Table 3.
Hyperparameters | Feature reduction | N | Acc. (%) | Prec. (%) | MCC statistic | CK statistic | AUC ROC |
---|---|---|---|---|---|---|---|
HemoPI-1 model and validation datasets | |||||||
Default | MC (0.75) | 26 | 95.7 | 93.7 | 0.914 | 0.914 | 0.957 |
92.3 | 88.5 | 0.846 | 0.846 | 0.923 | |||
HemoPI-2 model and validation datasets | |||||||
'colsample_bytree': 0.8, 'eta': 0.1, 'max_depth': 14, 'min_child_weight': 1, 'subsample': 0.7, 'tree_method': 'hist', 'objective':'binary:logistic' | RFECV | 34 | 79.1 | 75.3 | 0.577 | 0.577 | 0.787 |
70.3 | 67.2 | 0.398 | 0.397 | 0.697 | |||
HemoPI-3 model and validation datasets | |||||||
'colsample_bytree': 0.8, 'eta': 0.2, 'max_depth': 14, 'min_child_weight': 0.2, 'subsample': 0.8, 'tree_method': 'approx', 'objective':'binary:logistic' | MC (0.75) | 28 | 78.7 | 74.9 | 0.569 | 0.568 | 0.783 |
72.6 | 69.1 | 0.445 | 0.444 | 0.720 |
Optimal number N of descriptors were determined using MC: multicollinearity and RFECV: recursive feature extraction with tenfold cross-validation.