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Using Bayesian spatial 
models to map and to identify 
geographical hotspots 
of multidrug‑resistant tuberculosis 
in Portugal between 2000 and 2016
Olena Oliveira1,2,3, Ana Isabel Ribeiro3,4, Elias Teixeira Krainski5, Teresa Rito1,2, 
Raquel Duarte3,4 & Margarida Correia‑Neves  1,2*

Multidrug-resistant tuberculosis (MDR-TB) is a major threat to the eradication of tuberculosis. TB 
control strategies need to be adapted to the necessities of different countries and adjusted in high-risk 
areas. In this study, we analysed the spatial distribution of the MDR- and non-MDR-TB cases across 
municipalities in Continental Portugal between 2000 and 2016. We used Bayesian spatial models to 
estimate age-standardized notification rates and standardized notification ratios in each area, and to 
delimitate high- and low-risk areas, those whose standardized notification ratio is significantly above 
or below the country’s average, respectively. The spatial distribution of MDR- and non-MDR-TB was 
not homogeneous across the country. Age-standardized notification rates of MDR-TB ranged from 
0.08 to 1.20 and of non-MDR-TB ranged from 7.73 to 83.03 notifications per 100,000 population across 
the municipalities. We identified 36 high-risk areas for non-MDR-TB and 8 high-risk areas for MDR-TB, 
which were simultaneously high-risk areas for non-MDR-TB. We found a moderate correlation 
(ρ = 0.653; 95% CI 0.457–0.728) between MDR- and non-MDR-TB standardized notification ratios. 
We found heterogeneity in the spatial distribution of MDR-TB across municipalities and we identified 
priority areas for intervention against TB. We recommend including geographical criteria in the 
application of molecular drug resistance to provide early MDR-TB diagnosis, in high-risk areas.

In Europe, the incidence of tuberculosis (TB) has been decreasing since 2008, at a rate of about 5% per year. In 
2017 the incidence of TB was 30 new cases per 100,000 population. Although this rate of decline was higher 
than the global rate of decline of incidence (currently at 2%), it still needs to be improved to achieve the goals 
of the End TB Strategy1.

Multidrug-resistant tuberculosis (MDR-TB) is defined as TB caused by strains of Mycobacterium tuberculosis 
resistant to the two most potent first-line anti-TB drugs, isoniazid and rifampicin. It contributes to the difficulty 
in achieving the goals of the End TB Strategy. MDR-TB treatment requires the use of second-line anti-TB drugs, 
which are less effective, more toxic and more costly2, with a lower success rates than standard therapy1. Hence, 
prevention and control of MDR-TB are priorities for elimination of TB3.

Since the 1990’s, when MDR-TB was recognised as a potential threat to TB control, it was considered that 
in general, drug-resistance was acquired during treatment due to poor quality case management4. Currently, 
the premise that drug-resistant TB is predominantly acquired has changed. The use of new epidemiological 
tools, such as modelling and molecular techniques, demonstrates that the majority of MDR-TB cases result 
from transmission of MDR-TB strains rather than selection of de-novo resistance during previous treatment5,6.
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In 2017, in Europe, MDR-TB was reported for 24% of all TB cases with first-line drug susceptibility testing 
(DST). This proportion was considerably lower among European Union (EU) countries (4%) compared with 
non-EU countries (28%). Among pulmonary TB cases, 18% of new and 48% of previously treated cases were 
MDR-TB1. In the same year, in Portugal, the incidence of TB was 16 cases per 100,000 population and 1% of all 
TB cases were MDR-TB. However, TB incidence was not homogeneous across the country, with 57% of cases 
in the two largest urban centers, Porto and Lisbon7. These cities were previously identified as the most critical 
regions for TB incidence8, and pulmonary TB in particular9,10. Adaptation of strategies and interventions to 
national and local contexts is pivotal for effective TB control11. This can only be achieved with a detailed under-
standing of the disease distribution across the different regions, along with an epidemiological characterization 
of the populations affected, paying special attention to the identification of geographical areas or subpopulations 
with especially high TB burden11. Spatial statistics and disease mapping are effective approaches to investigate 
the detailed geographical variations in TB incidence12, being particularly relevant in identifying high- and low-
risk areas8,13.

In the present study, we analysed the spatial distribution of notification of TB in municipalities in Continental 
Portugal to identify high-risk areas for MDR- and non-MDR-TB. We also assessed the correlation between the 
spatial distributions of MDR- and non-MDR-TB, highlighting populations that could be major targets for public 
health authorities to reduce and prevent the incidence of MDR-TB in Portugal.

Methods
Data collection.  We used the national TB Surveillance System (SVIG-TB) as the source of data. We analysed 
all TB cases notified in Continental Portugal from January 2000 until December 2016. According to national 
regulations, 2 independent sputum samples are collected and tested. TB diagnosis is done either through posi-
tive identification using microscopy and nucleic acid amplification or positive Mycobacterium tuberculosis 
(Mtb) culture, followed by conventional first-line DST. All tests are performed in laboratories integrated in the 
national network, periodically certified and checked. All Mtb strains that have shown resistance to isoniazid and 
rifampicin at the same time should be tested for second-line anti-TB drugs in the TB National Reference Labo-
ratory (Instituto Nacional de Saúde Ricardo Jorge: INSA). In the case of suspicion of MDR-TB (patients with 
previous TB treatment that report contact with MDR-TB patients, that belong to specific vulnerable populations, 
or that are health professionals), clinical samples are submitted to molecular testing for detection of isoniazid 
and rifampicin resistance.

We selected MDR-TB cases (i.e., resistant to at least isoniazid and rifampicin) and divided all TB cases into 
two groups: MDR- and non-MDR-TB cases. We obtained notifications of MDR- and non-MDR-TB by munici-
pality (n = 278), year of diagnosis, age (5-year age groups) and sex. Population counts by municipality, year, age 
(5-year age groups) and sex were obtained from Statistics Portugal (https​://www.ine.pt/) for the study period.

Demographic and clinical characteristics of each patient, including age, sex, country of origin, health-related 
behaviours (e.g. drug or alcohol abuse), HIV status, reclusion (prison confinement), community residence (social 
housing for people with socio-economic vulnerabilities), homelessness, comorbidity (diabetes and silicosis), 
previous TB treatment and site of disease, were also collected from SVIG-TB.

Statistical analysis.  Descriptive statistics [absolute and relative frequencies or median with interquartile 
range (IQR)], according to the nature of the variables, were used to describe patient characteristics. We com-
pared these characteristics between patient groups using the Chi-squared test (or Fisher’s test, if appropriate) for 
categorical variables and the Mann–Whitney U-test for continuous variables. In order to control for an effect of 
the different sample sizes of both groups (MDR and non-MDR, we selected two random samples with 583 cases 
of the non-MDR to compare with our MDR group).

To estimate age-standardized notification rates in each area and to delimitate high risk and low risk areas, 
we used hierarchical Bayesian spatial models. These models take into account the spatial autocorrelation and 
large variance of small areas. To minimize the effect of random fluctuations associated with small number of 
cases, and because we found no substantial differences in the geographical distribution of non-MDR and MDR 
TB across our study period, we considered the average rates of the 17-year study period. We assumed that the 
response variable, cases of TB (Oi) in each i th area, follows a Poisson distribution where Ei is the expected number 
of cases and θi the relative risk (RR), or Standardized Notification Rate (Eqs. 1 and 2). We used the Portuguese 
TB notification rates by sex and age group (5-year age groups) as a reference to compute the expected number 
of cases, according to the indirect method of standardization. The expected number of cases was obtained by 
summing the product of the age-sex specific notification rates of the standard population (in our study Portugal) 
by the population by age and sex of each Portuguese municipality.

Here α is an intercept quantifying the average number of TB cases in the 278 areas. The area specific effect si 
was modelled considering a BYM model14 with a parameterization suggested by Dean et al.15 (Eq. 3)

(1)Oi ∼ Poisson(Ei , θi),

(2)log(θi) = α + si .

(3)si = τ

(√
ϕ × ui +

√

1− ϕ × vi

)

,

https://www.ine.pt/
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where ui is the structured effect and vi is the unstructured effect. The ui effect was scaled in order to render the 
model more intuitive and interpretable16, so that ϕ expresses the proportion of the spatial effect due to the struc-
tured part and 1/τ is the marginal variance of si.

Additionally, we used the function ‘excursions’ to delimitate high risk and low risk areas8,17,18. High-risk 
areas are those whose standardized notification ratio is significantly above 1 (i.e., above the country’s average) 
and low risk areas are those whose standardized notification ratio is significantly below 1 (i.e., below the coun-
try’s average). This method uses the posterior joint distribution computed from the Integrated Nested Laplace 
Approximation (INLA) and takes into account the dependence structure, allowing to accurately identify areas 
where the notification ratio is greater than zero.

To analyse the correlation between MDR-TB and non-MDR-TB, the Pearson correlation coefficient (r and 
corresponding 95% Credible Intervals, 95% CrI) was computed based on the standardized notification ratios of 
MDR-TB and non-MDR-TB derived from the previously described models.

To facilitate interpretation, standardized notification ratios were converted into rates per 100,000 inhabitants 
by multiplying the standardized notification ratios by the crude national notification rates.

Statistical analyses were performed using SPSS version 18.0 (PASW Statistics 18), and p-values below 0.05 
were considered statistically significant.

Posterior distributions were obtained using the INLA, which was implemented in the R INLA library19.
Standardized notification rates and high and low risk areas were mapped using ArcMap release 10.5.1. (Envi-

ronmental Systems Research Institute, Redlands, CA, USA).

Ethical considerations.  Ethical approval and informed consent were not required, as the patient data, 
collected for an official national surveillance system, were anonymized in accordance with the research ethical 
guidelines in Portugal. Authorization for its use in the present manuscript was given by the National program 
for Tuberculosis.

Results
We evaluated 53,417 TB cases, notified in Continental Portugal during the study period (2000–2016) (Sup-
plementary Table S1). We identified 583 (1.1%) cases of MDR-TB. We compared demographic and clinical 
characteristics between MDR- and non-MDR-TB patients. We observed that MDR-TB patients were younger 
(40.0 years vs. 42.0 years) and were more likely to be foreign-born (27.3% vs. 13.6%), infected with HIV (27.8% 
vs. 13.1%), alcohol abusers (24.5% vs. 15.0%), injectable drug users (20.3% vs. 10.3%), prisoners (6.2% vs. 2.3%), 
homeless (3.7% vs. 1.8%) and having a history of previous TB treatment (40.3% vs. 9.9%) than non-MDR-TB 
patients (Table 1). The same statistical differences were obtained with two randomized samples I and II of the 
non-MDR-TB with similar size as the MDR-TB group (Supplementary Table S2).

The crude non-MDR-TB notification rate was 31.19 notifications per 100,000 population (95% CrI 
30.93–31.46) and the crude MDR-TB notification rate was 0.34 notifications per 100,000 population (95% CrI 
0.32–0.37). Geographical differences in reporting were observed.

The spatial distribution of the age-standardised notification rates of non-MDR-TB is depicted in Fig. 1A with 
the delimitation of the high- and low-risk areas given in Fig. 1B. Age-standardized notification rates of non-MDR 
TB ranged from 7.73 to 83.03 notifications per 100,000 population. We identified 36 high-risk areas, mostly 
located in Porto and Lisbon metropolitan areas, and also in the southern regions of Alentejo and the Algarve 
(Fig. 1B). The spatial distribution of the age-standardized notification rates of MDR-TB is shown in Fig. 1C and 
the delimitation of the high- and low-risk areas is shown in Fig. 1D. Age-standardized notification rates ranged 
from 0.08 to 1.20 notifications per 100,000 population. Eight high-risk areas for MDR-TB were located mostly in 
the Lisbon metropolitan area (Fig. 1D). These 8 high-risk areas were also high-risk areas for non-MDR-TB. Only 
22% (8/36) of the high-risk areas for non-MDR-TB were high-risk areas for MDR-TB (Supplementary Table S3). 
In order to confirm the stability of the inferred high-risk areas through the entire dataset, we performed the 
analysis on a time series across the 17 years. We obtained stable patterns for the geographical locations of risk 
areas (Supplementary Figs. S1 and S2).

We analysed the correlation between MDR- and non-MDR-TB standardized notification ratios and found a 
moderate correlation (ρ = 0.653; 95% CrI 0.457–0.728) between them.

Since only some areas with a high-risk for non-MDR-TB also have a high-risk for MDR-TB (Supplementary 
Table S3), we compared demographic and clinical characteristics of the non-MDR-TB patients from high-risk 
areas for only non-MDR-TB (28 areas) with patients from areas, which are also high-risk areas for MDR-TB (8 
areas) to determine factors that could be associated with the risk for MDR-TB. We observed that the patients from 
high-risk areas for both MDR- and non-MDR-TB were younger (40.0 years vs. 42.0 years) than patients from 
areas with highest-risk for only non-MDR-TB. Among them, there was a higher proportion of females (34.6% 
vs. 31.3%), foreign-born patients (25.5% vs. 7.2%), HIV infection (20.9% vs. 12.2%), alcohol abusers (17.4% vs. 
13.9%), injectable drugs users (16.3% vs. 10.2%), prisoners (4.0% vs. 1.5%), community residents (4.9% vs. 2.4%), 
homeless persons (3.3% vs. 1.1%), cases of extra-pulmonary disease (28.3% vs. 24.5%) and cases with a history 
of previous TB treatment (12.6% vs. 10.0%) (Table 2).

Discussion
In this study, we combined the epidemiological characteristics of MDR- (resistant to at least isoniazid and 
rifampicin) and non-MDR-TB (all other TB) patients, over a 17-year period, with a detailed spatial description 
to identify high- and low-risk areas, to obtain a systematic comparison between MDR- and non-MDR-TB high-
risk areas across Portugal.
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We demonstrated significant heterogeneity in the spatial distribution of the age-standardized notification 
rates of MDR- and non-MDR-TB at the municipality level. We found a moderate correlation between MDR- 
and non-MDR-TB standardized notification ratios. We identified 36 high-risk areas for non-MDR-TB and 8 
high-risk areas for MDR-TB.

In our study period (2000–2016), the spatial distribution of the age-standardised notification rates of non-
MDR-TB ranged from 7.73 to 83.03 notifications per 100,000 population. A high degree of heterogeneity in 
spatial TB distribution was expected as previously reported in national8–10 and international12 spatial studies. 
The spatial distribution of the age-standardised notification rates of MDR-TB was also heterogeneous (up to 
fifteen times difference), ranging from 0.08 to 1.20 notifications per 100,000 population across municipalities.

Table 1.   Characteristics of multidrug-resistant tuberculosis (MDR-TB) and non-MDR-TB patients, from 
cases in Continental Portugal, for the years of 2000–2016. TB tuberculosis, MDR-TB multidrug-resistant 
tuberculosis, IQR interquartile range, HIV human immunodeficiency virus. a Not applicable for age. b Mann–
Whitney U-test. c Prison confinement. d Social housing for people with socio-economic vulnerabilities. e Data 
missing for: country of origin (n = 79; 0.1%), alcohol abuse (n = 4642; 8.7%), injectable drug use (n = 4080; 
7.6%), reclusion (n = 3935; 7.4%), community residence (n = 4146; 7.8%), homelessness (n = 3981; 7.5%), site of 
disease (n = 154; 0.3%). f Self-reported.

Patient’s characteristics
Total
n

MDR-TB Non-MDR-TB

p-valuena IQR or % na IQR or %

Age (years)

Median (IQR) 53,417 40.0 19 42.0 26 0.002b

Gender

Female
53,417

174 29.8 17,282 32.7
0.155

Male 409 70.7 35,552 67.3

Country of origin

Foreign-born
53338e

159 27.3 7184 13.7
< 0.001

Native 424 72.2 45,571 86.3

HIV status

Negative
53,417

421 72.2 45,929 86.9
< 0.001

Positive 162 27.8 6905 13.1

Alcohol abusef

No
48775e

386 75.5 41,045 85.0
< 0.001

Yes 125 24.5 7219 15.0

Injectable drug usef

No
49337e

415 79.7 43,780 89.7
< 0.001

Yes 106 20.3 5036 10.3

Reclusionc

No
49482c

481 93.8 47,836 97.7
< 0.001

Yes 32 6.2 1133 2.3

Community residenced

No
Yes 49271e

480 94.6 47,011 96.4
0.084

26 5.1 1754 3.6

Homelessness

No
Yes 49436e

490 96.3 48,058 98.2
0.002

19 3.7 869 1.8

Diabetes

No
Yes 53,417

557 95.5 50,128 94.9
0.531

26 4.5 2706 5.1

Silicosis

No
Yes 53,417

578 99.1 52,414 99.2
0.812

5 0.9 420 0.8

Previous TB treatment

No
53,417

348 59.7 47,615 90.1
< 0.001

Yes 235 40.3 5219 9.9

Site of disease

Pulmonary
53263e

530 91.1 38,484 73.1
< 0.001

Extra-pulmonary 52 8.9 14,197 26.9
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Figure 1.   Spatial distribution of the age-standardized notification rates of non-MDR-TB (A) and the 
corresponding delimitation of the high- and low-risk areas (B). Spatial distribution of the age-standardized 
notification rates of MDR-TB (C) and the corresponding delimitation of the high- and low-risk areas (D). 
MDR-TB multidrug-resistant tuberculosis; high-risk areas are those whose standardized notification ratio is 
significantly above 1 (i.e., above the country’s average); low risk areas are those whose standardized notification 
ratio is significantly below 1 (i.e., below the country’s average).
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The pronounced spatial heterogeneity of MDR-TB burden has been observed in Moldova (the notified inci-
dence of MDR-TB ranged from 0.5 to 27.2 cases per 100,000 population)20, China (where the proportion of 
incident MDR-TB cases varied between 3 and 30%)21 and Ethiopia (where the standardized morbidity ratio 
ranged from 0 to 7.0)22.

We found a moderate correlation between MDR- and non-MDR-TB. We identified 36 high-risk areas for 
non-MDR-TB and 8 high-risk areas for MDR-TB, which were simultaneously high-risk areas for non-MDR-
TB. It was expected that MDR-TB risk areas were comparable with non-MDR-TB risk areas, due to the high 
probability of acquisition of drug resistance during treatment for TB and the transmission of existing MDR-TB 
strains in areas with higher rate of transmission of non-MDR-TB. However, only 22% (8/36) of the non-MDR-TB 

Table 2.   Comparison of the characteristics of TB patients between those in high-risk areas only for non-
MDR-TB and those in high–risk areas for both MDR- and non-MDR-TB, Continental Portugal, 2000–
2016. TB tuberculosis, MDR-TB multidrug-resistant tuberculosis, IQR interquartile range, HIV human 
immunodeficiency virus. a Not applicable for age. b Mann–Whitney U-test. c Prison confinement. d Social 
housing for people with socio-economic vulnerabilities. e Data missing for: country of origin (n = 37; 0.1%), 
alcohol abuse (n = 3144; 9.8%), injectable drug use (n = 2634; 8.2%), reclusion (n = 2962; 9.2%), community 
residence (n = 3109; 9.7%), homelessness (n = 2978; 9.3%), site of disease (n = 103; 0.3%). f Self-reported.

Patient’s characteristics
Total
n

High-risk areas for 
non-MDR-TB but 
not for MDR-TB

High-risk areas for 
both MDR- and 
non-MDR-TB

p-valuena IQR or % na IQR or %

Age (years)

Median (IQR) 32,114 42.0 25 40.0 24 < 0.001b

Gender

Female
32,114

4816 31.3 5793 34.6
< 0.001

Male 10,562 68.7 10,943 65.4

Country of origin

Foreign-born
32,077

1107 7.2 4266 25.5
< 0.001

Native 14,255 92.8 12,449 74.5

HIV status

Negative
32,114

13,508 87.8 13,240 79.1
< 0.001

Positive 1870 12.2 3496 20.9

Alcohol abusef

No
28970e

11,867 86.1 12,544 82.6
< 0.001

Yes 1911 13.9 2648 17.4

Injectable drug usef

No
29480e

12,655 89.8 12,891 83.7
< 0.001

Yes 1431 10.2 2503 16.3

Reclusionc

No
29152e

13,895 98.5 14,440 96.0
< 0.001

Yes 217 1.5 600 4.0

Community residenced

No
29005e

13,687 97.6 14,259 95.1
< 0.001

Yes 331 2.4 728 4.9

Homelessness

No
29136e

13,940 98.9 14,549 96.7
< 0.001

Yes 148 1.1 499 3.3

Diabetes

No
32,114

14,654 95.3 15,892 95.0
0.172

Yes 724 4.7 844 5.0

Silicosis

No
32,114

15,161 98.6 16,720 99.9
< 0.001

Yes 217 1.4 16 0.1

Previous TB treatment

No
32,114

13,844 90.0 14,631 87.4
< 0.001

Yes 1534 10.0 2105 12.6

Site of disease

Pulmonary
32011e

11,574 75.5 11,961 71.7
< 0.001

Extra-pulmonary 3752 24.5 4724 28.3
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high-risk areas were also MDR-TB high-risk areas. We compared non-MDR-TB patients from high-risk areas for 
non-MDR-TB with patients from high-risk areas for both MDR- and non-MDR-TB. Among the characteristics 
which were most common among the patients from high-risk areas for both MDR- and non-MDR-TB, being 
HIV infected23–26, being foreign-born6,23, homelessness27 and having history of imprisonment6, consumption of 
alcohol6,25 and injectable drug use6 have been previously reported as factors associated with MDR-TB develop-
ment. Previous TB treatment is particularly important risk factor for MDR-TB23–27.

The role of HIV infection as risk factor for MDR-TB has been inconsistent. In several studies, an association 
between HIV and MDR-TB disease was not significant or was negative27,28. This association was stronger for 
transmitted than acquired MDR-TB29,30.

Regarding previous TB treatment, in our study, 40% of MDR-TB patients were previously exposed to 
anti-tuberculosis drugs. These cannot be assumed to have acquired resistance during treatment. As previ-
ously described, 61% of the incidence of MDR-TB among previously treated patients resulted from MDR-TB 
transmissio5. In fact, genetic studies31–33 suggested that a high percentage of these cases in Portugal were related 
with the transmission of two stable MDR-TB clusters.

Regarding hotspots of MDR-TB, 7 out of the 8 high-risk areas are located in the Lisbon metropolitan area. 
Previously identified MDR-TB genetic clusters revealed evidence of transmission of multidrug-resistant strains 
in this region31–33.

The strengths of this study are the robust statistical methods used to characterise geographic patterns, tak-
ing advantage of the epidemiological characterization of the population over a significant amount of time. This 
allowed the identification of risk areas for MDR-TB, which are areas for priority action and intervention for the 
existing national TB control program. We complemented the spatial analysis with quality-assured laboratory 
data and a detailed epidemiological characterization to evaluate potential risk factors for MDR-TB in the TB 
risk areas. One possible study limitation is its retrospective design using the national notification system, which 
limited us in the analysis of the study variables.

In conclusion, we found heterogeneity in the spatial distribution of MDR-TB across municipalities in Portu-
gal. We identified priority areas for intervention against MDR-TB. Our findings suggest that in addition to the 
development of MDR-TB, transmission of MDR-TB strains occurs in these areas. We propose the inclusion of 
geographical criteria in the application of molecular drug resistance testing, paying particular attention to screen-
ing and early MDR-TB diagnosis in these areas and the performance of routine genotyping of all TB isolates to 
understand the dynamics of MDR-TB emergence and transmission.

Data availability
The epidemiological and geographical datasets generated during the current study are available from the cor-
responding author on reasonable request.
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