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Abstract

Background: Clinical endpoint prediction remains challenging for health providers. Although predictors such as
age, gender, and disease staging are of considerable predictive value, the accuracy often ranges between 60 and
80%. An accurate prognosis assessment is required for making effective clinical decisions.

Methods: We proposed an extended prognostic model based on clinical covariates with adjustment for additional
variables that were radio-graphically induced, termed imaging biomarkers. Eight imaging biomarkers were
introduced and investigated in a cohort of 68 non-small cell lung cancer subjects with tumor internal characteristic.
The subjects comprised of 40 males and 28 females with mean age at 68.7 years. The imaging biomarkers used to
quantify the solid component and non-solid component of a tumor. The extended model comprises of additional
frameworks that correlate these markers to the survival ends through uni- and multi-variable analysis to determine
the most informative predictors, before combining them with existing clinical predictors. Performance was
compared between traditional and extended approaches using Receiver Operating Characteristic (ROC) curves, Area
under the ROC curves (AUC), Kaplan-Meier (KM) curves, Cox Proportional Hazard, and log-rank tests (p-value).

Results: The proposed hybrid model exhibited an impressive boosting pattern over the traditional approach of prognostic
modelling in the survival prediction (AUC ranging from 77 to 97%). Four developed imaging markers were found to be
significant in distinguishing between subjects having more and less dense components: (P= 0.002–0.006). The correlation to
survival analysis revealed that patients with denser composition of tumor (solid dominant) lived 1.6–2.2 years longer (mean
survival) and 0.5–2.0 years longer (median survival), than those with less dense composition (non-solid dominant).

Conclusion: The present study provides crucial evidence that there is an added value for incorporating additional image-
based predictors while predicting clinical endpoints. Though the hypotheses were confirmed in a customized case study,
we believe the proposed model is easily adapted to various clinical cases, such as predictions of complications, treatment
response, and disease evolution.
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Background
The prediction of clinical endpoints or outcome
measures has always been the focus of personalized
medicine, as well as the key learning applications of
ill-health related studies, in an effort to provide

clinicians with simple and reproducible risk assess-
ment models. It plays important roles in the clinical
decision support system, as it is closely related to the
interventions or therapeutic selection, care-planning,
and resource allocation [1, 2]. An outcome measure
as defined in clinical practice is any characteristic or
quality measured as the result of health interventions
to assess the impact on a patient’s health status [3],
such as the survival period, recurrence or relapse of a
cancer, or adverse events. Previous attempts to
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predict a patient outcome mostly centered to a mor-
tality risk stratification (probability of death), espe-
cially for severely ill patients that are admitted to an
intensive care unit (ICU) [4–7]. There exist prognos-
tic instruments available such as palliative prognostic
score (PaP) [8], palliative prognostic index (PPI) [9],
acute physiology and chronic health evaluation
(APACHE), [10] and simplified acute physiology score
(SAPS) [11]. However, these tools have significant
shortcomings because they are derived from a popula-
tion of patients that are already determined to be ter-
minally ill, making them less relevant for patients
who are still receiving anti-cancer treatment [12].
Generally, an outcome prediction model is devel-

oped using one of these two approaches: I) patient
similarity or II) predictive modeling. A patient
similarity-based model makes predictions by identify-
ing and analyzing past patients who are similar to a
present case through a correlation metric [13, 14]. On
the other hand, a predictive modeling requires the ex-
traction of features of interest, followed by the model-
ing of desired outcome using machine learning
algorithms [15, 16]. Several studies have demonstrated
the comparison of patient similarity vs. predictive
modeling, for which the latter outperformed the
former in terms of predictive values [17, 18]. Trad-
itionally, clinical prognosis has been derived from
clinical covariates or biomarkers available in the elec-
tronic medical record (EMR), that usually cover a var-
iety of aspect of a patient’s health state such as vital
signs, physiological variables, demographic informa-
tion, and laboratory test results [12, 13, 17, 18]. These
approaches resulted in accuracy between 60 and 80%
[19, 20]. Nonetheless, radiographically induced bio-
markers have started to show potential in prognostic
models [21–23]. The latter claimed to be at advantage
due to its non-invasive nature while showing im-
provement over the traditional approach. In addition,
EMR often contains many missing values, imposing
great challenges in the traditional method.
In the present study, we seek to investigate the

prognostic impact provided by clinical biomarkers
(CBMs) and imaging biomarkers (IBMs), as well as
the hybrid of both, termed hybrid biomarkers
(HBMs). Our hypotheses are as follows: (a) IBMs de-
liver better discrimination power in a clinical prog-
nostication in comparison to CBMs, (b) IBM
approach of modelling the prognostic model is gen-
eral and applicable to different kind of patient out-
come prediction, though our main focus in this work
is the survival prediction, and (c) there is an added
value provided by IBMs in combination with CBMs
while making prediction of patient outcomes. The
group of patients targeted to validate these hypotheses

are taken from a public Non-Small Cell Lung Cancer
(NSCLC) archive. Post-surgical prognostic models are
developed for patients who show signs of nodule in-
ternal features such as cavitation, cysts, reticulation
and air bronchogram pre-surgery. The motivation be-
hind this targeted group is to investigate if the pre-
operative radiographic features can predict tumor in-
vasiveness based on air/gas to tissue proportion and
thus, aiding physicians to determine the most appro-
priate surgical procedure in such cases. As the litera-
ture indicates, lung cancers that show wider section
of radiolucency such as Ground Glass Opacity (GGO)
are considered to have more favorable diagnosis than
solid tumors [24, 25]. The objective of this study is
however not to re-iterate what is already known in
the literature, but to explore the possibility of im-
proving clinical decisions through an enhanced prog-
nostic model using a collection of so-called
informative image-based covariates as well as estab-
lishing their relationship to clinical endpoints.

Methods
Clinical materials
Imaging and clinical records of patients diagnosed
with primary NSCLC, who received surgical excision
were obtained from a public repository, the cancer
imaging archive (TCIA) [26]. The cohort consists of
211 subjects that underwent both computed tomog-
raphy (CT) and Positron Emission Tomography/Com-
puted Tomography (PET/CT) scans. Semantic
annotations and segmentation maps of the tumor
were available. Inclusion criteria encompassed subjects
of stage I-IV cancer with either cysts, cavitation, re-
ticulation, or air bronchogram sign. There were 48
males and 20 females with mean age of 69.5 and
66.5 years, respectively. Subjects without tumor in-
ternal characteristics or incomplete records were all
excluded. Five-year survival was calculated from the
day of surgery to the last follow-up date. The data-
set’s characteristics are supplemented in Table 1. The
acquisition protocol varied slightly for different pa-
tients, depending on each patient’s size. Exposure set-
tings were constant at 120 kVp, with tube current
ranging from 50 to 750 mAs. Pixel spacing and slice
thickness ranged from 0.596 to 0.976 mm and 0.625
to 3.75 mm respectively. The images were recon-
structed at 512 × 512-pixel matrices.

Tumor delineation
Figure 1 outlines the processes required to achieve
the objectives of this study. Tumor delineation was a
pre-processing step and was performed using an auto-
mated tool developed using geometrical and topo-
logical processing to facilitate this process [27]. It
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eliminates the manual delineation work required in
this study.

CBM selection and mapping
Two main models were referenced during the selec-
tion of clinical biomarkers in this work: Wallington
et al. [19] and Jochems et al. [20]. Both investigated
the prediction of survival in NSCLC patients using
CBM readily available from a patient’s record such as

demographics, tumor staging, tumor size, and treat-
ment history. Wallington’s model used age, gender,
BMI, tumor staging, income deprivation, performance
status, and history of previous treatment as the pre-
dictors, whereas Jochems’s model used age, gender,
tumor size, tumor staging, total dose, performance
status, and chemo-timing. Following their guidelines,
we have chosen the nine CBMs most similar to their
studies that were available in our dataset, as depicted
in Table 1. Accordingly, some of these variables had
to go through a feature transformation in order to
map those that mostly exist either in nominal or cat-
egorical form to more classifier-friendly variables.
Gender, for instance, went through a transformation
from nominal (female, male) to categorical (0, 1)
values while TNM-staging went through a mapping
from categorical values (1,2,3,4) to numeric values
calculated based on the percentage of their compos-
ition in the dataset. This is performed to avoid matrix
sparsity. The details of each clinical variable mapping
work are presented in Table 2.

IBMs design
The areas of decreased density in computed tomography
are described by specific radiologic lexicons such as cavi-
tation, cysts, reticulation, and air bronchogram signs.
Many of these terms are based on the pathogenesis and
the opacification characteristics possessed by the lung
abnormalities. The decreased in a nodular attenuation
pattern develops when the density in parenchyma de-
crease caused by: (a) abnormal increase in the amount of
air, (b) abnormal decrease in blood volume, or (3) loss of
soft tissue structures. Each of these phenomena may re-
sults in different pattern of decreased density for in-
stance those depicted in Fig. 2 (c).
To validate our hypothesis, eight customized IBMs

were introduced in this work to quantify the solid
and non-solid composition of a tumor with internal
characteristic. The internal features included were
cysts (radiolucency with a thin wall), cavitation (radio-
lucency with a thick wall), reticulation (lucent spaces
created by the intersection of fine, medium or coarse
lines) and air-bronchogram sign (gas-filled bronchi
surrounded by alveoli filed with fluid, pus or other
substances). The gray-level images are first converted
to binary images as depicted by a few examples in
Fig. 2.a. We created a tumor mask for each binary
tumor as depicted by Fig. 2.b. Table 3 shows the def-
inition of covariates we used to design the imaging bio-
markers, where we used the term A and B to denote
binary images (Fig. 2.a) and mask images (Fig. 2.b),
respectively. Our fundamental approach is simple in
which the white pixels in both A and B refer to solid
areas of tumors, whereas the black pixels refer to the

Table 1 The details of dataset used in this work

Dataset characteristics No (%)

Total patients 211 100

Incomplete records 50 24

Complete records 161 76

Internal features present 68 42

I) Air Bronchogram 24 35

II) Cavitation 15 22

III) Cysts 4 6

IV) Reticulation 5 7

V) Mix of above 20 29

Internal features absent 91 58

Gender

Male (48/68) 71

Female (20/68) 29

Age

≤ 70 (36/68) 53

> 70 (32/68) 47

Pathological staging

Primary tumor T

I (30/68) 44

II (25/68) 37

III (9/68) 13

IV (4/68) 6

Lymph node N

0 (56/68) 82

1 (4/68) 6

2 (8/68) 2

3 0 0

Metastasis M

0 (66/68) 97

1 (2/68) 3

Histology

Squamous cell (10/68) 15

Non-Squamous cell (58/68) 85

5-year overall survival

Survived (23/68) 34

Expired (45/68) 66
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non-solid areas. PA and PB represent the counts of
pixel of A and B.
Equation 1 measures the proportion of solid com-

ponent (radiodensity) of a tumor with internal fea-
tures. The solid components are those that appear
opaque white or grey in CT scans. RDC should range
between 0 and 1.

RadioDense Composition RDCð Þ
¼

Pn
i¼1 PA=PBð Þ

n
ð1Þ

A and B are depicted in Fig. 2.
Equation 2 is an IBM that quantifies the proportion of

decreased density areas of a tumor with internal features.

These so-called non-solid components appear as black
in CT scans. Similarly, RLCs fall between 0 and 1 ranges.
RDC, and RLC are inter-correlated in a way that each
calculates the ratio of radio-density and radio-lucency of
the same tumor area.

RadioLucent Composition RLCð Þ
¼

Pn
i¼1 PB − PAð Þ= PBð Þ

n
ð2Þ

Difference in composition as depicted in Eq. 3 calcu-
lates the difference in the solid and non-solid compos-
ition in Eq. 1 and 2.

Fig. 1 Flow diagram of the proposed model. The extended framework is indicated on the right side of the model, inside the dotted lines

Table 2 CBMs selection and their mapping work

Covariates Type Range Conversion

Gender Nominal {Male, Female} (0,1)

Age Real (42–87) NA*

Weights (lbs) Real (80–318) NA

Smoking years Real (0–41) NA

Histology Nominal {Squamous, Non-Squamous} (0,1)

T Categorical [1–4] Number of patients in a stage divided by total number
of patients (e.g., 16 patients categorized as T1; those
patients were given 0.235 (16/68) value).N Categorical [0,1,2,3]

M Categorical [0,1]

Tumor size (mm) Real (11.7–73.9) NA

*NA means no conversion work is needed
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Difference of Composition DoCð Þ
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðRDC − RLCÞ2

q
ð3Þ

An IBM computing the fraction of radiolucency to
radiodensity (non-solid to solid) areas is introduced in
Eq. 4. It measures the air to tissue ratio of a tumor.

Air to Tissue ratio ATRð Þ
¼

Pn
i¼1 PB − PAð Þ=P B∩Að Þ

n
ð4Þ

Length of the solid area as shown in Eq. 5 searches for
the longest path between the radio-lucent to the radio-
dense boundaries. It refers to the wall of a tumor with
internal features. If more than one radio-lucent area is
present, the algorithm chooses the largest one to com-
putes the boundary vertices.

Fig. 2 Example of decreased density areas in a tumor. Rows from top to bottom represent cavitation, reticulation, and air-bronchogram sign
phenomena, respectively. Meanwhile columns A to C show illustration of the internal features, the tumor mask, and an example of CT scan for
each case. The solid and non-solid components are designated by white and black colors in the first column, respectively

Table 3 The list of covariates used to derive eq. 1, 2, 3, 4, 5, 6, 7
and 8. Active pixels refer to the white pixels in binary images

Covariates Definition

PA The number of active pixels in A

PB The number of active pixels in B

P (B∩A) The number of active pixels that are true for both A and B

n The number of effected slices

(x,y) The contour vertices: -
- Air pocket contour vertices (xi,yi)
- Solid wall contour vertices (xk,yk)

Span The longest distance between two vertices of the tumor
mask

ID Inner diameter of a lucent area. If more than one area is
present, the average is calculated.
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Length ofSolid Area LoSAð Þ
¼ Max

Xn

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xi − xkð Þ2 þ yi − ykð Þ2

q� �
ð5Þ

The sixth biomarker as depicts in Eq. 6 quantifies the
ratio of LoSA to the diameter of a tumor mask (Span),
where no lucent area is observed.

Length of ofSolid Area ratio LoSARð Þ

¼
Max

Pn
i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xi − xkð Þ2 þ yi − ykð Þ2

q� �

Span Bð Þ ð6Þ

To gain further insight of the possible differences be-
tween solid vs non-solid components of a tumor, IBMs
measuring the length of a lucent area as well as the ratio
of their averaging length (for multi-lucency cases) to the
diameter of the tumor were also investigated. Eq. 7 dem-
onstrates the average length of cavities, whereas Eq. 8
shows the quantification of the averaged diameter of the
lucent areas over the diameter of the tumor mask (B in
Fig. 2)

Length of Cavity Area LoCAð Þ ¼
Pn

i¼1AVG IDð Þ
n

ð7Þ

Length of Cavity Area ratio LoCARð Þ
¼ ðPn

i¼1AVG IDð Þ=n
Span Bð Þ ð8Þ

In order to match the number of CBMs, we included
an existing measurement in literature, solidity as the
final IBM. Solidity calculates the ratio of true pixels be-
tween the tumor and its bounding box.

Model evaluation
To test the first hypotheses, three set of test cases were
drawn as shown in Table 4. The predictors were fed into
four off-the-shelf classifiers to predict the probability of
patients survived or expired 5 years after surgery. The
classifiers were chosen based on recent similar published
works of predicting survival of lung cancer: Wallington
et al., Logistic Regression (LR) [19], Jochems et al., Ran-
dom Forest (RF) [20], Hazra et al., Support Vector Ma-
chines (SVM) [28], and Rodrigo et al., Artificial Neural
Network (ANN) [29].
The predictive performance was evaluated using a

cost-sensitive measure which is area under the Receiver
Operating Characteristic (AUROC) or AUC. Cost in-
sensitive measures such as accuracy, precision, and re-
call, might be biased in our case due to the nature of the
dataset that is skewed towards one class. AUC is
visualization tool for which may appropriately determine
the appropriateness of a classifier. On top of that, to
mitigate the concern on skewed dataset, the 10-fold

cross validation was incorporated to stratify the samples
and ensure that the ratio between positive and negative
case in each fold are similar to that in the entire dataset.
In other words, the dataset is first divided into two
strata, then random assignment to the folds is carried
out in each stratum independently [30]. Integrated dis-
crimination improvement (IDI) was implemented to
measure the significant difference, if it exists, between
the AUCs returned by each model [31]. IDI index is
commonly used to compare two risk prediction models
or taking the difference between two competing models.
For instance, when comparing the CBM-based model to
the IBM-based model performance, the index tells the
improvement in prediction without the inherit problems
of directly comparing c-statistics.

Correlating IBMs to survival distribution
In this section, the prognostic impact of the proposed
IBMs performed through uni- and multi-variable ana-
lyses, with the chi-squared test or D’Agosstino-Pearson
opted for normality testing for categorical and continu-
ous variables, respectively. The Kaplan–Meier (KM) sur-
vival curve, Cox Proportional Hazard model, and the
log-rank test were the methods used to investigate these
correlations. KM estimator used to estimate the survival
function from life-time data, for example, the fraction of
patients living for a certain amount of time after treat-
ment [32], while the log-rank test is a hypothesis test to
compare the survival distribution between two groups.
Both KM and the log-rank test are examples of univari-
able analysis and non-parametric statistic. They describe
the survival according to one factor under investigation
but ignore the impact of another. Cox Proportional Haz-
ards is a regression model that extends survival analysis
to assess simultaneously, the effect of several factors on
survival time. It allows the examination on how specific
covariate influence the event of interest at a particular
point of time. The rate is known as hazard ratio [33].

Table 4 The set of predictors forming three test cases; CBM,
IBM, and HBM. The HBM are a combination of CBMs and
selected IBMs

CBM pool IBM pool HBM pool

Age RDC Age + Selected imaging
biomarkers based
on correlation testing.Gender RLC Gender

Weights DoC Weights

Smoking years ATR Smoking years

Histology LoSA Histology

T stage LoSAR T stage

N stage LoCA N stage

M stage LoCAR M stage

Tumor size Solidity Tumor size
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Descriptive data were summarized as mean and median
with 95% confidence interval, while categorical data was
given as count or proportion. Statistical significance is
given by a two-tailed p-value lower than 0.05.
The subjects were divided into two comparative

groups using the proposed IBMs. RDC, DoC, LoSA,
LoSAR, and Solidity are IBMs that are associated to
quantify denser composition of a tumor, whereas RLC,
ATR, LoCA, and LoCAR, are the IBMs that concentrated
on quantifying the less dense portion of a tumor. All
IBMs measurements are in the range of 0–1 hence a
threshold of 60% (0.6) was set to divide the subjects into
two groups that we named as solid dominant (SD) and
non-solid dominant (NSD). Figure 3 presents how this
work took place. All algorithms were implemented using
MATLAB (R2015b) and all statistical analyses were con-
ducted using MedCalc software version 17.5.5.

Results
Prediction of 5-year survival
The prediction of 5-year survival were evaluated be-
tween models that were built based on CBM versus
models built using the proposed IBM. Table 5 depicts
the performance metric AUC and IDI for the prediction
of post-surgery survival for patients with nodule internal
features by both methods. All four classifiers demon-
strated significant improvement in the proposed IBM
model with IDI ranged between 0.47–0.54 (p < 0.05) in
which the ANN and RF showing the highest jump from
CBM to IBM model. IBM seemed to successfully boost
the prediction accuracy above 0.80 in all classifiers tested
in comparison to its counterpart, CBM model that dem-
onstrated AUC ranged between 0.59–0.75. We observed
that Logistic Regression outperformed the Random For-
est classifier in both CBM and IBM models, which is

actually contradictory to the finding in Jochems et al.
[20] that we used as our main reference. Interestingly, in
terms of the percentage of improvement, Random Forest
is indeed among the classifiers having significant boost-
ing performance (p < 0.001). We believe parameters tun-
ing has something to do with these observations, as
Random Forest required a few parameters to be tuned,
for instance, the number of branches. This experiment
confirmed our first hypothesis.

Association to survival ends
We have seen IBM outperformed CBM method in sur-
vival prediction. To derive further insights on the probable
reason underlying this observation, association test was
conducted on both type of biomarkers. Tables 6 and 7 de-
pict the correlation of CBM and IBM to overall survival
respectively. The univariable analysis has demonstrated
that four CBMs were found to be significant factors pre-
dicting the overall survival in the studied case; age [HR:
2.235, (r = 0.26, p = 0.037)], lymph node involvement [HR:
3.797, (r = 0.23, p = 0.056)], metastasis event [HR: 4.863,
(r = 0.11, p = 0.368)], and tumor size [HR: 1.059, (r = 0.37,
p = 0.002)]. The multivariable analysis only retained age
and lymph node involvement from this pool; [χ2 (2) =
14.498, p = 0.0007]. With these observations, we have con-
cluded that age and lymph node involvement were the risk
factors useful in the survival prediction.
On the other hand, only DoC, LoSA, and LoCA were

not statistically significant in predicting survival between
two groups (SD vs. NSD) using IBMs. We also observed
that two IBMs; RDC and RLC showing similar prognos-
tic impact [HR: 2.225, (r = ±0.67, p < 0.0001)], which was
believed due to the reason that they are correlated to
each other in a way that one complements another. Mul-
tivariable analysis retained three IBMs from the

Fig. 3 Two sub-groups created based on the threshold by each IBM. In the case a measurement that is not a ratio, such as LoSA and LoCA, a
posterior probability is calculated prior the threshold setting
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significant pool which were RDC, LoSAR, and LoCAR; [χ
2

(3) =42.631, p < 0.0001]. Following these observations,
the comparison of mean and median survival time be-
tween the subjects grouped were also investigated and
shown in Table 8. It was observed that the groups dif-
fered between 1.64–2.23 years in the mean survival and
0.46–2.00 years in the median survival. The survival
curves are supplemented in supplementary file S1.

Leveraging the hybrid biomarkers for patient outcome
predictions
Based on findings in the previous section, four IBMs
(RDC, RLC, LoSAR, LoCAR) with prognostic values were

Table 5 Performance comparisons of AUC for the survival
prediction in both models

Classifiers CBM (AUC) IBM (AUC) IDI P-value

Logistic Regression 0.75 0.93 0.47 0.002*

Random Forest 0.61 0.83 0.54 < 0.001*

Support Vector Machine 0.74 0.92 0.50 < 0.001*

Artificial Neural Network 0.59 0.82 0.52 < 0.001*

* representing significance data

Table 6 Uni- and multi-variable survival analysis for CBMs were
performed through KM and Cox proportional hazard model,
respectively

Biomarkers Univariable Multivariable

HR 95% CI HR 95% CI

Demographic factors

Age

≤ 70 1 1

> 70 2.235 1.097–4.556a 2.257 1.240–4.111

Gender

Male 1

Female 1.015 0.560–1.837

Weights

≤ 150 1

> 150 1.070 0.604–1.897

Smoking Status

Yes 1

No 1.623 0.872–3.021

Clinical factors

Primary Tumor

≤ T2 1

> T2 0.904 0.446–1.830

Lymph Node

N0 1 1

≥ N1 3.797 1.038–13.887a 4.163 1.858–9.326

Metastasis

M0 1

M1 4.863 0.238–99.479a

Histology

Squamous 1

Non-Squamous 1.194 0.582–2.452

Tumor size

Longest diameter 1.059 1.010–1.110a

* representing significant data; HR Hazard ration, CI Confidence interval

Table 7 Uni- and multi-variable survival analysis for IBMs were
performed through KM and Cox proportional hazard model,
respectively

Biomarkers Univariable Multivariable

HR 95% CI HR 95% CI

Solid Composition

RDC

SD 1 1

NSD 2.225 1.149–4.307* 0.431 0.232–0.769

DoC

SD 1

NSD 1.583 0.749–3.342

LoSA

SD 1

NSD 1.963 1.019–3.781

LoSAR

SD 1 1

NSD 2.445 1.345–4.443* 0.395 0216–0.708

Solidity

SD 1

NSD 1.908 0.930–3.915*

Lucent Composition

RLC

SD 1

NSD 2.225 1.149–4.307*

ATR

SD 1

NSD 2.018 1.011–4.028*

LoCA

SD 1

NSD 0.643 0.337–1.225

LoCAR

SD 1 1

NSD 2.274 1.153–4.488* 0.422 0.232–0.769

* representing significant data; HR Hazard ration, CI Confidence interval
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leveraged into a hybrid model that combine them with
all of the clinical predictors. This hybrid model is termed
as hybrid biomarkers (HBM). Similar survival predic-
tions were conducted and the ROC curves and AUCs
were plotted to compare the performance of all three
models. Figure 4 demonstrates the comparison between
all models for the survival prediction. We observed that
HBM based model, to some extent boosted the perform-
ance of IBM further by 4% in all but ANN classifier.
Though HBM managed to surpass the performance of
CBM based model, IBM was seen to work best for ANN.

Discussion
We have investigated the efficacy of combining archival
clinical data with radiographically induced data in per-
sonalizing the risk stratification of NSCLC patients
undergoing anti-cancer treatment. Eight image-based
biomarkers were introduced customized to the case be-
ing studied, in which six demonstrated statistical signifi-
cance in the mean and median survival. This finding
could be a useful input for the precision medicine com-
munity in identifying patients with higher risk to be put
under additional therapeutic planning. The proposed
biomarkers may provide alternative factors for

oncologists investigating tumor-specific factors during
treatment planning, which is a less-invasive method than
biopsy or resection sampling.
The results support all hypotheses made in which the

imaging measures are superior predictors in comparison
to clinical measures, and thus confirms the utility of in-
corporating image-based predictors into the traditional
approach of using clinical-based predictors in modeling
the patient outcome prediction. Although significant im-
provement was observed in the image-based predictive
model over the traditional model, the hybrid between
them was seen to outperform both standalone models,
in most cases. Although there was a standout case in
ANN classifier, where the hybrid predictors fall slightly
short behind imaging predictors, which merits further
investigation, this does not forfeit the third hypothesis
since the clinical predictors still underperformed in
comparison to the hybrid predictors.
Demographics, histology and pathological staging are

among clinical indicators that have been proven in the
literature [34–36], hence previous works on predicting
survival among NSCLC patients are concentrated on
mixing these readily available clinical factors with AUCs
range between 0.62–0.79 [19, 20, 27, 28]. To the best of

Table 8 Mean and median survival as calculated from Kaplan-Meier survival curves. Only IBM which gives statistical significance as
demonstrated by the univariate analysis in Table 7 is included in this table

Biomarkers 5-Year Overall Survival

Mean 95% CI Difference Median 95% CI Difference

Solid Composition

RDC

SD 5.20 4.27–2.57 2.04 4.43 2.93–5.48 1.17

NSD 3.16 2.57–3.74 3.26 2.49–3.90

LoFAR

SD 5.50 4.46–6.61 2.23 5.20 3.11–5.24 2.00

NSD 3.27 2.75–3.79 3.20 2.71–3.84

Solidity

SD 4.96 4.08–5.85 1.64 3.90 2.85–5.48 0.58

NSD 3.32 2.68–3.96 3.32 3.15–3.84

Lucent Composition

RLC

SD 5.20 4.27–2.57 2.04 4.43 2.93–5.48 1.17

NSD 3.16 2.57–3.74 3.26 2.49–3.90

ATR

SD 5.05 4.11–5.99 1.69 3.78 2.76–5.48 0.46

NSD 3.36 2.82–3.90 3.32 3.15–3.90

LoCAR

SD 5.17 4.24–6.11 2.03 3.99 3.32–5.48 0.83

NSD 3.14 2.59–3.69 3.16 2.49–3.84

Data are presented in years
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our knowledge, this is the first study establishing the fu-
sion of both clinical with imaging covariates, which has
been proven to better predict survival (AUCs between
0.77 and 0.97). Even though the concept of imaging
measures as biomarkers is not relatively new [22, 23,
37], the thought of having to go through complex im-
aging analysis with advanced software might have hin-
dered the unique benefit it may provide. Imaging
biomarkers are the corner stone of modern radiology.
They might be a major player in therapeutic decisions
and drugs evaluation in the near future; thus, multi-
disciplinary experts are expected to co-work in order to
make this possible.
This study is not without limitations. One of the weak-

nesses is the number of subjects available, since we have
to exclude a rather large number of subjects with

incomplete records (23.7%) from the dataset. Such issue
arises when dealing with archival data originating from
routine clinical practice. Furthermore, the dataset is
skewed towards negative cases which may have been the
compounding factor in some of the classifier perform-
ance reported in this study. A more complete and bal-
anced sample may give us better representation of the
proposed model, thus warranting further investigation of
the technique that will allow us to improve the current
work. One possible solution to both problems, the
skewed dataset and small sample size, is a synthetic data
generator. As we are dealing with CT images, several
studies have demonstrated the application of Generative
Adversarial Network (GAN) to generate synthetic med-
ical images through this generator-discriminator dual
network [38–40]. This new data augmentation technique

Fig. 4 The comparison of ROC curves in the survival prediction for all models in: a Logistic Regression, b Random Forest, c Support Vector
Machines and d Artificial Neural Network
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that works through image-to-image translation is a po-
tential novel method on a limited dataset of medical im-
ages like ours. This could be a fascinating follow up
work after this study, and in fact a preliminary screening
of similar work has been started. Lastly, the present sub-
jects included in this study originated from a single cen-
ter. Additional studies in multiple centers are needed to
confirm these results, particularly on the selection of the
threshold value of dividing the solid versus non-solid
dominant by the proposed biomarkers.
Despite these issues, we have confidence that it is pos-

sible to improve the current model such that it leads to
more discoveries that can possibly enhance cancer care
as more data become available. On top of this, with the
recent pandemic of COVID-19, the proposed method-
ology holds potential in predicting the severity of
COVID-19 in patients with lung cancer who tested posi-
tive with a SARS-CoV-2 by combining traditional bio-
markers such as lab data including blood count, serum
creatinine, and inflammatory markers with imaging data
taken either on the same day, or the day after patient
tested positive. Such a finding is an essential part of the
international response to the pandemic, especially with
regards to lung cancer patients.

Conclusion
We have demonstrated that our customized model has
shown better prognostic impact in comparison to the
one-fits-all traditional model. The so-called patient spe-
cific model provides empirical evidence for the personal-
ized medicine community as well as data-driven decision
support system.
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