part of every manuscript.
Examination is necessary; however, reporting authors should be free to select and justify any
examination approach that addresses the underlying clinical task for which the model or
algorithm was designed.

Part 6: reproducible pipeline

Ideally, the code for the complete model-building pipeline should be provided, as well-
documented scripts or notebooks, including the exact computer environment requirements,
so that an independent researcher can run the pipeline end to end without any modifications
to the code being necessary. Preferably, the entire pipeline, beginning with a few examples
of properly formatted raw input data and ending with performance evaluation, should be
shared via a single container with all of the appropriate versions of necessary dependencies
(e.g., through the use of containers and virtualization tools such as Docker). Code for
building and running the model should output as many intermediate results as possible so
that independent researchers can identify points of divergence when they attempt to
reproduce it.

The goal here is not for an independent researcher to replicate the exact results but instead
for them to replicate the exact process by which the results were generated, providing that
second researcher with everything necessary to rapidly validate the results in their own
cohorts. This enables the new researcher to determine whether the results are validated in
their own clinical settings and also facilitates the transfer of pipelines from one clinical task
to another, which rapidly speeds up prototyping and helps the entire field to develop best
practices.

Real-world circumstances may prevent the complete sharing of code in certain situations,
such as for results published by commercial entities that view their code base as a
proprietary trade secret. Accordingly, we propose a tiered system of transparency. Tier 1
represents complete open sharing of all the software code and scripts. Tier 2 would allow a
trusted neutral third party to evaluate the code for accuracy and fairness and provide a report
that details the results to accompany the manuscript. For tier 3, authors could release a
virtual computing machine or container running the code as an executable (binary) to enable
external researchers to test model results against new data without anything about the
underlying model itself being revealed. Tier 4 represents no sharing of the underlying model
or codebase. We expect model repositories and journals to pick whichever tier thresholds
they want to adopt, on the basis of their own needs and standards.

Discussion

Our goal is to develop a documentation standard that can serve clinical scientists, data
scientists, and the clinicians of the future who will be using these tools. To that end, a
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checklist is provided as a part of MI-CLAIM that should be included along with each
clinical Al model or manuscript (Table 1). Additionally, we hope that this description will
stimulate discussion of the proposed MI-CLAIM standards, and we encourage the clinical
community, as well as the Al community, to provide us with their views on how this
standard can be improved. For this purpose, a public Github repository has been set up to
coincide with the release of this Comment that will allow the community to comment on
existing sections and suggest additions.
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Box 1 |
Example model selection and optimization statement from Part 3

Samples were randomly divided into three partitions: training, validation, and test
(60:20:20). Fivefold cross-validation (stratified on age, sex, and the outcome variable) on
the validation cohort was used to evaluate the results of a grid search on the training
cohort comparing number of input features, number of variables to consider at each split,
number of splits, and number of trees for random forest models. No other model types
were considered. The top performing approach was selected on the basis of median AUC
on the validation cohort. The code for implementing the process for feature engineering
and model selection is in the ‘Code availability’ section.
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A schematic representation of the six components of a clinical Al study.
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