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Abstract

Microwave ablation has become a common treatment method for liver cancers. Unfortunately, 

microwave ablation success is correlated with clinician’s ability for proper electrode placement 

and assess ablative margins, requiring accurate imaging of liver tumors and ablated zones. 

Conventionally, ultrasound and computed tomography are utilized for this purpose, yet both have 

their respective drawbacks. As an alternate approach, electrode displacement elastography offers 

promise but is still plagued by decorrelation artifacts reducing lesion depiction and visualization. 

A recent filtering method, namely dictionary representation, has improved contrast-to-noise ratios 

without reducing delineation contrast. As a supplement to this recent work, this paper evaluates 

adaptations on this initial dictionary-learning algorithm and applies them to an EDE phantom and 

15 in-vivo patient datasets. Two new adaptations of dictionary representations were evaluated, 

namely a combined dictionary and magnitude-based dictionary representation. When comparing 

numerical results, the combined dictionary representation algorithm outperforms the previous 

developed dictionary representation in signal-to-noise (1.54 dB) and contrast-to-noise (0.67 dB) 

ratios, while a magnitude dictionary representation produces higher noise levels, but improves 

visualized strain tensor resolution.

I. INTRODUCTION

Surgical techniques such as resection and transplantation are the gold-standard for treatment 

of liver cancers [1]. Unfortunately 3 out of 4 patients are not viable candidates due to 

multiple or advanced metastatic disease, recurrent tumors, low hepatic reserve, and medical 

comorbidities [2]. Minimally invasive procedures are therefore being offered to patients with 

survival results similar to surgical resection [3]. Utilization of minimally invasive 

procedures, such as microwave ablation (MWA), are favorable as it reduces surgical 

morbidity, mortality, and large incisions to patients [4]. These treatments are also of lower 

cost and allow for repeated treatments if needed to improve survival [5]. However to achieve 
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proper treatment using MWA, correct energy delivery, proper electrode placement, and most 

importantly verification of minimal ablative margins are needed, all of which require 

accurate image representation of pre and post ablation regions [6].

Commonly, MWA suites utilize ultrasound and computed tomography (CT) during 

procedures for visualizing pre-ablation tumors and assessing post-ablation regions. Here, 

CT’s role validates microwave electrode placement and post-ablation margins, however 

Contrast Enhanced CT (CECT) is time-consuming, costly, and results in radiation exposure. 

On the other hand, ultrasound is nonionizing and provides real-time guidance of electrode 

placement and approximate monitoring of ablation progress [7]. Ultrasound alone may not 

produce sufficient contrast and can overestimate the size of ablated areas [8].

An alternative to ultrasound and CT, less commonly used in clinical procedures is 

elastography, specifically electrode displacement elastography (EDE) [9]. EDE uses quasi-

static deformations induced by electrode perturbations to visualize local stiffness differences 

in tissue with high contrast-to-noise ratios (CNR). EDE has been validated in phantoms, 

animal models, and in vivo patient data [10–12].

Unfortunately, displacement estimation in EDE is a noisy process making visualizing liver 

tumors at deeper depths and low signal-to-noise ratios (SNR) difficult [13]. A Multilevel 2D 

Normalized Cross-Correlation (MNCC) algorithm was used due to its high success rates and 

CNR for EDE [12]. Methods to combat decorrelation noise such as companding, 

regularization, and temporal stretching have been implemented, yet noise artifacts are still a 

problem [14–16]. We recently utilized dictionary learning to denoise displacement estimates 

which maintained contrast while reducing noise [17]. The goal in this paper was to improve 

the dictionary learning process for phantom and in-vivo datasets. Novel variations of 

dictionary-learning algorithms were also evaluated.

II. METHODS

The protocol used for analysis in this paper is shown in Fig. 1, where the red box labeled 

filtering incorporates adapted dictionary learning [17]. Flowchart steps in Fig. 1 are further 

described in the following sections.

A. Data Collection and Displacement Estimation

Radiofrequency (RF) data was collected using a Siemens S2000 (Siemens Inc., CA, USA) 

system with a 6C1 HD curvilinear transducer on an EDE phantom with deformations 

introduced using an actuator [17]. Fifteen independent datasets were collected using the 

ultrasound research interface (URI) on the system [17].

In-vivo RF data on patients was collected during MWA procedures at the University of 

Wisconsin (UW)-Madison Hospitals and clinics following a protocol approved by the health 

sciences institutional review board at UW-Madison. All 15 patients involved in this study 

provided informed consent prior to the procedure. During the procedure, 80 RF frames were 

acquired after ablation during which clinicians perturbed the electrode by approximately 1 

mm. Signal and image processing was performed offline in MATLAB to obtain 
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displacement vectors and strain tensors. Displacement estimates were obtained using the 

MNCC method described in [18] using the procedure in [17].

B. Filtering Displacement Estimates

Each displacement filtering method is shown in Table 1. Median filtering utilized a kernel 

size of 1.9 × 1.9 mm and dictionary representation [17] utilized a patch size of 4.0 × 4.0 mm 

and 80% patch overlap with dictionaries learned directly from displacement estimates to be 

filtered. To maintain consistency, a single displacement frame showing largest cross-

sectional area was manually selected for each patient by an untrained observer for 

comparison.

When filtering using the individual dictionary method, the initial dictionary is selected as 

image patches with the highest energy directly from the image to be denoised. An iterative 

dictionary learning algorithm alternates between updating the dictionary and coefficients 

using block-coordinate descent. Finally the algorithm is repeated individually for axial and 

lateral displacement vectors [17]. Conversely, for a combined representation, the dictionary 

learning process had to be linked, where coefficients and denoised displacement image for 

axial and lateral vectors were obtained using the combined dictionary representation in (1), 

where X denotes denoised displacement estimates, Y the median filtered noisy displacement 

estimates, subscripts Ax and Lat refer to axial and lateral displacement vectors respectively, 

and Rij is the matrix which extracts the (i, j) block from the displacement map. After each 

iteration of minimizing (1), the coefficient vector, αComb, was updated using (2) from the 

new updated αAx and αLat. Here ϕ = 0.5 was used to dictate the weight of the axial and 

lateral coefficient vector onto the combined coefficient vector, where ϕ = 0 used only axial 

updated coefficient vector and ϕ = 1 used only lateral. Similar to learning the individual 

dictionary, the axial and lateral combined dictionaries, DAx and DLat, were found using a 

common coefficient vector as shown in (3).

αAx, XAx = arg min
αAx, XAx

λ XAx − Y Ax 2
2

+ ∑
ij

μsparse αComb 1 + ∑
ij

DAxαComb − RijY Ax 2
2

αLat, XLat = arg min
αLat, XLat

λ XLat − Y Lat 2
2

+ ∑
ij

μsparse αComb 1 + ∑
ij

DLatαComb − RijY Lat 2
2

(1)

αComb = ϕ αLat − αAx + αAx (2)

min
α 0 ≤ κ

yAxial − DAxialα + yLateral − DLateralα (3)

The magnitude of the dictionary representation was also utilized. Displacement estimates 

contain both axial (dy) and lateral (dx) components represented as a magnitude vector (d ) 

and phase angle (θ) shown in Fig. 2. This allows a single individual dictionary to be learned 
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by using d  as displacements in the individual dictionary representation algorithm. Strain 

tensors can be directly estimated from the magnitude displacement map or decomposed into 

axial and lateral components before strain tensor calculation. All strain tensors were 

estimated using a 2D Savitzky-Golay digital differentiator of size 0.2 × 5.0 mm using 0th × 

2nd order polynomials for x and y directions respectively [19].

III. RESULTS

After displacement estimation using MNCC, all filtering methods described in Table 1 were 

done, followed by strain tensor calculation. First, quantitative metrics were obtained for each 

filtering method. Target and background ROIs were placed to calculate SNR, contrast, and 

CNR for all methods as defined in [12].

EDE phantom metrics are shown in Table 2. The combined dictionary provides highest SNR 

and CNR, with a slight reduction in contrast. Magnitude dictionaries have higher SNR, 

contrast, and CNR than the original and median filtered results, but lower than other 

dictionary methods.

In-vivo strain tensor metrics are shown by boxplots in Fig. 3, where (a) shows SNR, (b) 

contrast, and (c) CNR with axial results in blue and lateral results in red. SNR distributions 

in Fig. 3 (a) show very little difference between original and median filtering approaches. 

For dictionary representations, individual and combined dictionaries show very similar 

results, where axial SNR shows the highest values with the combined dictionary 

representation. Axial SNR shows the tightest and highest distribution with mean and 

standard deviation of 4.38 ± 0.69 dB. Magnitude vector dictionary provides the lowest 

values with mean of 1.31 dB, while magnitude components provide higher median values of 

means 2.39 dB and 2.86 dB for axial and lateral respectively. Magnitude also has the widest 

distribution with standard deviations of 1.4 dB axially and 1.98 dB laterally indicating 

inconsistent SNR across patients.

Contrast distributions shown in Fig. 3 (b) have similar results for original with means of 26.0 

dB and 15.0 dB and median filtering with means of 26.6 dB and 15.6 dB. On the other hand, 

lateral individual, lateral combined, and magnitude vector dictionaries show similar 

distributions with mean values of 21.7, 20.6, and 20.8 dB respectively. Axial individual and 

combined dictionaries show similar tight distribution widths with standard deviations of 2.2 

and 1.5 dB. Individual dictionary representations have the highest and tightest contrast 

distribution with mean of 26.7 dB. CNR distributions are shown in Fig. 3 (c), where again 

original and median filtered distributions look very similar with mean and standard 

deviations of 1.92 ± 1.09 dB and 2.15 ± 1.02 dB axially and 2.34 ± 0.70 dB and 2.60 ± 0.64 

dB laterally. However, CNR distributions of individual and combined dictionaries are much 

higher than other distributions with combined dictionary having the highest in axial and 

lateral directions with means of 3.90 ± 0.45 dB and 4.08 ± 0.84 dB. Magnitude vector 

distribution was the lowest of all methods with mean of 1.86 ± 0.63 dB.

Overall, the combined dictionary learning algorithm improved SNR and CNR by 1.54 dB 

(26%) and 0.67 dB (12%) when compared to the individual dictionary learning, while also 
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showing a decrease in contrast by 2.18 dB (13%) for EDE phantom data. Similarly, the 

combined dictionary improved SNR and CNR by approximately 0.17 dB (4.0%) and 0.63 

dB (19%), while also showing a decrease in contrast by 2.2 dB (8.2%) for in-vivo patients.

Finally, visualization using each of the filtering methods from Table 1 are shown for an EDE 

phantom in Fig. 4 and a patient with colon cancer metastasized to the liver in Fig. 5. The 

approximate location of the ablation zone shown in Fig. 4 (a) were matched both by size and 

location in strain tensor images in Fig. 4 (b–h). Observe in Figs. 4 (c, e) the gradual increase 

in lesion boundary contrast and lowered noise within the ablated region as well as lower 

noise outside. Lateral images in Figs. 4 (d, f) depict a smaller ablated zone, with reduced 

boundary smoothness. However, noise reduction in lateral strain tensor images is similar to 

that seen with axial strain, with the lowest noise and best boundary delineation obtained with 

the combined dictionary. However, with magnitude component images in Fig. 4 (g) and (h), 

an increase in pixel resolution is seen with a increase in the noise level. Similarly, the 

magnitude image in Fig. 4 (b) shows lower boundary smoothness and high noise levels. 

Despite varying levels of contrast and noise, all filtering methods maintain lesion 

visualization in a similar location as seen on the B-mode image, i.e. Fig. 4 (a). Similar to 

phantom results, the in-vivo strain tensor images in Fig. 5 show the lowest noise and highest 

boundary contrast from the combined dictionary representation, while the magnitude 

component dictionary representations show increased pixel resolution but also higher noise 

levels.

IV. CONCLUSION

We compare metrics using an EDE phantom and 15 in vivo patient strain tensor images 

using dictionary learning and adaptations to original and median filtered displacement 

estimates. EDE phantom data shows that combined axial and lateral dictionary-learning 

algorithms had the highest SNR and CNR with improvements of 3.90 dB and 6.58 dB for 

axial strain tensors compared to unfiltered images. In contrast, magnitude dictionaries did 

not reduce strain tensor noise and decreased SNR, contrast, and CNR compared to original 

displacement estimates. Future work will extend these new dictionary algorithms for use in 

Lagrangian tracking [20] and comparison with the clinical gold-standard, CECT, for 

assessing post-ablation volumes [21].
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Clinical Relevance—

Dictionary learning provides improved visualization of post microwave ablation with 

electrode displacement elastography
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Figure 1 –. 
The flowchart from ablation procedure to producing strain tensor images for electrode 

displacement elastography. Red box of filtering is the portion of flowchart that was varied 

based on Table 1.
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Figure 2 –. 

Displacement estimation variations of axial (dy) and lateral (dx) or magnitude (d ) and phase 

(θ).
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Figure 3 –. 
Distributions (n=15) of signal-to-ratio (a), contrast (b), and contrast-to-noise ratio (c) for all 

filtering variations used where I is unfiltered, II is median filtered, III is individual 

dictionary, IV is combined dictionary, V is magnitude dictionary vector, and VI is magnitude 

dictionary.
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Figure 4 –. 
B-mode and strain tensor images from an EDE phantom. Ablation antenna artifact is seen 

near distal boundary of the inclusion. (a) B-mode, and strain tensor images from (b) 

magnitude vector dictionary, (c) individual dictionary axial, (d) individual dictionary lateral, 

(e) combined dictionary axial, (f) combined dictionary lateral, (g) magnitude dictionary 

axial, and (h) magnitude dictionary lateral component.
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Figure 5 –. 
Ultrasound B-mode and strain tensor images from a post-MWA patient with colon cancer 

metastasized to the liver. (a) B-mode, and strain tensor images from (b) magnitude vector 

dictionary, (c) individual dictionary axial, (d) individual dictionary lateral, (e) combined 

dictionary axial, (f) combined dictionary lateral, (g) magnitude dictionary axial and (h) 

magnitude dictionary lateral component.
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Table 1 –

Description of various filtering methods utilized in this work.

FILTERING METHOD DESCRIPTION OF FILTERING METHOD

I UNFILTERED No filtering of displacement estimates from MNCC algorithm.

II MEDIAN FILTERING Median filtering only.

III INDIVIDUAL DICTIONARY After median filtering, dictionary representation of dx and dy separately.

IV COMBINED DICTIONARY After median filtering, dictionary representation linking patches of dx and dy together using Eq. 
(1).

V MAGNITUDE VECTOR 
DICTIONARY After median filtering, dictionary representation of d .

VI MAGNITUDE COMPONENT 
DICTIONARY

After median filtering, dictionary representation of d  then converting displacements back to dx 
and dy vectors.
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Table 2 –

Mean (μ) and standard deviation (σ) of various filtering methods on 15 axial strain tensor images from EDE 

phantom data.

SNR CONTRAST CNR

METHOD μ σ μ σ μ σ

I 3.57 ± 2.18 8.14 ± 7.40 −0.48 ± 5.18

II 3.27 ± 3.11 8.83 ± 7.77 0.74 ± 2.82

III 5.93 ± 5.47 17.44 ± 2.79 5.43 ± 1.09

IV 7.47 ± 6.14 15.26 ± 3.70 6.10 ± 1.57

V 5.01 ± 2.18 13.85 ± 5.57 3.84 ± 2.66

VI 4.25 ± 0.88 9.43 ± 8.12 0.17 ± 3.01
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