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Here we present the mI-CLAIm checklist, a tool intended to improve transparent reporting of AI algorithms in medicine.
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The application of artificial intelligence (AI) in medicine is an old idea1–3, but methods for 

this in the past involved programming computers with patterns or rules ascertained from 

human experts, which resulted in deterministic, rules-based systems. The study of AI in 

medicine has grown tremendously in the past few years due to increasingly available 

datasets from medical practice, including clinical images, genetics, and electronic health 

records, as well as the maturity of methods that use data to teach computers4–6. The use of 

data labeled by clinical experts to train machine, probabilistic, and statistical models is 

called ‘supervised machine learning’. Successful uses of these new machine-learning 

approaches include targeted real-time early-warning systems for adverse events7, the 

detection of diabetic retinopathy8, the classification of pathology and other images, the 

prediction of the near-term future state of patients with rheumatoid arthritis9, patient 

discharge disposition10, and more.

These newer machine-learning methods have clear advantages, including higher levels of 

performance, adaptability to more complex inputs (such as images), and scalability, over 

older rules-based systems. However, older rules-based systems had one clear advantage: by 

definition, the methodologies implemented in the programming code were more 

interpretable by medical professionals, as these actually came from experts. Newer 

methodologies have the danger of becoming more complex and less interpretable, even 

when sophisticated interpretation technique are used11. Indeed, the potential lack of method 

interpretability has been called out as an area of worry12. Unclear documentation on training 

and test-cohort selection, development methodology, and how systems were validated has 

added to the confusion. This is particularly important as more of these models make their 

way into clinical testing and into medical products and services, with many of these already 

bring approved by the US Food and Drug Administration in the past few years. More calls 

for transparency of the ‘explainability’, and probably the interpretability, of machine-

learning models can be expected, as these models in other fields have shown serious 

shortcomings when researchers have attempted to generalize across populations.

As the field progresses, an increasing number of machine-learning models are being tested 

in interventional clinical trials, and new reporting guidelines have now been proposed for 

clinical-trial protocols and trial reports involving AI as an intervention13,14. However, there 

is still a need for guidelines that better inform readers and users about the machine-learning 

models themselves, especially about how they were developed and tested in retrospective 

studies.

In the past, ‘minimum information’ guidelines have substantially improved the downstream 

utility, transparency, and interpretability of data deposited in repositories and reported in 

publications across many other research domains, including data on randomized control 

trials15, RNA (gene) expression, diagnostic accuracy15, observational studies16, and meta-

analyses. Here we propose the first steps toward a minimum set of documentation to bring 

similar levels of transparency and utility to the application of AI in medicine: minimum 

information about clinical artificial intelligence modeling (MI-CLAIM). With this work, we 

are targeting medical-algorithm designers, repository managers, manuscript writers and 

readers, journal editors, and model users.
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General principles of the MI-CLAIM design

Sharing of raw clinical data is often neither possible, due to institutional patient-privacy 

policies, nor advisable without such safeguards in place. Furthermore, the same methods that 

are enabling new analyses of clinical data may also enable the re-identification of patients in 

sometimes unpredictable ways17. In any case, validation of the exact results is generally of 

less interest than whether or not the results are validated in a new cohort of patients. 

Therefore, MI-CLAIM has two purposes: first, to enable a direct assessment of clinical 

impact, including fairness and bias; and second, to allow rapid replication of the technical 

design process of any legitimate clinical AI study.

The six parts of the MI-cLAIM

There are six parts to the MI-CLAIM process (Fig. 1). These are outlined below.

Part 1: study design

This section describes the study as a whole. It can be broken down into four subsections: (a) 

clinical setting, (b) performance measures, (c) population composition, and (d) current 

baselines to measure performance against.

a. The clinical problem and the workflow by which a successful model would be 

employed should be described. Formulating the exact question the algorithm is 

supposed to answer, as well as how this fits into specific clinical decision-

making, is critical, to assess both accuracy and bias. A recent example of this is 

how the choice of predicting future healthcare costs as a proxy for healthcare 

needs induced large-scale racial bias in a population health-management 

algorithm18.

b. The performance measurements that were used to evaluate the results and how 

those measurements translate into successes and failures in the clinical setting 

should be described in detail. Part 4 (below) provides greater detail on 

performance measurements.

c. Details should be provided that explain how representative the setting and 

cohorts are of real-world settings for the clinical question at hand. Additionally, 

whether it is important that performance is comparable among certain subgroups 

of the cohorts (e.g., people with diabetes who also have hypertension, or all 

people with type 2 diabetes) should be stated.

d. What the clinical baseline abilities are, such as current standard models or 

methodologies employed in the clinical setting that can act as a proxy for the 

standard of care in order to gauge how useful the new model is above and beyond 

current standards, should be included.

Part 2: separation of data into partitions for model training and model testing

Models are said to be overfit if they have learned very specific patterns within the noise of 

the training data that do not reflect predictive patterns in the real-world cohorts that the 

model will be applied to. Information leakage occurs when information that would not be 
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available to a model under real-world circumstances is used to train the model. Examples of 

this include leaking information from the future into the past in time-series modeling, and 

leaking information from the test set into the training set, such as the same person having 

one record in the training set and another in the testing set. These two factors are the 

strongest drivers of poor generalization out of sample and misrepresentations of model 

efficacy. Documentation detailing the steps that were taken to prevent overfitting and 

information leakage is critically important for understanding the impact and implications of 

any medical AI study.

There are two main methods for testing for algorithm generalization: internal and external. 

Multiple different data conventions exist for internal training and testing, such as cross-

validation, two-way splits (training, test), and three-way splits (training, validation, and test). 

Testing with an external cohort from an independent clinic or hospital system is the highest 

level of validation.

Within this document, we specifically define the test cohort as a group of cases, set aside at 

the beginning of the study, against which the final selected model or algorithm is evaluated a 

single time. We refer to all other cases as members of the training cohort, used for model 

training, optimization, and selection, which allows researchers to determine the best 

approach for using the training data for their specific study.

Clarity on how samples were partitioned into separate groups for training and testing at the 

beginning of the study is essential. Ideally, members of the test cohort will reflect the target 

clinical population, including the distribution of the clinical outcomes of interest. Methods 

used to create representative test populations, such as stratified sampling and reporting a 

comparison of statistics that describe the distribution of variables and outcomes within 

training and testing populations, should be clearly documented. Documentation must include 

how any information from the test set was excluded from all activities before the final 

performance validation. For example, that information should not be considered during 

feature normalization, model selection, or hyperparameter determination. Cross-validation is 

not a replacement for a separate test cohort and should not be described as such.

Part 3: optimization and final model selection

With a test set established, the training cohort can now safely be used to estimate (a) the best 

format of data, (b) the type of model to be used, and (c) the optimal model hyperparameters. 

This section should begin with data provenance, clearly specifying where the data (in the 

most raw form) originated, how the data were cleaned and formatted, and, if relevant, what 

data were additionally available but not used. Transformations (such as de-identification, 

feature engineering, normalization, and encoding) that were done to the data prior input of 

the data into the model or algorithm should be described.

The type of models that were evaluated and the process used for selecting the top performing 

combination of model type, hyperparameters, and data formatting should be clearly 

described. An example statement is provided in Box 1: the process of preparing the baseline 

standard-of-care models should be described in equivalent detail, and should include 

information about the availability or existing use of baseline methods and data.
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Part 4: performance evaluation

Model performance should be reported at two levels. First, how does the model itself 

perform (F scores, Dice coefficient, or area under the curve (AUC))? Second, how do the 

model predictions translate into the most relevant clinical performance metrics (sensitivity, 

specificity, positive predictive value, negative predictive value, numbers needed to treat, and 

AUC)? This section will include a typical results table with the performance of the baseline 

and new models tested, along with appropriate statistics for significance. If any important 

subgroups of patients were identified a priori in Part 1, the performance of the baseline and 

model in each of those subgroups should also be provided in an identically formatted table.

Part 5: model examination

The provision of some intuition as to how complex models are behaving is useful for many 

clinical problems and typically serves many purposes. First, it may provide a ‘sanity check’ 

that the model reached its accuracy by focusing on relevant inputs and not by focusing on 

unanticipated artifacts of the data. Second, it can uncover biases that model users should be 

aware of. These biases could relate to adequate representation of clinical and social 

subgroup samples during training or anticipated points of failure. Third, it provides an 

understanding of how the model will behave as shifts are seen in the underlying inputs19. 

Fourth, there are many potential tasks that clinical AI models might be applied to that no 

human is definitively capable of performing well20. In these cases, it may be useful to 

harness what the model has learned to generate testable hypotheses to move those fields of 

science forward.

The appropriate type of examination to perform is dependent upon the type of data being 

used in the study and the type of model being employed. Clinical AI models accept two 

broad categories of input data: structured and unstructured. Raw features for structured data 

can be explicitly defined and understood by researchers; examples include medication 

names, diagnoses, procedures, laboratory values, and demographic variables. Unstructured 

data can be loosely defined as the absence of explicitly definable raw features. The most 

common examples of unstructured data types in the clinical setting include images, whose 

raw features are individual pixels; natural language, whose raw features are characters; and 

time series, whose raw features are points in the series.

Visual explanations such as saliency maps21 and their equivalents can be obtained through 

the use of various methods22. Case-level coefficients, or their equivalents that provide 

direction and magnitude of effect, can be generated for structured data by multiple methods 

(such as MAgEC, SHAP). Sensitivity analysis for classification models should include a 

description of the features of the top five cases in which the model was most confident and 

correct, most confident and incorrect, and least confident. The same philosophy can be 

applied to regression models through examination of the cases in which the model had the 

largest error above the true answer, the largest error below the true answer, and the smallest 

error. For unsupervised models, domain experts can compare learned representations to 

known archetypes for fidelity.
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The results of model examination must always be considered in the context of the model’s 

performance. This means that the results of the examination of a model with excellent 

performance metrics for a particular clinical task should be considered more relevant than 

the resulting examination of a lower-performing model for the same task. Furthermore, no 

single examination or interpretation methodology is perfect. For this reason, we require that 

a minimum of two of the techniques noted above be included as a part of every manuscript. 

Examination is necessary; however, reporting authors should be free to select and justify any 

examination approach that addresses the underlying clinical task for which the model or 

algorithm was designed.

Part 6: reproducible pipeline

Ideally, the code for the complete model-building pipeline should be provided, as well-

documented scripts or notebooks, including the exact computer environment requirements, 

so that an independent researcher can run the pipeline end to end without any modifications 

to the code being necessary. Preferably, the entire pipeline, beginning with a few examples 

of properly formatted raw input data and ending with performance evaluation, should be 

shared via a single container with all of the appropriate versions of necessary dependencies 

(e.g., through the use of containers and virtualization tools such as Docker). Code for 

building and running the model should output as many intermediate results as possible so 

that independent researchers can identify points of divergence when they attempt to 

reproduce it.

The goal here is not for an independent researcher to replicate the exact results but instead 

for them to replicate the exact process by which the results were generated, providing that 

second researcher with everything necessary to rapidly validate the results in their own 

cohorts. This enables the new researcher to determine whether the results are validated in 

their own clinical settings and also facilitates the transfer of pipelines from one clinical task 

to another, which rapidly speeds up prototyping and helps the entire field to develop best 

practices.

Real-world circumstances may prevent the complete sharing of code in certain situations, 

such as for results published by commercial entities that view their code base as a 

proprietary trade secret. Accordingly, we propose a tiered system of transparency. Tier 1 

represents complete open sharing of all the software code and scripts. Tier 2 would allow a 

trusted neutral third party to evaluate the code for accuracy and fairness and provide a report 

that details the results to accompany the manuscript. For tier 3, authors could release a 

virtual computing machine or container running the code as an executable (binary) to enable 

external researchers to test model results against new data without anything about the 

underlying model itself being revealed. Tier 4 represents no sharing of the underlying model 

or codebase. We expect model repositories and journals to pick whichever tier thresholds 

they want to adopt, on the basis of their own needs and standards.

Discussion

Our goal is to develop a documentation standard that can serve clinical scientists, data 

scientists, and the clinicians of the future who will be using these tools. To that end, a 
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checklist is provided as a part of MI-CLAIM that should be included along with each 

clinical AI model or manuscript (Table 1). Additionally, we hope that this description will 

stimulate discussion of the proposed MI-CLAIM standards, and we encourage the clinical 

community, as well as the AI community, to provide us with their views on how this 

standard can be improved. For this purpose, a public Github repository has been set up to 

coincide with the release of this Comment that will allow the community to comment on 

existing sections and suggest additions.
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Box 1 |

Example model selection and optimization statement from Part 3

Samples were randomly divided into three partitions: training, validation, and test 

(60:20:20). Fivefold cross-validation (stratified on age, sex, and the outcome variable) on 

the validation cohort was used to evaluate the results of a grid search on the training 

cohort comparing number of input features, number of variables to consider at each split, 

number of splits, and number of trees for random forest models. No other model types 

were considered. The top performing approach was selected on the basis of median AUC 

on the validation cohort. The code for implementing the process for feature engineering 

and model selection is in the ‘Code availability’ section.
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Fig. 1 |. 
A schematic representation of the six components of a clinical AI study.
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