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Predicting the Real-Valued Inter-Residue Distances
for Proteins

Wenze Ding and Haipeng Gong*

Predicting protein structure from the amino acid sequence has been a
challenge with theoretical and practical significance in biophysics. Despite the
recent progresses elicited by improved inter-residue contact prediction,
contact-based structure prediction has gradually reached the performance
ceiling. New methods have been proposed to predict the inter-residue
distance, but unanimously by simplifying the real-valued distance prediction
into a multiclass classification problem. Here, a lightweight regression-based
distance prediction method is shown, which adopts the generative adversarial
network to capture the delicate geometric relationship between residue pairs
and thus could predict the continuous, real-valued inter-residue distance
rapidly and satisfactorily. The predicted residue distance map allows quick
structure modeling by the CNS suite, and the constructed models approach
the same level of quality as the other state-of-the-art protein structure
prediction methods when tested on CASP13 targets. Moreover, this method
can be used directly for the structure prediction of membrane proteins
without transfer learning.

1. Introduction

Proteins participate in nearly all kinds of physiological activities
and their 3D structures are essential for the functions. Since the
finding that the protein structures are prescribed by their amino
acid sequences, exploration of the relationship among protein
sequence, structure, and function has been one of the core prob-
lems of molecular biophysics. Unlike experimental structure de-
termination methods that are costly and technically prohibitive,
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predicting the protein structure via com-
putational approaches could be applied
in a high-throughput manner and thus
is widely needed in practical applications
ranging from protein design to pharmaceu-
tical development.[1]

In traditional de novo protein structure
prediction, the native structure is located
by exhaustively searching the protein
conformational space, using molecular dy-
namics simulations that employ empirical
force fields or fragment-assembly-based/
threading-assembly-based Monte Carlo
simulations that use experimentally deter-
mined structures as templates and force
fragments of the target protein to adopt
their conformations.[2] Despite the suc-
cesses, traditional methods become less
powerful for hard protein targets that have
complex topologies but limited homology
to known structures, for example, the
free-modeling (FM) targets in the critical
assessment of protein structure prediction

(CASP) competitions. In addition, these methods are computa-
tionally expensive in general, because the protein conformational
space frequently has intimidatingly high dimensionality.

Breakthrough in the accuracy of protein structure prediction
was observed in CASP11 and CASP12[3] (hosted in 2014 and
2016, respectively), which was mainly driven by the use of co-
evolution information and deep learning algorithms. For a tar-
get protein, evolutionary couplings between residues could be
detected and extracted from the multiple sequence alignment
(MSA) to predict the binary contact matrix, assuming that spa-
tial neighborhood of residues (so-called residue contact, strictly
defined as the distance of C𝛽 atoms ≤ 8 Å according to the CASP
convention) would elicit correlated mutations over long evolu-
tionary time. The contact matrix contains geometric constrain-
ing information that could be used by protein folding programs
such as CONFOLD[4] to restore the atomic coordinates. On the
other hand, traditional methods also benefit substantially from
the integration of contact prediction in structure selection and
energy evaluation.[5] Extraction of contact information from the
MSA is a typical pattern recognition problem that is particularly
suitable to be handled by deep learning techniques like convolu-
tion neural network,[6] because of the power of such techniques to
identify the correlation between contacting residue pairs located
far away in the contact map. Among many deep-learning-based
approaches, RaptorX-Contact that adopts deep residual network
(ResNet) outperforms others and makes huge influences in this
field.[7]
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Nevertheless, contact prediction is just a compromise when
accurate distance prediction is not available. Distance prediction
has many intrinsic advantages over contact prediction for pro-
tein folding. First of all, contact prediction is a binary classifi-
cation problem with unbalanced positive and negative samples
(e.g., roughly 1 contact: 50 non-contacts for long-range residue
pairs with sequence separation ≥ 24),[8] which frequently re-
quires undersampling of negative ones during model training
and thus may lead to the inconsistence between the predic-
tion score and the real contacting probability for a residue pair.
Therefore, contact-assisted protein folding methods usually only
adopt a small part of predicted contacts with top scores for struc-
ture modeling, which is susceptible to the noises raised by very
few wrongly predicted contacts. Direct prediction of distance
map (i.e., the 2D matrix listing real-valued distances between all
residue pairs) would avoid this problem, because all predicted
values within a suitable interval (e.g., 4–16 Å) can be utilized
and thus the disturbance introduced by the prediction errors of
individual residue pairs may mitigate according to the law of
large number. More importantly, distance matrices contain much
more detailed information of protein structure than contact ma-
trices, which could reduce conformational sampling more ef-
fectively and thus fold the protein more accurately and rapidly.
Consequently, despite the great progresses introduced by contact
prediction, first-ranked groups in the field of protein structure
prediction like AlphaFold and RaptorX-Contact have switched
their attention to distance prediction in CASP13[7,9] (hosted in
2018). Particularly, the success of AlphaFold in CASP13 has been
mainly attributed to the more accurate prediction of inter-residue
distances.[10]

Ideally, during the switch from contact prediction to distance
prediction, the nature of the explored task should transit from a
classification problem to a regression problem, because residue
contacts are actually human-defined zero-one labels while dis-
tances are real-valued physical metrics. However, both AlphaFold
and RaptorX-Contact simply chose to modify binary classification
to multiclass classification. Instead of real-valued distances, they
used a discrete representation with several fixed-width bins.[7,9]

The rationale for their choices is mainly threefold. First and fore-
most, traditional regression loss functions used in deep neural
network (DNN) like mean absolute error (MAE, also called L1
loss) and mean square error (also called L2 loss) measure the
globally averaged deviation of the prediction from the ground
truth. After loss minimization by DNN, the predicted distances
may be pretty good on average but still far from satisfaction as in-
dividuals, which is of limited usefulness for protein folding. Gen-
erally, it is hard and needs many manual efforts to design effective
losses for separate, special-purpose machinery. Second, modern
DNN training procedures always add batch normalization (BN)
layers to solve the problem of gradient vanishing or explosion,
which normalize the forward-passing data into a standard
normal distribution. Thus, without ingenious, human-designed
mapping functions, common activation functions used in DNN
are powerless of outputting positive real numbers like distances.
Third, with their powerful, well-tested contact prediction net-
works in hand, these groups can conveniently use transfer learn-
ing techniques to get satisfactory distance prediction results.

In this work, we adopted the generative adversarial networks
(GANs) to directly predict the real-valued inter-residue distances

for proteins. GAN is a computer vision technique, containing
a generator to produce outputs and a discriminator to classify
outputs of the generator from the real ones (ground truths).
With joint training, the generator would not only fit the pixel
distribution of real image globally, but also highlight “important”
pixel areas with sharp, precise values to fool the discriminator
simultaneously.[11] In 2018, Anand and Huang applied the GANs
to generate the distances between C𝛼 atoms and then used the
generated distance map to complete small structural corruptions
for protein design problem.[12] Despite the interesting finding
that the generator in GANs can effectively capture features of
secondary structure elements, their model failed to generate
distance maps of arbitrary size and could not be used to predict
the structure of a given protein sequence. In this work, we solved
all the obstructions for distance prediction via GANs and were
able to predict the real-valued inter-residue distances for prac-
tical proteins with satisfactory accuracy for the first time. Other
contributions of our work include 1) introducing new, effective
data augmentation methods to produce more robust models,
especially the augmentation of distance labels by molecular
dynamics simulations, which considers the structural dynamics
of proteins that are typically ignored in structural bioinformatics,
2) designing reversible mapping functions between positive real
numbers and the interval of [−1, 1] to enable the direct training
of DNN for continuous inter-residue distance regression, and
3) analyzing the effects of several technical choices and then
summarizing some empirical laws for the deep learning solution
of inter-residue distance prediction for proteins. When pipelined
with the same protein folding program CNS suite,[13] structure
models generated using our distance constraints are significantly
better than those produced with the contact constraints from
the state-of-the-art contact predictors like RaptorX-Contact[7]

and TripletRes.[14] Moreover, when tested on available CASP13
targets, our structure models approach at least the same level of
quality as the top protein structure prediction groups, including
AlphaFold (A7D),[9] QUARK,[15] Zhang-Sever,[15] and RaptorX-
DeepModeller.[7] Although trained mainly by protoplasmic
soluble proteins, the generalizability of our predictor renders its
application for the structure prediction of membrane proteins
without the requirement of any transfer learning processes.

2. Results

2.1. A Preliminary GAN Model for Protein Distance Prediction

We first developed mapping functions to allow the back and
forth transformation between real-valued distances or features
and numbers in [−1, 1] (see Section 4 for details), through which
the ground-truth distance maps could be converted to the interval
of [−1, 1] to simplify the training of DNN models with BN layers
and the prediction results could also be restored to the domain
of real distances instantly. Particularly, the mapping functions
were designed to have large gradients for distances between 4 and
16 Å, the range possessing rich information for the protein struc-
ture modeling. We then adopted the conditional GAN (cGAN) for
protein inter-residue distance prediction. Similar to but distinct
from primitive GANs, cGAN learns a generative model (gener-
ator, referred as G) that can generate the corresponding output
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Figure 1. Schematic illustrations of the preliminary experiment. a) D and G of our GAN model contest as adversaries to improve the quality of predicted
distance map, in comparison with the traditional ResNet as control. The dashed lines represent information flows. b) The architecture of the D model.

of expected size in the condition of an input.[11a] Here, a 40-layer
ResNet, one of the most successful network architectures in this
field,[7] was chosen as the generator of our cGAN and was also
taken as the control to evaluate the performance gain of GANs
over pure generative models (Figure 1a). The discriminator of
our cGAN, referred as D, is trained to detect the outputs of G
as “fake” from “real” under the condition of input features fed
to G, whereas G tries to learn from the decision of D and pro-
duces indistinguishable outputs to “fool” D through the adver-
sarial training procedure. More specifically, the loss function of
D can be defined as a standard cross-entropy function for a binary
classifier with a sigmoid output:

LossD = −LossGAN(G, D) = −(Ex,y[logD(x, y)]

+ Ex,z[log(1 − D(x, G(x, z)))]) (1)

where x, y, and z represent input features, real distance maps,
and input noises, respectively, and E denotes expectation. No-
tably, unlike the common GANs that apply noises to ensure the
randomness of outputs, we did not apply noises in G, because G
in our experiments is a deterministic model to produce distance
map given input sequence features. D tries to minimize Equa-
tion (1) against the adversarial G, which in return tries to maxi-
mize it (i.e., minimize its negative number, LossGAN). Besides
fooling D, G should also constrain its outputs near the ground

truths. Hence, it would be beneficial to combine a more tradi-
tional regression loss (RegLoss), and the final G loss is defined
as

LossG = LossGAN(G, D) + 𝜆 × RegLoss (2)

where 𝜆 is a weight parameter to adjust the relative importance
of two parts. In this section, we chose L1 loss as the regression
loss and 258 for its weight. For the consistence between cGAN
and the control, L1 loss of the control ResNet was also multiplied
by the same 𝜆:

LossControl = 𝜆 × RegLoss (3)

We set each individual protein as a mini-batch during train-
ing. For G of our cGAN and the control ResNet, 64 3 × 3 2D
convolution filters with stride 1 and zero-padding “same” were
adopted for each layer, followed by the leaky rectified linear unit
(leaky-ReLU) and BN. For D, we concatenated the input features
of G and the discriminating targets (i.e., outputs of G or ground
truths) as its input. To solve the problem of variable sizes of indi-
vidual proteins, we adopted spatial pyramid pooling[16] following
the 3 convolutional layers (each with 64 3 × 3 2D filters) in D,
where the max-pooling results of three different separations (8 ×
8, 4 × 4, and 2 × 2 patches) of the feature map were concatenated
as a fixed-length vector and were fed into a 3-layer perceptron
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Figure 2. Comparison between our cGAN system and ResNet (the control) for protein structure prediction. a) Comparison of the TM-scores of the
structure models produced by CNS-based folding using the distance predictions of cGAN and ResNet as restraints in the validation set. b) Predicted
distance maps by cGAN (left) and ResNet (middle) are compared with the true distance map (right) for a case target (PDB ID: 2II8). The bar on the right
indicates the grayscale for the predicted distance (Å). c) Structure alignment of the best folded models using cGAN (orange, left) and ResNet (yellow,
right) predictions against the crystal structure (green).

to output the probability of the given distance map to be true
(Figure 1b). The training procedures of cGAN and the control
ResNet were completely the same, using the Adam optimizer for
100 epochs with the learning rate set as 1e-4, 1e-5, and 1e-6 for
the first 20, the middle 30, and the last 50 epochs, respectively. We
randomly chose 5642 proteins from the dataset of 6862 chains as
the training set, and left the rest 1220 proteins as the validation
set. To speed up training, the maximal length of proteins was lim-
ited to 400 residues.

Table S1, Supporting Information, summaries the prediction
errors by the cGAN and the control ResNet in the validation set.
For residue pairs with the predicted distances falling between 4
and 16 Å (the range having rich information for protein struc-
ture modeling), ResNet seems to reach lower prediction error
than cGAN on average (1.832 Å vs 1.938 Å). However, are the
“seemingly better” results by ResNet really benefiting the protein
structure modeling? To address this question, we collected all
predicted distances within 4 and 16 Å to construct the distance
constraining matrix and invoked the CNS suite[13] (using a simi-
lar protocol to CONFOLD[4]) to fold the proteins in the validation
set. To ensure that CNS suite indeed uses the predicted residue
distances for structure modeling, we chose a narrow distance
range of ±0.4 Å around the predicted value. Quality of the top 1
models was evaluated by TM-score. As shown in Figure 2a, cGAN
defeats the control ResNet for most targets in the validation set.
The models folded by cGAN predictions reach an average

TM-score of 0.722, with 92.7% of the targets folded in the correct
topology (i.e., TM-score > 0.5). In contrast, the average TM-score
of ResNet-based folding is 0.544, with only 63.9% of the targets
folded correctly. Hence, despite the slight weakening of the
overall distance prediction accuracy, introduction of the GAN
loss that comprehensively considers the adversarial generator
and discriminator (see Equations (1) and (2)) indeed improves
the structure modeling based on the predicted distances.

Figure 2b shows the distance maps predicted by cGAN and
ResNet as well as the ground truth for an example target (PDB ID:
2II8). Clearly, the prediction by ResNet is blurry overall, although
locations and average values of the main stripes are roughly cor-
rect. In contrast, despite many tiny mistakes, the prediction by
cGAN contains much more details with sharp edges. The sharp
contrasts between pixel signals captured by cGAN prediction de-
scribe the subtle correlations between individually predicted dis-
tances, which imply the delicate geometric relationship between
residue pairs. Consequently, the structure model generated by
cGAN prediction agrees with the native structure significantly
better than that by ResNet prediction (Figure 2c).

The fitting power of ResNet is guaranteed by the multiple
stacking of residual blocks even when the size of convolution fil-
ter is small, as the receptive field would be amplified in a cas-
caded way and thus the interdependency of two arbitrary residue
pairs could be captured. Thus, the question is focused on what
we want our neural network to fit, and since the network learns
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to minimize a loss function that evaluates how close the out-
puts of the network and our desires are, the question finally
becomes how we define the loss of our neural network. It is
well known that traditional regression loss like L1 or L2 losses
could capture the low-frequencies, that is, average information,
accurately from inputs. They measure the global quality of out-
puts and thus drive the networks to produce predicting values
around the local average, which as a result may blur their out-
puts. However, these accurate low-frequencies are far from the
demand of practical usage in protein folding, and what we re-
ally want is a realistic residue distance map with sharp contrasts
between pixels. Designing effective losses specifically for the ex-
traction of these high-frequencies, that is, texture information,
is difficult because the high frequencies somehow represent the
general properties of polypeptides or the protein folding mech-
anism like the interacting pattern between secondary structure
elements and the local folding propensity of loop regions. Avoid-
ing directly defining such kind of texture losses, our GAN solved
this problem through achieving a high-level goal of “produc-
ing reality-indistinguishable predictions” and used a neural net-
work D to learn this loss. At the same time, our GAN trained
its generative model G to minimize the learned loss, which
successfully suppressed the unrealistic blurs and reproduced
high-frequencies.

2.2. Introducing Patch Classifiers to the Architecture of D

As a data augmentation method, cropping has been proved as
useful in practice by many research groups in this field. For ex-
ample, AlphaFold randomly chose 64 × 64 patches from the pro-
tein feature map when training their 660-layer ResNet, which
brought about many benefits, such as solving inconsistency prob-
lem of protein length variation, helping distributed training,
avoiding overfitting problem and facilitating ensemble average
for inference.[9] However, direct imitation of such cropping in our
case failed in the GAN training.

Markovian discriminator was proposed recently to model
high-frequencies in GAN.[11e] Instead of determining whether
the entire output is “real” or not, such kind of discriminators
pay attention to subtle structure differences in output patches
of fixed size. Inspired by this idea, we implemented our patch
classifier as an alternative cropping method in D through a fully
convolutional network (FCN). Each layer of this FCN adopts the 4
× 4 convolution kernel with the leaky-ReLU set as activation and
zeros padded around inputs when necessary. The kernel stride
of precedent layers was set as 2 to enlarge receptive field rapidly
while the stride of the last two layers was set as 1 to better inte-
grate information captured in each neuron. The channel number
of the first convolution layer was set as 128, and the following
ones were doubled at each turn except the last layer, where the
channel number was set to 1. Sigmoid function was used as ac-
tivation for the last convolution layer to output the probability of
the corresponding patch to be true. The patch size could be mod-
ified with the depth variation of this FCN. For example, as shown
in Figure S1, Supporting Information, if we want the classifier
to focus on 34 × 34 patches, the FCN should have 4 layers totally,
with strides of (2, 2, 1, 1) and channel numbers of (128, 256, 512,
1). Notably, for each target protein, we applied dense sampling

of patches to ensure coverage of the whole distance map without
omission.

We observed that the patch classifiers that have fewer param-
eters and faster speed indeed produced better results than the
single classifier that makes judgement on the entire input of dis-
tance map (Figure S2, Supporting Information). Because residue
pairs separated by a patch diameter or longer intervals are fre-
quently independent considering the statistical length of protein
secondary structure elements (i.e., helices and sheets), patch clas-
sifiers could model the residue distance map as a Markov random
field. Thus, the loss learned by patch classifiers should be useful
for the extraction of the special texture pattern of distance map.

The characteristic of distance map hints us that we should pay
more attention to those patches having stripes of strong signals
(i.e., predicted distance between 4–16 Å) since only such predic-
tions are meaningful and contributive to protein folding in our
case. However, the distance map is usually dominated by blank
background regions (i.e., predicted distance > 16 Å), which albeit
lacking useful information are highly likely to be judged by D
as “real” because they seem identical to the corresponding blank
patches on the ground-truth map (Figure S3, Supporting Infor-
mation). To reduce such confusion of D, we modified its cross-
entropy loss from Equation (1) to

LossD = −(Ex,y[logD(x, y)]

+ Ex[log(CLIP(0.9 − D(x, G(x)), 0, 0.9))]) (4)

where CLIP(fun(a),0,0.9) is a clip function that only retains values
of fun(a) within the 0–0.9 interval. Through this modification,
patches seeming realistic (e.g., those blank background regions
without stripes) at the first beginning when G has not learned
useful information would be filtered out for the decision of D.

2.3. Optimizing the Generative Model G

As G is the major undertaker for information integration and ex-
traction from inputs and the actually used part during inference,
its architecture is vital to performance of the overall network. In
this section, we adjusted all components of G one after another
and summarized some empirical laws of the technical choices for
distance prediction. All effects of adjustments were analyzed by
fivefold cross validation on the protein dataset of 6862 chains.

During training, we frequently observed the premature con-
vergence of the GAN loss of G (LossGAN(G,D) in Equation (2)).
This is because D is likely to reject all the distance maps produced
by G with high confidence after a few epochs when G cannot re-
ally learn something, considering that the regression task of G
is much harder than the classification task of D. Albeit correct,
such rejections quickly reduce the loss of D (Equation (1)), which
prevents the further learning by G. To solve it, we modified the
GAN loss of G to favor the cases when D accepts distance maps
predicted by G as “real” ones:

LossG = Ex[−logD(x, G(x))] + 𝜆 × RegLoss (5)

We tried a number of common network architectures for
G, including different ResNet variants, DenseNet, and U-Net
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(Table S2, Supporting Information). Among them, U-Net was
hard to implement for inputs of variable sizes by available convo-
lutional depression and recovery techniques, and we had to pad
zeros around the inputs to ensure the length uniformity, which
impaired the performance, because the padded zone might be
much larger than original size for many proteins. Taking compu-
tational consumption (i.e., amount of parameters and floating-
point operations per second (FLOPs)) into account, the perfor-
mance of DenseNet is not satisfactory. For ResNet, the 3-layer-
per-block variant outperforms the 2-layer-per-block one. Bottle-
neck structure seems not beneficial to distance prediction be-
cause the 1× 1 kernel is incapable of enlarging the receptive field.
We finally picked up the ResNet architecture and augmented it
under the guidance of EfficientNet[17] to generate two separate
models for proteins of small/medium and large sizes, respec-
tively (see the next section for details).

As for the convolution kernel of G, we tried different kernel
sizes, kernels with dilation and separable kernels (Table S3,
Supporting Information). Larger kernels have better perfor-
mance by considering more complex interdependencies. As a
frequently used technique in contact prediction and distance
prediction with multi-classifiers, dilated kernels underperform
normal ones. The reason of this phenomenon is that unlike
classification problem that only needs to learn categorical infor-
mation, real-valued distance regression requires large receptive
field without any omission, especially for the extraction of
texture information. We finally chose the 7 × 7 kernel. Since
the training of models with 7 × 7 kernels was relative slow, we
adopted parameter sharing technique proposed in the work of
ShaResNet[18] to reduce the amount of parameters and accelerate
training. Unfortunately, this procedure led to training failure.

In the evaluation of activation functions, the Swish function

Swish(x) = x × sigmoid(𝛽x) (6)

which has a learnable parameter 𝛽, achieves the best perfor-
mance (Table S4, Supporting Information). Generally, activations
with tunable parameters outperform those without, because they
can mimic real biological neural networks, in which every indi-
vidual neuron has its own property and activation threshold. It
is noteworthy that random-ReLU (R-ReLU) impairs the perfor-
mance, which is inconsistent with our previous experience on
protein contact prediction. Among the regression losses tested,
the MAE loss (or L1 loss) is the simplest but the most effective
one (Table S5, Supporting Information). This is because instead
of biasing predictions of larger ground-truth values that usually
have larger errors, the L1 loss balances various kinds of predic-
tions well and thus performs more robustly.

Among features from various sources, 2D features are the
most valuable. However, unlike AlphaFold that uses enormous
2D features directly from the Potts model to ensure information
coverage,[9] 2D features in our model only occupy 3.07% of the
inputs (4 out of 130, see Experimental Section). Although these
features are extracted from the MSA and are thus informative,
their contributions may be submerged by the large amount of
redundant information produced by the broadcasting of 1D fea-
tures. Besides, the unbalanced value distribution of the protein
distance map (e.g., the sparse distribution of intense “stripes” on
the vast blank background area) further complicates the training.

Inspired by these, attention aiming to reweight the channels (i.e.,
different features) and pixels (i.e., different regions) of the input
features in consideration of individual targets is necessary in our
system. We implemented an attention module with global aver-
age and max pooling (see Section 4) and the results supported
its effectiveness in improving the model performance (Table S6,
Supporting Information). In the validation set, the channel-
wised attention sufficiently suppresses the weights of redundant
information from the broadcasting of 1D features (Figure S4,
Supporting Information). Meanwhile, the pixel-wised attention
effectively adjusts the weights of individual pixels to facilitate
information extraction (Figure S5, Supporting Information).

2.4. Data Augmentation with Biological Significance

What kind of structures should the predictors in the bioinfor-
matics field predict? It is an open question since the structures
from the protein data bank (PDB) that are used as ground truths
for model training are static structures determined in non-
physiological conditions. Different crystallization situations,
different structure analysis technologies (NMR, X-Ray, cryo-EM,
etc.) and even different structure computation methods may lead
to structure variation. More importantly, these static structures
are unable to reflect the dynamic behaviors of real proteins in
aqueous environments. Molecular dynamics (MD) simulations
could solve this problem, because physiological environments
are constructed and empirical force fields are adopted to observe
the protein dynamics starting from the PDB structure in these
simulations. To guarantee the generalizability and robustness
of our predictor as well as to consider the protein dynamics, we
augmented data via MD simulations (see Section 4). For each
protein in our training set, 500 structures were collected with
even separation from the 5-nanosecond trajectory of equilibrium
simulation. The conformational change reaches the RMSD
level of 6 Å on average at the end of the simulation (Figure S6,
Supporting Information), which ensures that structural dynam-
ics are sufficiently considered by our data augmentation. To
validate the contribution of this data augmentation on practical
protein structure prediction, we trained two models of the same
architecture (L1 loss weight 𝜆 = 100, patch size of D = 70 and
without clipping) using structures from PDB (referred as Model
1) and structures produced by MD simulations (referred as
Model 2), respectively, and utilized their results to fold proteins
in the CASP13 set and non-redundant membrane protein set by
the CNS suite. Enhancement in the quality of folded structures
by Model 2 supports that our data augmentation indeed captures
something with biological significance, which improves the
generalizability of distance prediction and benefits the distance-
based structure modeling (Table S7, Supporting Information).

We trained our final models at L1 loss weight 𝜆 = 158, patch
size of D = 70 and clipping of the D loss. During training, the
maximally allowed protein length and the model size are a pair of
mutually constrained parameters in a fixed environment (TITAN
RTX with 24 190 MiB memory). For instance, model complexity
and thus prediction accuracy will be sacrificed when relaxing the
protein length restriction in training. However, many protein do-
mains, not only in our training set but also in academic research
and practical usage of protein structure prediction, are no longer
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Table 1. Comparison of the folding capability by our distance predictor
against contact predictors in the CASP13 set.

Average TM-score

TripletRes 0.568

RaptorX-Contact 0.527

Our GAN system 0.712

than 300 residues (Figure S7, Supporting Information). Under
such consideration, we trained two separate models for differ-
ent purposes. A high-capacity model of 77 convolution layers (re-
ferred as Model X) was trained using proteins of ≤ 300 residues
to specifically process the distance prediction for small protein
domains (length ≤ 350 residues), whereas a low-capacity model
of 52 convolution layers (referred as Model L) was optimized with
protein length restriction relaxed to 450 residues to undertake the
prediction task for the other proteins (length> 350 residues). The
combination of these two models compose a lightweight compre-
hensive model for inference, which optimally makes use of the
limited computational resources without sacrificing the predic-
tion accuracy for small targets. For each protein, we randomly
chose 6 structures as ground truths from the available structures
(one PDB structure plus all simulation-produced ones) during
the training of each model. To stabilize the training of our GAN
system, we used exponential moving average for loss when updat-
ing network parameters. We computed the average of the upper
and lower triangles of outputs as the final distance prediction for
each residue pair and then applied ±0.4 Å around the predicted
value as the boundary of the allowed distance range when folding
the protein by the CNS suite.

2.5. Evaluation

The usefulness of our distance prediction method was mainly
evaluated in practical protein structure prediction. To validate
the superiority of distance prediction to contact prediction, we
compared our distance predictor with our contact predictor
DeepConPred2[8] in the CASP12 set and with the top CASP13
contact predictors including RaptorX-Contact and TripletRes in
the CASP13 set, by uniformly using the CNS suite to fold the
proteins. The allowed distance range of each residue pair was set
strictly and narrowly as the predicted value ±0.4 Å, but was set to
[3.5, 8] for all contact predictors following the CONFOLD protocol
(using top 2L contacts as CONFOLD suggests, where L is the pro-
tein length). Clearly, our GAN system significantly outperforms
DeepConPred2 that has similar input features (Table S8, Sup-
porting Information). Moreover, structure models constructed
from our distance prediction have remarkably better quality than
those generated based on the results of the state-of-the-art contact
predictors (Table 1). The lead of our method by a large margin in
TM-score supports the important contribution of real-valued dis-
tance prediction in protein structure prediction.

We also compared the structures folded using our distance
prediction against the CASP13 top 3 protein structure prediction
servers (QUARK, Zhang-Server, and RaptorX-DeepModeller)
and the best human group (A7D, also known as AlphaFold) on

42 available CASP13 targets (38 for A7D, with four server-only
targets T0950-D1, T0951-D1, T0967-D1, and T0971-D1 excluded
due to the lack of A7D results). As shown in Table S9, Supporting
Information, our method reaches an average TM-score of 0.712
for all targets, and the average TM-scores for FM targets and
template-based-modeling (TBM) targets are 0.620 and 0.786,
respectively. All of the above numbers are very close to the results
of the top CASP13 groups, and it is noticeable that for overall
targets, our method achieves the highest average TM-score. No-
tably, the comparison between our methods and CASP13 groups
is not 100% rigorous, because we used domain sequence as
inputs while other groups started from the whole sequence with-
out the knowledge of domain definition, also because we only
used sequence information while other groups used structure-
sourced information from templates or fragments of known
structures.

Figure 3 shows the detailed comparison of the TM-scores
between our method and the top CASP13 groups, on targets
of various alignment depths Neff (i.e., the effective number of
homologous sequences in MSA) and protein sizes. Clearly, our
method outperforms the others for the hard targets that have
low alignment depths in the MSA (see the FM target group with
the smallest Neff in Figure 3d), which is impressive particularly
when considering that the others used structure-sourced infor-
mation (e.g., templates or fragments) more or less and we used
sequence information only. Consistently, correlation analysis of
our method on 42 CASP13 targets (Figure S8, Supporting Infor-
mation) shows weak correlation between the prediction quality
and the logarithmic values of Neff overall. Particularly, for FM
targets, the correlation is barely present, with Pearson correlation
coefficient (PCC) = 0.14 and p-value = 0.54. This phenomenon
laterally hints the importance of texture information in inter-
residue distance prediction for proteins with shallow alignment
depths. On the other hand, in comparison to the others, our
method exhibits a performance decay with the increase of target
size. This problem has been partially relieved by the specific
development of the low-capacity Model L to treat large proteins,
but could be better solved by training using more advanced hard-
ware to overcome the GPU memory limitation of our current
facility (TITAN RTX with 24 190 MiB memory). Nevertheless, the
prediction results by our method exhibit a pattern considerably
distinct from those of the other state-of-the-art methods, which
implies its capability of providing complementary information
in practical protein structure prediction. Moreover, it is notice-
able that our GAN system pipelined with CNS suite could be
deployed on personal computers (PCs) with GPU cards with
acceptable running time (Figure S9, Supporting Information),
while the others required heavy computational resources.

Since the pipeline of A7D is already partially open-sourced,
we evaluated the distance predictions of our method and A7D
against the ground truths for all available CASP13 targets on
the domain level. To guarantee the rigor of comparison, the
same domain sequences were fed into both models, whereas
the modes of predicted distributions and the real-valued dis-
tances for all residue pairs were extracted from A7D model
and our GAN model, respectively, for data analysis. As shown
in Figure S10, Supporting Information, in general, the dis-
tance predictions of the two methods correlate nearly equally
well with the ground truths in the range of 4–16 Å. Notably,
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Figure 3. Comparison of TM-scores for targets by our method versus the top CASP13 groups. The TBM targets are classified by a) their length and by b)
their logarithmic values of effective alignment depth (Neff). The FM targets are classified by c) their length and by d) their logarithmic values of effective
alignment depth (Neff).

unlike the bar-screen typed pattern of A7D prediction that may
arise from the discrete characteristics of multi-classification pre-
dictors, the prediction of our method exhibits a continuous
pattern that more realistically reflect the nature of distance
metrics.

To further check whether the good performance of our model
arises from serendipity, we tested our method on the set of
CAMEO hard targets as reported by Xu.[7] Three targets (2ND2A,
2ND3A, and 5B86B) were excluded from the original 41 proteins
due to failure in feature generation by the third party programs
(DeepCNF[19] and SPIDER3[20]). Among the remaining 38 targets
(Table S10, Supporting Information), the top 1 models predicted
by our method reach an average TM-score of 0.563, very close to
the value (0.559) of RaptorX,[7] one of the top CAMEO servers.
The robust performance of our method on CASP and CAMEO
proteins supports its usefulness in practical protein structure
prediction.

Structure prediction of membrane proteins is of very high
value in practical usage since they are responsible for the material
transport and signal transduction between cellular internal and
external environments. Experimental structure determination is
very hard for membrane proteins and therefore the data accumu-
lation of known membrane protein structures is far from enough
to support the regular training scheme of DNNs. However, the
folding mechanism of all proteins should be the same for all pro-
teins in the perspectives of physics and chemistry, which implies
that good predictors may have good generalizability to allow the

application on membrane proteins. We used 416 non-redundant
membrane proteins from the PDBTM[21] set to test the generaliz-
ability of our method. Without any transfer learning, our method
achieves an average TM-score of 0.602 and can fold 61.5% of
the proteins (256 out of 416) into the correct topology (TM-score
> 0.5). As an example, the chain A of target 5I20, an important ex-
porter of drug/metabolite transporter superfamily in Escherichia
coli, could be folded with very high accuracy (Figure 4). These
results further confirm the applicability of our method on mem-
brane proteins, although the models are trained mainly by proto-
plasmic soluble ones.

3. Discussion

In this work, we treated protein inter-residue distance prediction
as a regression problem for the first time and precisely predicted
continuous, real-valued distances merely from sequence infor-
mation via an exquisitely designed GAN system. Through adver-
sarial training procedure on the two parts of this system, that is,
the generator and the discriminator, our model could learn the
texture pattern of protein residue distance map. Feeding these
distance predictions to the basic CNS suite produces structures
with competitive model quality compared with the state-of-the-
art predictors. The structure quality predicted by our system has
merely weak correlation with the alignment depth in the MSA.
Although trained by protoplasmic soluble proteins, the good
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Figure 4. The prediction of our method on a membrane exporter (PDB ID: 5I20, chain A). a) Comparison of the predicted distance map by our method
(left) and true distance map (right). b) Structure alignment of the best model folded using our method (red) against the crystal structure (blue).

generalizability ensures that it works for both soluble and mem-
brane proteins. Moreover, our method could provide lightweight
models that consume relatively low computation resources and
can be deployed on PCs.

The prediction power of our GAN system diminishes for long
proteins due to the memory limitation of our training facility. In
addition, the generator of our GAN system is shallow, when com-
pared with the 660-layer ResNet of AlphaFold. These limitations
could be solved by training on more advanced hardware and/or
distributed parallel training procedure in the future. Besides, lots
of previous works proved the usage of metagenome databases for
the MSA construction and the derivation of MSA-based input fea-
tures would improve the prediction power of their models. In our
next step, we would try to enhance our method further by merg-
ing metagenome databases with the regular one we are currently
using.

We abandoned contact prediction because contact is a com-
promise when accurate distance prediction is not available. Real-
valued distance has many advantages over contact, among which
the most essential one is that a true real-valued distance map is a
direct representation of a structure with all information included.
Thus, developing differentiable distance-to-structure mapping
functions that bridge our GAN system and the final structures
will enable an end-to-end training procedure. Different from the
dihedral angle-based end-to-end differentiable system proposed
earlier,[22] which only considers local structure information
of neighboring residues and fails at chirality, distance-based
end-to-end differentiable system could extract global structure
information for residue pairs with sequence separations of arbi-
trary length, and determine the chirality because only one kind
of chirality should be fitted with sufficient distance restrictions.
In the future, our research interest would be such an end-to-
end training scheme based on GAN system presented in this
paper.

We have also noticed that a new kind of GAN, called cycle
GAN, which provides a generalized semi-supervised learning
approach for situations of large-scale label deficiency, has been
proposed recently.[23] This method may further benefit distance
prediction, since many proteins have known sequences but lack
structures (label for prediction). With the rapid development of
high-throughput sequencing technologies and the exponential
data growth of protein sequences, especially the construction of
metagenome databases, it is reasonable for us to believe that

the new era of “protein structure determination via sequencing”
would come in the near further.

4. Experimental Section
Protein Dataset: All proteins in the training set were extracted from

the SCOPe database of 2.05 version.[24] The cutoff of redundancy elim-
ination was set as 20% sequence identity and the shortest protein of
each protein family was picked out. The final training set contained 6862
proteins in total.

The methods were evaluated on four testing sets: the CASP12 set,[3a]

the CASP13 set,[3b] the CAMEO set,[7] and the PDBTM set[21] of mem-
brane proteins (choosing only one chain for each protein target). Protein
name lists of all the testing sets were available at our GitHub site (see
Data Availability). Considering that proteins in the training set were all
determined before the CASP12 and CASP13 competitions as well as the
release of the CAMEO set and that members in the PDBTM set were non-
redundant to the training set, benchmarks on these testing sets could pro-
vide fair evaluation for the method.

Feature Generation: The input features of the GAN system consisted
of 0D, 1D, and 2D ones. First of all, the MSAs were built through
HHblits[25] from the UniProt20 database.[26] The protein length and the
alignment depth constituted the 0D features. The results of DeepCNF[19]

and SPIDER3[20] together with the one-hot identities and appearing fre-
quencies of amino acids at corresponding site in the MSAs constituted
the 1D features. Co-evolution information extracted from the MSAs by
CCMpred[27] and mutual information, together with relative position of
every site to other sites and the amount of gaps in the MSAs for every
site, constituted the 2D features. The 0D features and 1D features were
broadcasted to match the shape of 2D features. Notably, the 1D features
were broadcasted twice, in the horizontal and vertical directions, which
doubled the feature amounts. Finally, the 0D features (2 channels), 1D
features (124 channels), and 2D features (4 channels) were concatenated
as the input (130 channels in total).

Mapping Function: To allow the real-valued distance regression via
DNN with BN layers, two different mapping functions for input features
and labels, respectively, were designed. These mapping functions could
map them into the interval of [−1, 1]. For simplicity, the space of the true
values of features/labels was called as “real space” (RS) and the space of
the mapped values as “training space” (TS), which was maintained only
for training.

For every channel of the input features from RS to TS, its maximum
value and minimum value were first calculated, and then its elements were
mapped uniformly via linear transformation:

VTS =
2VRS − MaxRS − MinRS

MaxRS − MinRS
(7)
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where V, Max, and Min denote current value, maximum and minimum of
this channel, respectively, and the subscripts represent the corresponding
spaces.

The attention for label (i.e., ground-truth distance) transformation was
mainly on the interval of 4–16 Å, since distances within this interval are
the most valuable ones for protein folding. To disperse values within this
interval to the utmost and to take all values into consideration instead of
setting a cutoff and throwing some away, tanh was chosen as the mapping
function here. Before using tanh, a linear transformation was conducted,
which could map from the interval of [4.0, 16.0] to that of [−2.5, 2.5],
where tanh had large first derivatives. The label mapping function is

VTS = tanh
(

5 × VRS − 50
12

)
(8)

Since it is an invertible function, its inverse could be used to derive the
final distance prediction from the outputs of DNN.

Attention Module: This module was implemented in two steps, with
the first focusing on the attention of channels, and after its multiplication
with the raw inputs, the second one focusing on the spatial attention of
pixels. The final inputs after the process of the attention module would be:

Inputs = (Raw × CAF(Raw)) × PAF(Raw × CAF(Raw)) (9)

where CAF and PAF represent channel-wised attention function and pixel-
wised attention function, respectively. In the first step (CAF), a 3-layer
perceptron with a bottleneck architecture (i.e., 130–75–130) was used to
process the summation of the global average and max pooling results for
individual input channels. This architecture was not only light-weighted
but also effective for information integration. Imaging to mix a bottle of
half juice and half water, the most effective way was to squeeze the bottle
neck and then loose it. ReLU activation was used in all layers except
the last one, which used Sigmoid activation to force channel weights to
fall in the interval of [0, 1]. In the second step (PAF), one single 7 × 7
convolution filter was used with stride 1 to scan the concatenation of
the global average and max pooling results of individual input pixels and
also the Sigmoid function to output pixel weights. The convolution kernel
would determine whether the current pixel is an important one or not
according to its neighboring zone.

MD Simulations: For all proteins in the training set, MD simulations
were conducted in a water box with periodic boundary conditions applied.
The boundary of the water box was set as extended by 10 Å from the
edge of the protein, and the volume of the simulated system was about
354 141.7 Å3 on average. To simulate the physiological environment,
160 mmol L−1 NaCl was added into the system (≈37 Na+ and Cl− ions in
the water box). The specific amounts of Na+ and Cl− ions were set slightly
different for each individual protein to ensure the electric neutrality
of the system. The simulation procedure contained 3 stages: energy
minimization, system heating, and equilibrium simulation. In the energy
minimization stage, the low-MODe (LMOD) method was employed for
5000 steps, in which the steepest descent was applied for the first 2500
steps and then switched to the conjugate gradient descent from the next
2500 steps. In the heating stage, the volume of the system was fixed and a
total of 8000 time steps were conducted with the step size of 2 femtosec-
onds, during which the temperature of the system was gradually heated
up to 300 K from 0 K in the first 6000 time steps and was maintained at
300 K for the following 2000 time steps. In the final equilibrium simulation
stage, canonical ensemble (NVT) was adopted and the simulation was
run for 2 500 000 time steps, that is, 5 nanoseconds, in total. Bond
interactions involving H-atoms were fixed in the last 2 stages. One
structure was saved every 5000 time steps from the simulation trajectory.

Statistical Analysis: Data are presented as mean ± SD when necessary.
The statistic Neff is used to count the effective alignment depth for MSA,
specifically in the format,

Neff =
N∑

i=1

1
Si

(10)

where for N is the overall number of sequences in an MSA, i is the index
of the sequence iterated in this MSA, and Si is the count of all sequences
that share ≥ 75% identity with the target sequence of index i. In Pearson
correlation analysis, two-tailed chi-square test was conducted. Statistical
analyses were performed using Python libraries Numpy, Scipy, and
Pandas.

Code Availability: All source codes of this work are openly ac-
cessible at the GitHub site of https://github.com/Wenze-Codebase/
DistancePrediction-Protein-GAN.git.

Data Availability: Protein name lists of all our testing sets are
also available at our GitHub site: https://github.com/Wenze-Codebase/
DistancePrediction-Protein-GAN.git.

Online Server: A user-friendly web-server is available for prediction at
the site of http://structpred.life.tsinghua.edu.cn/continental.html.

Supporting Information
Supporting Information is available from the Wiley Online Library or from
the author.
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