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Background. Insecticide resistance among the vector population is the main threat to existing control tools available. The current
vector control management options rely on applications of recommended public health insecticides, mainly pyrethroids through
long-lasting insecticidal nets (LLINs) and indoor residual spraying (IRS). Regular monitoring of insecticide resistance does not
provide information on important factors that affect parasite transmission. Such factors include vector longevity, vector
competence, feeding success, and fecundity. This study investigated the impacts of insecticide resistance on longevity, feeding
behaviour, and egg batch size of Anopheles gambiae s.1. Method. The larval sampling was conducted in rice fields using a standard
dipper (350 ml) and reared to adults in field insectary. A WHO susceptibility test was conducted using standard treated per-
methrin (0.75%) and deltamethrin (0.05%) papers. The susceptible Kisumu strain was used for reference. Feeding succession and
egg batch size were monitored for all survivors and control. Results. The results revealed that mortality rates declined by 52.5 and
59.5% for permethrin and deltamethrin, respectively. The mortality rate for the Kisumu susceptible strain was 100%. The survival
rates of wild An. gambiae s.l. was between 24 and 27 days. However, the Kisumu susceptible strain blood meal feeding was
significantly higher than resistant colony (t=2.789, df =21, P = 0.011). Additionally, the susceptible An. gambiae s.s. laid more
eggs than the resistant An.gambiae s.1. colony (X*> =1366, df = 1, P <0.05). Conclusion. It can, therefore, be concluded that the wild
An. gambiae s.1. had increased longevity, blood feeding, and small egg batch size compared to Kisumu susceptible colonies.

1. Introduction

Malaria is still one of the most prevalent human vector-
borne disease that threatens the world’s population living in
areas where there is a risk of infectious bites with 228 million
morbidity and 405 000 mortality cases reported in 2018 [1].
About 90% of all malaria deaths in the world occur in sub-
Saharan Africa (SSA) due to a combination of factors such as
availability of predominant malaria vectors and parasites, as
well as local conducive weather conditions [2-7]. Children

under the age of five and pregnant women are the most
vulnerable groups [1]. Globally, there are 490 species of
Anopheles, of which only 70 are considered as potential
malaria vectors [8]. Currently, species such as Anopheles
gambiae s.s., An. arabiensis, An. merus, An. melus, An.
coluzzii, and An. funestus members are the main malaria
vectors that are responsible for spread of the disease in SSA
[9-15]. So far, vector control measures remain a main in-
tervention strategy for the global malaria eradication pro-
gramme [16-19]. The core vector control measures that are
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widely used include long-lasting insecticidal nets (LLINs)
and indoor residual spraying (IRS) [1]. The strategy aimed to
reduce the risk of malaria infection by targeting indoor
biting mosquitoes [1, 20]. Despite the effectiveness of these
two interventions in malaria control, they are not sufficient
to control residual malaria [21-23]. However, the main
challenges associated with LLINs and IRS are insecticide
resistance, improper use of the interventions, host behav-
iour, such as staying outdoor during early night or sleeping
outdoor without using protective measures, and vector
behaviour including outdoor biting and outdoor resting
[21].

Insecticide resistance has now been reported in malaria
vector against the four classes of public health insecticides
used in malaria vector control, and it was estimated that, in
2016, resistance would have been reported in 71 malaria
endemic countries [24] and may continue to threaten sus-
tainability of malaria interventions. So far, pyrethroids have
been the only class used for LLINs and contributed for a
large proportion of the insecticide used for IRS. Insecticide
resistance occurs due to the use of the same chemical in-
secticides of public health repeatedly [25, 26] or multiple
exposures of vectors to different sources of insecticides. It
has also been associated with higher doses application than
the ones recommended for malaria control [25, 27]. Dif-
ferent resistance mechanisms recorded so far are metabolic
resistance, target-site mechanism, and behavioural resis-
tance, as well as cuticle-reduced penetration resistance
[25, 27, 28]. In the target-site mechanism, the configuration
that occurs in the amino acid leads to a less active or inactive
binding site [27-29]. Similarly, malaria vectors also have the
ability to produce high amount of enzyme naturally, which
enable them to metabolize the insecticide and become
functionless [30]. Other insects modify their cuticle or the
digestive track by slowing down or prevent the absorption of
the insecticides penetrations [31], while behavioural resis-
tance occurs after a long time exposure of insects to an
insecticide [24, 27, 32, 33]. The resistance mechanism has
been confirmed to help mosquitoes in enduring endless
insecticide stress, and when these mechanism actions are
high, physiological characteristics such as mosquito lon-
gevity, larva development, reproduction, or its blood feeding
ability may be affected [34-36]. For example, permethrin has
been reported to reduce the blood feeding ability of An.
arabiensis [37], An. stephensi, and Ae. aegypti [36]. It sig-
nificantly reduced the egg batch size up to 100% to the
resistant colony of Ae. aegypti [38]. The resistance status with
multiple blood meals increases the survival of the vectors
and tolerance of the resistance with aging [39], while in a
normal scenario without multiple feeding, the resistance
decreases with aging [32]. Occurrence of insecticide resis-
tance among malaria vectors is an impediment to the disease
control efforts. In response to this problem, the World
Health Organization has put in place the information sys-
tems for insecticide resistance monitoring [40]. Neverthe-
less, most other important factors that determine the ability
of the vector to transmit the parasites are underexplored
during the day-to-day insecticide resistance monitoring
activities. Such factors include vector longevity, biting
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behavior, and vector competence of the insecticide-resistant
malaria vectors, and their impact on malaria epidemiology is
underexplored [41, 42]. To be successfully transmitted,
Plasmodium parasites must complete their life cycle from
gametocytes in the blood meal to sporozoites in the saliva
[41]. This means that vectors should live long enough to
allow such development of the parasite. Previous studies
reported that insecticide resistance genes in vector mos-
quitoes can cause pleiotropic effects to other genes and,
hence, may affect the resistant vectors either negatively or
positively by interfering with their fecundity, longevity, and
or vector competence [42, 43]. In addition, the insecticide
susceptibility test demonstrated mortality beyond the 24
hours of the WHO susceptibility test in resistant mosquitoes,
implying the shortening of the parasite transmission po-
tentials [44]. However, studies to explore the interplay be-
tween vector resistance with longevity and fecundity are
scanty. Most studies have been conducted in a laboratory
setting using laboratory-reared colonies. It was important to
explore these factors from the natural environment. The
present study investigated the impact of insecticide pre-
exposure on longevity, feeding behaviour, and egg batch size
of An. gambiae s.I. from northern Tanzania.

2. Materials and Methods

2.1. Study Site. This study was conducted at Mabogini
Village in Moshi District, Kilimanjaro Region, northeastern
Tanzania. The experimental site was located between latitude
03° 21’ S and longitude 37° 20" E 750 m above the sea level,
covering an area of 1600 ha [45]. The site is well known for
anthropogenic activities, mainly rice irrigation that con-
tributes to significant breeding sites of mosquitoes [46]. The
annual temperature ranges from 18.0°C to 30.7°C, while the
average annual rainfall is 525 mm between March and May
with a shorter period of rainfall occurring between No-
vember and January [47].

2.2. Larval Sampling. Mosquito larvae and pupae were
collected from rice paddy fields by using a standard dipper
(350 ml ladle) and reared in plastic containers [48]. All
sampled larvae were morphologically identified and pooled
into groups according to their species using morphological
keys [49]. The sampled larvae were reared at the Mabogini
field station, Moshi, close to rice irrigation schemes.

2.3. Rearing of Mosquito Larvae. All collected Anopheles
gambiae sl were reared in plastic containers of
18 x 18 x 18 cm with fresh water. Larvae were reared under
insectary conditions, temperature 27°C+2°C, at relative
humidity of 78 + 2%, and photo phase of 12L: 12D for their
growth and development [50]. They were provided with
Cerelac and fish food powders on the ratio of 2:1 on a daily
basis [32]. Pupae were collected using droppers and
transferred in emerging cages of 30 x30x30cm in round
metal containers to prevent them from flying away when
they emerge into adults. The emerging adult mosquitoes
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were supplied with cotton wool dipped in 10% glucose
solution [48].

2.4. Susceptibility Test. Susceptibility bioassays were carried
out using insecticide susceptibility kits [51, 52]. Mosquitoes
were exposed to papers impregnated with the WHO-rec-
ommended discriminating concentrations (v/w) of (0.05%)
deltamethrin and (0.75%) permethrin [52]. Controls were
exposed to clean paper impregnated with silicon oil. The
female mosquitoes from larvae that were collected from the
rice paddy fields 3-5 days after prominence were used for the
bioassay test, and the susceptible Kisumu strain was used for
reference. The knockdown (KD) rates were recorded at 10,
15 20, 30, 40, 50, and 60 minutes after being exposed to the
insecticides and when the KD was less than 80% was ob-
served after 60 minutes [51, 53]. Mosquitoes were, then,
transferred into the paper cups and fed with glucose solu-
tion. Mortality was recorded after a 24 h holding period;
during this time, mosquitoes were provided with a 10%
sugar solution [54, 55]. In the experimental rooms, heaters
were used to rise temperature when the room temperature
dropped, and the floors were wetted to cool the temperature
when it rises above the recommended temperature of
25+2°C [52].

2.5.  Monitoring  Longevity —of An. gambiae s.l.
Three-day-old female mosquitoes were exposed to delta-
methrin and permethrin (the commonly used pyrethroid
insecticide for public health) for an hour; the mosquitoes
were, then, placed in a paper cup and were given 10% glucose
solution. After 24 hours, the survived mosquitoes were
transferred in a cage. They were provided with blood meal.
The longevity of a mosquito was monitored until death to
mimic the time after exposure of wild population when they
contacted insecticide-treated surfaces. Monitoring was after
every 24hr. The dead mosquitoes were counted and re-
moved daily from the cage [56].

2.6. Monitoring Feeding Succession of Anopheles gambiae s.1.
The effect of the insecticide resistance on the feeding suc-
cession of An. gambiae s.I. was monitored through provision
of a blood meal source and monitoring the number suc-
cessfully fed. The tested vectors were offered blood meal
twice a week; the first blood meal was given 48 hours after
the susceptibility test was performed. The blood meal was
always given in the morning times between 07:00 and 09:
00h after being sugar-deprived for one hour before the
blood meal [57]. Rabbits’ fur was shaved dorsal ventrally,
and then, they were kept in a restrainer, which limited their
movement and exposed the shaven part to mosquitoes to
feed for 30 minutes, but the number of successfully fed
mosquitoes was recorded after one hour. In order to enhance
the feeding process, the cages were covered with dark clothes
[58]. Rabbits used to provide the blood meal were obtained
from the TPRI laboratory facilities within the Mabogini
paddy rice irrigation scheme. The feeding succession was
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FiGure 1: Mortality of wild Anopheles gambiae s.l. exposed to
deltamethrin and permethrin treatments.

determined by counting the number of mosquitoes that
successfully fed on blood during the 30 minutes.

2.7. Monitoring Egg Batch Size of An. gambiae s.l. After
mosquitoes were fed on rabbits for a blood meal, they laid
eggs on a wet white filter paper (Whatman No. 1, diameter
9 cm) placed on a plastic transparent Petri dish. Collection of
eggs was performed at an interval of three days after every
blood meal, and then, the eggs were counted with the aid of a
dissecting microscope [59, 60]. After egg counting, the effect
of insecticide tolerance on egg batch size of mosquitoes was
assessed by comparing the mean number of eggs that were
produced from a resistant colony against that of the sus-
ceptible colony.

2.8. Data Analysis. Data were analyzed using SAS software
version 9.3 (SAS Institute Inc. 2008). The generalized linear
model (GLM) was used to compare the mean difference
between treatments, day and time, and their interactions.
The parameters were tested separately for the three treat-
ments (deltamethrin, permethrin, and control) at 95%
confidence level. The Bonferroni correction was used to
adjust for multimeans comparisons. Fifty percent (50%) and
ninety-five percent (95%) knockdown times (KDTs, and
KDTys) for both resistant and susceptible samples were
estimated wusing the log-time probit model. The
Kaplan-Meier analysis was used to estimate the longevity of
mosquitoes. The comparison between the survivorship
curves (susceptible and resistant) was performed using the
Wilcoxon signed rank test.

3. Results

3.1. Insecticides Susceptibility Status. The susceptibility test
was conducted using 3-5-day-old unfed female mosquitoes,
and in this study, it was found that the resistance status of
wild An. gambiae s.l. populations was based on decreased
mortality rates to permethrin (mortality rate 52.5%) and
deltamethrin (mortality rate = 59.5%). The mortality rate for
the susceptible reference Kisumu strain was 100%. Also, the
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FiGure 3: Mortality of wild Anopheles gambiae s.1. exposed to
different treatments (i.e., deltamethrin, permethrin, and control)
(single factor ANOVA, P =0.001).

study found out that resistance to pyrethroids was matched
with increased knockdown times with the KDTgs < 20 mins
for both pyrethroids. The knockdown time KDTs, varied
from 64.52 to 68.83 min and KDTys varied from 122.7 to
126. 48 mins for deltamethrin and permethrin, respectively.
There was no significant difference, which was observed in
the insecticides susceptibility status between deltamethrin
and permethrin against An. gambiae s.. (Fg 15 =1.294,
P =0.599) (Figure 1). However, there was a significant
difference in the knockdown time at KDTys as indicated in
Figure 2. There was no significant difference in mortality
when the wild An. gambiae s.l. were treated with delta-
methrin and permethrin insecticides, as shown in Figure 1
(F2,15=0.923, P = 0.132), but mortality of the wild An.
gambiae s.1. differed significantly when the two insecticides
were compared with control treatment (susceptible colony)
(F2,15)=4.113, P = 0.001) (Figure 3).

3.2. Longevity of the Insecticide-Resistant Colony against the
Susceptible Colony. Longevity was measured from the time
when mosquitoes have been exposed to insecticides and
survived and obtain blood meals until the time when they
died. Adult female mosquitoes were provided with blood
meals twice per week, and 10% glucose were provided in
between. The findings revealed that the maximum longevity
was 27 days after exposure for the resistant wild An. gambiae
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s.l. and 24 days for the Kisumu susceptible strain. This
indicated that the Kisumu susceptible colony lived for a
shorter period of time than the wild female An. gambiae s.1.,
and its observed mean longevity was 26 and 20 days in
control for the wild An. gambiae sl. and the Kisumu sus-
ceptible strain, respectively. The Wilcoxon rank test was
used to compare the resistant wild female An. gambiae s.1.
and susceptible Kisumu strain (Z =6.093, df =86, P = 0.001)
(Figure 4).

3.3. Feeding Succession of the Insecticide-Resistant Colony
against the Susceptible Colony. Blood feeding ability of wild
female An. gambiae s.] after being exposed to the insecticides
was tested for both strains (i.e., wild An. gambiae s.I and
Kisumu susceptible strain). They were provided with blood
twice per week, and the number of fed and unfed mosquitoes
was jotted down. In wild strain, a total of 157 An. gambiae s.1
that survived the exposure against the two pyrethroids tested
were used. It was observed that 119 (75.7%) mosquitoes fed
successfully on blood and the remaining 38 (24.3%) did not
feed. Furthermore, a total of 400 Kisumu susceptible strain
were also fed on blood, and 358 (89.6%) successfully fed on
blood, while the remaining 42 (10.4%) did not feed. Sta-
tistical analysis indicates that the numbers of female mos-
quitos fed on blood meals were significantly higher in the
Kisumu susceptible strain than in the wild resistant colony
(t=2.789, df=21, P = 0.011 (Figure 5).
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FIGURE 6: The egg batch sizes of Kisumu susceptible strain (An.
gambiae s.s.) and (An. gambiae s.l.) wild resistant colonies.

3.4. Egg Batch Size of the Insecticide-Resistant Colony versus
the Susceptible Colony. The ability of mosquitoes to lay vi-
able eggs and develop into the next generation is another
measure of mosquito success in malaria transmission. In this
study, the number of eggs that were laid by both strains/
colonies was counted and their proportions were compared.
The study revealed that the egg batch size of the wild An.
gambiae s.]. was affected by the two pyrethroids tested. A
total of 1409 eggs were laid by both Kisumu susceptible
strain and wild An. gambiae s.l., whereas 1392 out of these
1409 eggs were laid by the Kisumu susceptible strain and
only 17 were laid by the wild An. gambiae sl. that was
considered as a resistant colony. Therefore, the study
revealed the insecticide resistance impact on the egg-laying
ability of the vector (An. gambiae s.l.). The Kisumu sus-
ceptible colony had laid more eggs than wild female An.
gambiae s.1., and the difference was significantly different by
X*=1366, df=1, P<0.05 (Figure 6).

4. Discussion

The findings of this study show that insecticide resistance has
a great impact on susceptibility, egg batch size, longevity,
and feeding success of malaria vectors, An. gambiae s.1.. The
results in this study illustrated that the wild An. arabiensis
collected from irrigation schemes at Mabogini are resistant
to the two pyrethroids (deltamethrin and permethrin). Their
tolerance observed to pyrethroids could be elaborated by the
fact that the vectors are repeatedly exposed to the pyre-
throids in this study area [27, 32, 33, 45, 61, 62]. This is
because, in the studied area, the main income-generating
activity is agriculture, both animal keeping and crop pro-
duction (rice), with intensive use of pyrethroid-based in-
secticides for veterinary, public health, and agricultural
purposes, as reported by several studies conducted in the
same vicinity [27, 32, 33, 45, 61, 62]. Therefore, mosquitoes
might have developed resistance as a result of everyday
contact with treated cattle during blood meal because the
dominant species in the study area is An. arabiensis, and this
species preferentially feeds on cattle blood as opposed to
human blood [63-66]. Furthermore, vector resistance might

have resulted as an effect of frequent exposure to insecticides
residues in farms from the egg to pupa stages in the rice
fields. These results are similar to previous studies that re-
ported resistance in wild An. gambiae s.l. to pyrethroids, in
lower Moshi, northeastern Tanzania, and in Muleba,
northwestern Tanzania [30, 32, 33, 61].

In this study, the longevity of a vector was defined as the
time mosquitoes survived the first 24 hours after exposure to
deltamethrin/permethrin until actual death. Longevity is an
important parameter when considering mosquito compe-
tence in transmitting malaria disease; the mosquito must
survive long enough so that the Plasmodium life cycle will be
complete and be transferred to the salivary gland of the
vector [57]. The difference in longevity between wild
mosquitoes and susceptible colonies showed that the re-
sistant population had shown to survive longer than sus-
ceptible ones. These findings were supported with the former
studies conducted in a laboratory in Switzerland where
increase in longevity was observed in resistant colonies [67].
Similarly, in South Africa, Okoye and others reported longer
life span among females of An. funestus compared to their
susceptible counterparts [65]. However, findings of this
study are in contrary to the previous two studies in which
longevity was lower on resistant colonies [37]. An increase in
the longevity that was observed in the resistant colony in this
study could be a threat to the ongoing malaria control efforts
and eradication agenda that were set by WHO for the
purpose of eliminating malaria globally [67]. Although re-
sistance management strategies often rely on the assumption
of reduced fitness in vector populations associated with
resistance genes, studies in other insects such as boll weevils,
houseflies, and cockroaches do not show differences in
fitness between resistant and susceptible strains [68, 69].
Nevertheless, there is no uniform negative effect of fitness
costs associated with resistance across species, and the
negative performance in one parameter can conceivably be
balanced by the positive performance in another [70]. In the
wild, various environmental factors including food and
temperature affect developmental rates and survivorship of
mosquito immature and, subsequently, the adult life span.

The feeding succession is an important parameter of
mosquitoes in transmitting disease; therefore, inability to
feed on blood can change the transmission dynamics which,
in turn, will severely limit their ability to transmit disease
[67]. The numbers of fed and unfed mosquitoes were
counted after each blood meal for both strains [57]. From the
findings of this study, it can be seen that the feeding suc-
cession of a wild An. gambiae s.l. was reduced and the
percentage of unfed An. gambiae s.l. was higher in the wild
An. gambiae s.1. compared to the susceptible colony. This
shows that the resistant population of An. gambiae s.1. can be
denied an opportunity to feed when the host is well pro-
tected with LLINs [67]. The results of this study on feeding
succession were corroborated by other studies conducted
elsewhere [36, 37].

In this study, the resistance character of a vector neg-
atively affected the number of eggs. The wild female An.
gambiae sl. laid less number of eggs compared to those
which were laid by the susceptible strain. According to



Couret and others in their studies, they interpreted a model
that illustrated the interaction between larval population size
and adult population size and how this model was affected
by the number of eggs laid by a mosquito [71]. Smaller
number of eggs that would be produced and laid by the
resistant colony would have an impact on the number of
larvae produced and adult populace that will exist. The
number of eggs that were produced by the resistant strain
was less compared to that produced by susceptible colony.
Similar findings have been reported where resistant colonies
showed reduction in egg batch sizes [72], and this infor-
mation is of public health importance as it translates to
reduced vector density.

5. Conclusions

The findings of this study have shown the high degree of
tolerance to permethrin and deltamethrin insecticides
among a wild population of An. gambiae sl. Also, the
findings showed an increased longevity of the resistant
colony, decreased feeding habit, and decreased egg batch size
of the resistant vectors compared to the susceptible colony.
These results give an insight on the effects of insecticides
resistant on malaria vector species and their impact to the
spread of the malaria considering the greater extent nature of
pyrethroids resistance in sub-Saharan Africa.
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