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Abstract

Purpose: To improve the image quality of highly accelerated multi-channel MRI data by 

learning a joint variational network that reconstructs multiple clinical contrasts jointly.

Methods: Data from our multi-contrast acquisition was embedded into the variational network 

architecture where shared anatomical information is exchanged by mixing the input contrasts. 

Complementary k-space sampling across imaging contrasts and Bunch-Phase/Wave-Encoding 

were used for data acquisition to improve the reconstruction at high accelerations. At 3T, our joint 

variational network approach across T1w, T2w and T2-FLAIR-weighted brain scans was tested for 

retrospective under-sampling at R=6 (2D) and R=4×4 (3D) acceleration. Prospective acceleration 

was also performed for 3D data where the combined acquisition time for whole brain coverage at 

1 mm isotropic resolution across three contrasts was less than three minutes.

Results: Across all test datasets, our joint multi-contrast network better preserved fine 

anatomical details with reduced image-blurring when compared to the corresponding single-

contrast reconstructions. Improvement in image quality was also obtained through complementary 

k-space sampling and Bunch-Phase/Wave-Encoding where the synergistic combination yielded the 

overall best performance as evidenced by exemplarily slices and quantitative error metrics.

Conclusion: By leveraging shared anatomical structures across the jointly reconstructed scans, 

our joint multi-contrast approach learnt more efficient regularizers which helped to retain natural 

image appearance and avoid over-smoothing. When synergistically combined with advanced 

encoding techniques, the performance was further improved, enabling up to R=16-fold 
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acceleration with good image quality. This should help pave the way to very rapid high-resolution 

brain exams.
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Introduction

Fast imaging techniques have been widely adopted into clinical practice to speed up MRI 

scans and thus help improve patient throughput, reduce the sensitivity to involuntary patient 

motion [1], improve patient compliance and potentially obviate the need for sedation in 

pediatric patients [2]. However, conventional parallel imaging (PI) algorithms (e.g. SENSE 
[3], GRAPPA [4], etc.) are constrained to moderate acceleration rates, R, (e.g. typically R=3 

for 2D and R=2×2 for 3D) to avoid structural artifacts and large noise amplification. To 

enable higher accelerations with improved image quality, advanced encoding and 

reconstruction techniques have been proposed.

Among these techniques, 2D-CAIPIRINHA [5] is applicable to volumetric 3D acquisitions 

and employs a staggered ky-kz under-sampling pattern to create controlled aliasing in the 

phase (y) and partition (z) encoding plane which increases the distance between the aliasing 

voxels and enables better utilization of coil sensitivity information in the reconstruction. 

Wave-CAIPI [6] adopts this scheme and combines it with Bunch Phase Encoding (BPE) [6] 

by playing additional sinusoidal gradients on both the Gy and Gz gradients with a quarter-

cycle phase shift during the readout. This enables controlled aliasing along all three spatial 

dimensions, including the readout axis (x), which significantly reduces artifacts and g-factor 

noise amplification when compared to 2D-CAIPIRINHA. At 3T, the Wave-CAIPI 
technology was demonstrated to provide up to 9-fold acceleration for 3D sequences [7]–[9] 

with comparable diagnostic quality as GRAPPA at the lower acceleration rate of R=4. 

Moreover, Wave-CAIPI was employed in Simultaneous Multi-Slice (SMS) sequences [10], 

where an effective acceleration of R=12-fold was achieved as multiband (MB) acceleration 

does not cause R − SNR penalty. However, in general the efficiency of this technique is 

significantly reduced when applied to 2D sequences (without SMS) where controlled 

aliasing is limited to the x-y domain (cf. BPE). Besides artifacts also SNR can be a 

challenge at very high acceleration (both for 2D and 3D) due to the inherent R − noise
penalty and may necessitate going to higher magnetic field strength (as in Wave-GRAPPA 
[11]) or using frameworks like Compressed Sensing (CS) [12] and LORAKS [13], which 

have also been synergistically combined with Wave-CAIPI [14], [15].

However, for techniques like CS to work robustly, several pre-requisites need to be fulfilled. 

Aliasing artifacts must be incoherent which is commonly achieved by non-Cartesian or 

random under-sampling, but since most clinical sequences employ Cartesian sub-sampling, 

incoherence is in practice limited to dynamic- and 3D sequences but remains a challenge for 

2D acquisitions. Moreover, CS requires the existence of a representation in which the 

reconstructed images become sparse. Commonly used transformations are wavelet [12], TV 

[16] and TGV [17] which in combination with the ℓ1 norm achieve at least approximate 
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sparsity. However, the use of the ℓ1 norm entails iterative optimization algorithms which are 

often computationally demanding and yield longer reconstruction times. Also, the choice of 

the regularization parameter(s) is crucial to prevent over-smoothing.

Recent developments in deep learning have the potential to lift some of these barriers. On 

highly accelerated data, neural networks have outperformed existing techniques both in 

terms of image quality, artifact reduction as well as reconstruction time. The algorithms 

proposed in [18] and [19] operate on coil-combined images and were trained to un-aliase 

zero-padded reconstructions or enhance the image quality of conventional methods such as 

SENSE, GRAPPA or CS, etc. Moreover, further improvement was demonstrated by 

reconstructing multiple clinical contrasts jointly. This idea was previously investigated for PI
+CS reconstructions where additional sparsity constraints along the contrast dimension were 

used [20]–[22] and this concept has now also been applied to deep learning [23]. By 

exploiting the redundancy across the jointly reconstructed contrasts, these techniques enable 

better image quality than single-contrast methods. However, the pixel-wise loss used in these 

approaches requires the multi-contrast data to be spatially registered, which may pose a 

challenge for clinical routine. A recent work [24] discovered the relevance of this issue and 

proposed a conditional GAN with cyclic consistency loss [25] to jointly reconstruct 

unregistered multi-contrast data.

Several groups have demonstrated the benefits of incorporating the multi-channel MRI data 

into the deep learning reconstruction. RAKI [26] is a k-space based technique where a 

convolutional neural network (CNN) is trained to synthesize non-acquired lines in k-space. 

When compared to GRAPPA, which is a linear interpolation method, this non-linear 

extension yields improved noise resilience at high acceleration. Also, RAKI may be 

favorable as the training is performed solely on the subject specific ACS data and hence 

large amounts of training data are not required. AUTOMAP [27] takes this one step further 

by learning the entire transformation from undersampled multi-channel k-space data to the 

final image without ever explicitly using the Fourier transformation. This may present a 

flexible alternative for the reconstruction of non-Cartesian k-space trajectories where the 

exact inverse transform may not exist.

Inspired by traditional iterative techniques for inverse problems, several approaches [28]–

[30] have posed the MRI image reconstruction as an unrolled gradient descent optimization 

where the physics model is embedded in the reconstruction and regularizers/priors are learnt 

from training data. This formulation can be understood as a generalization of CS where 

neural networks are utilized instead of hand-crafted domain transformations (such as wavelet 

or TV). With this framework many existing physics- and CS-based techniques have been 

outperformed while enabling much shorter reconstruction times [28]. In a recent work [31] 

such a network was also utilized to reconstruct a highly accelerated Wave acquisition where 

imperfections of the sinusoidal Wave gradient trajectory were automatically estimated by the 

network without additional time-consuming optimizations (e.g. AutoPSF [32]).

In this contribution, we augment the unrolled gradient descent optimization in the variational 

network (VN) architecture [28] to jointly reconstruct multiple clinical contrasts (T1w, T2w, 

T2-FLAIR) from accelerated MRI acquisitions. By taking advantage of the shared 
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anatomical information across the jointly reconstructed scans, our joint variational network 

(jVN) approach learns more efficient regularizers which improved the image quality when 

compared to single-contrast VN reconstructions. Moreover, we investigated how 

complementary k-space sampling across imaging contrasts and advanced acquisition 

techniques such as BPE and Wave-encoding can be utilized to further boost the 

reconstruction performance. We validated these techniques both on 2D and 3D data and 

ultimately demonstrate the feasibility of obtaining T1w, T2w and T2-FLAIR contrasts at 1 

mm isotropic resolution with R=16-fold acceleration in less than three minutes of scan time.

Methods

Network architecture of jVN

This work is based on the variational network (VN) architecture [28] which aims to solve the 

PI problem as an unrolled gradient descent (GD) optimization (Fig. 1), where each step 

contains non-linear filtering and data-fidelity operations. Our joint variational network (jVN) 

augments this technique by reconstructing multiple clinical contrasts simultaneously. This is 

achieved by stacking e.g. T1w, T2w and T2-FLAIR-weighted images along the channel 

dimension of the network. Starting from an initial reconstruction u 0
, each gradient descent 

step mixes the Nc input contrasts by convolving them with the filter kernels kt resulting in 

Nk feature channels. Next, learned activation functions ϕt and the transposed filter kt are 

applied to reduce the number of feature channels to the number of input contrasts. Moreover, 

a data-fidelity term Ac
H Acuct − fc  weighted by a trained regularization parameter λc

t is 

computed for each contrast individually (no mixing between scans) and subtracted from u t

at the end of each step.

As explored by previous contributions [33], the image quality of multi-contrast 

reconstructions can be improved using complementary k-space under-sampling, e.g. by 

varying the acceleration factor across the input contrasts and/or including a contrast-

dependent shift in the k-space sampling. This results in different aliasing and image artifacts 

in the initial SENSE-based reconstructions of the different image contrasts, which can be 

leveraged in multi-contrast reconstructions. In this work, we chose to keep the acceleration 

factor fixed but shift the uniform under-sampling pattern (see Fig. 2) for each contrast. 

Particularly in 3D, this approach simplifies the data handling as the coupled voxel locations 

are identical across all contrasts; note, that we use jVNc to refer to joint variational network 

reconstructions with complementary k-space sampling.

Moreover, we utilized BPE to improve the quality of our 2D scans and Wave-encoding for 

our 3D acquisitions. Since these techniques couple the readout dimension (x) into the PI 

problem, the encoding matrix is no longer separable along this dimension- and 

reconstructing a full dataset at once may be intractable on state-of-the-art GPUs especially 

for high-resolution 3D scans. To mitigate this issue, we constrained our acquisitions to 

uniformly under-sampled k-space masks with fixed acceleration. This allows the PI 

reconstruction to be split into smaller sub-problems of collapsing voxels in image space 

which has the dimension Ry × Rz × Nx. To account for these adaptions, we modified the 
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network’s forward model operator Ac = ∑z j∑y iℱx
−1PsfℱxCpc [7] where the index c denotes 

the contrast dependency and ℱx the Fourier transformation along x. The Ac operator first 

applies a linear phase ramp pc to reflect shifts in the uniform k-space sampling mask and 

then multiplies with the coil sensitivity C and Wave point-spread-function Psf in hybrid 

space [kx,y ,z]. Ultimately, Ac sums over the collapsing voxels yi,zj (i ∈ [1…Ry], j ∈ [1…

Rz]) corresponding to the acceleration factors Ry and Rz.

Furthermore, the following modifications were implemented: As no internal autocalibration 

scan (ACS) data was used for any of the reconstructions (i.e. no fully-sampled center of k-

space), we generated input images u0 from an initial SENSE-based instead of a zero-padded 

reconstruction (in contrast to [28]). We empirically observed that this improved the image 

quality for all evaluated reconstructions. Moreover, we trained individual networks for every 

output contrast, which was found to provide overall better image quality than a single 

network. We implemented this in the training stage by extracting one image contrast from 

the vector u T
 (containing all jointly reconstructed contrasts) before minimizing the ℓ2-loss 

with respect to the corresponding ground truth data. In this way, the loss function only 

measured the fidelity in a single contrast instead of all the input images.

Data acquisition and pre-processing

With IRB approval and informed consent, fully sampled training data were acquired on eight 

healthy subjects using two 3T scanners (MAGNETOM Prisma and Skyra, Siemens 

Healthcare, Erlangen Germany) and a product SPACE sequence (variable flip angle 3D 

Turbo Spin Echo [34]) with T1w, T2w and T2-FLAIR-weighted contrasts (FOV: 

256×256×192 mm³, resolution: 1×1×1 mm³, orientation: sagittal, BW: 592Hz/px, product 

Siemens 32-channel head coil). As the training of our networks was solely performed on 

retrospectively under-sampled datasets with synthesized BPE/Wave, we also acquired 

accelerated data for prospective testing (on a separate subject). For these acquisitions at 

R=4×4, a prototype Wave SPACE sequence [9] with complementary k-space sampling (Fig. 

2) and four sinusoidal Wave cycles per readout with 16 mT/m gradient amplitude was used. 

The combined acquisition time for T1w, T2w and T2-FLAIR was TA=2:53 min including a 

two second external GRE reference scan for the computation of coil sensitivity maps. The 

same contrasts were also acquired at R=2×2 acceleration (without Wave-encoding) and were 

reconstructed using SENSE.

For the training and testing on retrospectively under-sampled datasets, all fully sampled 3D 

scans were first co-registered channel-by-channel using FSL FLIRT [35] to mitigate any 

inter-scan motion between the acquisitions of T1w, T2w and T2-FLAIR-weighted scans. For 

our 2D experiments, the registered images were then reformatted into axial datasets with 1 

mm in plane resolution and 4 mm slice thickness (whole-brain coverage). Next, the central 

20×20 lines of k-space were extracted from T2-FLAIR and coil sensitivity maps were 

computed using ESPIRiT [36]; only for the prospectively accelerated acquisitions an 

external GRE reference scan was used. BPE (for 2D) and Wave-encoding (for 3D) were 

synthesized by convolving the fully sampled datasets with a point-spread-function (Psf) 

corresponding to the Wave acquisition parameters described above. The training data was 

retrospectively under-sampled at R=6 for 2D and R=4×4 for 3D using the complementary k-
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space sampling scheme described in Fig. 2 and reconstructed using generalized SENSE. For 

the prospectively accelerated data acquired with Wave-encoding, imperfections of the 

sinusoidal Wave gradient trajectory were first estimated using AutoPSF [32] (entirely data-

driven, no additional calibration scans). The resulting Psf was then utilized in the 

generalized SENSE and variational network reconstructions.

Training and testing

To assess the benefit of reconstructing multiple contrasts jointly and/or utilizing 

complementary k-space sampling and BPE/Wave, separate networks were trained while the 

following parameters were held constant: T=10 iterations, Nk=24 feature channels, kernel 

size 11×11, learned activations from 31 radial basis functions [28]. For our 2D scans, 1008 

axial slices from seven subjects were used for training (batch size: 5; epochs: 250), testing 

was performed on 36 slices from the remaining subject which was not used in the training.

We also characterized potential artifacts in the presence of inter-scan motion where the 

jointly reconstructed scans are not spatially registered and evaluated the performance of a 

preliminary motion correction technique. Inter-scan motion was simulated by applying in-

plane translation Δs and/or in-plane rotation θ to the fully sampled T1w (Δs=(2,2)T mm, 

θ=3°) and T2w (Δs=(−2,−2)T mm, θ=−3°) test dataset before repeating the pre-processing as 

described above. Combined with the unchanged T2-FLAIR scan, this resulted in a multi-

contrast dataset, where the jointly reconstructed scans were not spatially registered. We 

reconstructed this test dataset using our jVNc+BPE network that was solely trained on 

registered images and assessed potential artifacts. Moreover, we evaluated a preliminary 

correction technique where the image estimates u t
 were registered in every iteration of the 

network. For this, additional translation and rotation operators were placed before the 

convolutional filter kt and corresponding inverse transformations after kt to retain agreement 

with the acquired scanner data (note, that bilinear interpolation was used in all translation 

and rotation operations). We tested this setup using both the exact and estimated motion 

parameters that were obtained by registering the initial SENSE reconstructions u 0

(MATLAB imregister).

For our 3D datasets at R=4×4, separate networks were trained with and without 

complementary k-space sampling and Wave-encoding using the same architecture as 

described for 2D. However, as each training sample now consisted of four sagittal slices 

(Rz=4), the batch size was reduced to two to limit the required GPU memory. Overall, 336 

training samples (1344 slices) from seven subjects were used for training, while testing was 

performed on 48 samples (192 slices) from the remaining subject. Moreover, VN and jVNc
+Wave were tested on prospective scans at R=4×4 where Wave-encoding was used in the 

acquisition and was not synthesized.

Results

Figure 3 demonstrates the results for T2-FLAIR at R=6-fold acceleration. As shown, the 

encoding capability of SENSE was insufficient at such high acceleration, causing large noise 

amplification and residual aliasing artifacts. However, the single-contrast VN network 
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mitigated most of these issues, but the artifact and noise reduction came at the cost of over-

smoothing and loss of spatial resolution, as indicated by the zoom-in. When reconstructing 

T1w, T2w and T2-FLAIR contrasts jointly (jVNc) or utilizing BPE (VN+BPE), the NRMSE 

was decreased. Moreover, fine anatomical details were also better preserved as demonstrated 

by the improved conspicuity of a blood vessel in jVNc (thin arrow) or a better-defined 

region of CSF in the posterior of the brain for VN+BPE (bold arrow). However, the overall 

best performance was achieved when jVNc was synergistically combined with BPE. This is 

best seen in the zoom-in, where for example the gray-white matter boundary (bold arrow) or 

a small line of CSF (thin arrow) became visible which were over-smoothed in all other 

reconstructions. These improvements are also reflected in better NRMSE, SSIM and PSNR 

which are provided in Tab. 1.

Figure 4 displays the results for T1w, T2w and T2-FLAIR at R=6-fold acceleration. Across 

all imaging contrasts, jVNc+BPE better retained the spatial resolution when compared to 

VN which is best seen in the anterior part of the brain (bold arrows) where the gray-white 

matter boundary is over-smoothed. Moreover, the comparison demonstrates that the 

sequence-specific contrast was preserved without signal leaking from one scan to another. 

This is best seen in the center of the brain where two thin arrows mark a circular region of 

CSF and a blood vessel. Both have similar geometric shape and low signal intensity in T1 

and T2-FLAIR, while in the T2w scan one of them (CSF) is hyper-intense. Despite the non-

linear mixing of all input contrasts in the convolutional filters of the joint variational 

networks, no change in signal intensity was observed in any of the reconstructions, while the 

conspicuity of these anatomical features was much improved when compared to VN and 

SENSE.

In Figure 5, the effect of inter-scan motion in joint multi-contrast reconstructions was 

analyzed. Our jVNc+BPE network resulted in poor image quality with residual aliasing 

artifacts (see red arrows) when the input images were not aligned and NRMSE was even 

worse than the corresponding single-contrast VN+BPE reconstruction. Our preliminary 

motion correction technique efficiently mitigated such artifacts (green arrows) and provided 

similar image quality as observed without inter-scan motion. The underlying motion 

parameters were estimated using the initial SENSE reconstructions and were in good 

agreement with the exact parameters. While NRMSE was almost entirely unaffected by 

translations, a slight increase was observed in the presence of rotations both when the exact 

and estimated motion values were used.

The results of the 3D reconstructions at R=4×4 acceleration are displayed in Fig. 6. Again, 

the SENSE reconstruction suffered from severe noise amplification from the R and g-factor 

noise penalty. In contrast, the VN network mitigated large noise enhancement, but the 

coronal reformats exhibit striping artifacts due to the ill-conditioning of the reconstruction 

which was performed sequentially across the aliasing coronal slice groups (convolutional 

filters in VN were applied to sagittal cuts). Moreover, the zoom-in reveals residual aliasing 

and loss of spatial resolution (bold arrow) in regions of high g-factor where the encoding 

capability of the 32-channel head coil is limited. In contrast, the jVNc network with 

complementary under-sampling helped to reduce some of these artifacts (thin arrow) and 

improved NRMSE, but the striping artifacts were only mitigated when the PI problem was 
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better conditioned using Wave. The lowest NRMSE was obtained by jVNc+Wave, as 

demonstrated in the zoom-in, where the gray-white matter boundary was best preserved.

Finally, we tested our variational networks on prospectively accelerated data (R=4×4) 

acquired with and without Wave-encoding. The results are displayed in Fig. 7 and Fig. 8, 

where a conventional acquisition at R=2×2 acceleration (no Wave-encoding) served as the 

reference. Both variational network reconstructions were able to preserve the sequence-

specific contrast, however jVNc+Wave more efficiently removed aliasing artifacts (thin 

arrow) and better preserved the spatial resolution (bold arrow). Nevertheless, at such high 

acceleration also jVNc+Wave suffered from slight image blurring, e.g. in the cerebellum of 

T2-FLAIR. Moreover, the results demonstrate that our networks generalized to prospective 

acquisitions although the training data was under-sampled retrospectively and Wave-

encoding was synthesized.

Discussion

In this contribution, we developed a framework to reconstruct data from multiple clinical 

imaging contrasts jointly using the variational network architecture. By utilizing shared 

anatomical information across the imaging contrasts, jVN learned more efficient 

regularizers, which enables the reconstruction of highly under-sampled datasets with 

significantly reduced artifacts and image blurring. Moreover, we incorporated advanced 

encoding techniques in our acquisitions and demonstrated the benefit of complementary k-

space under-sampling and BPE/Wave-encoding. This allowed T1w, T2w and T2-FLAIR-

weighted scans to be acquired and jointly reconstructed at R=6-fold acceleration for 2D and 

up to R=16-fold acceleration for 3D (combined TA<3 min), while retaining good image 

quality.

We quantitatively assessed the benefits from reconstructing multiple contrasts jointly and/or 

utilizing advanced encoding schemes such as BPE or Wave and showed that the synergistic 

combination yielded the overall best results. While the former technique allows the network 

to learn more efficient regularizers by leveraging shared anatomical structures across the 

jointly reconstructed contrasts, the latter improves the overall conditioning of the PI 

reconstruction by exploiting variations of the coil sensitivity also along the readout. It was 

observed that the combined approach enabled higher improvement for 2D compared to 3D, 

where at R=6-fold acceleration the standard SENSE reconstructions resulted in large 

residual aliasing due to the insufficient encoding capability. In contrast, the R=16-fold 

accelerated SENSE-reconstructions for 3D were less effected by artifacts but dominated by 

the R − SNR and g-factor noise penalties R = 4 . This suggests that learning more 

efficient regularizers in jVNc mainly helps to resolve structural aliasing (as in our 2D scans) 

but is less beneficial in the presence of low SNR and few artifacts (such as in our 3D scans).

We also assessed the performance of jVN in the presence of inter-scan motion, where the 

different clinical contrasts were not spatially aligned. Such motion may occur e.g. between 

pre- and post-contrast acquisitions, where there is typically of delay of several minutes. Our 

preliminary simulation on 2D data revealed that spatial miss-alignment in joint multi-

contrast reconstructions may result in poor image quality and potentially worse performance 
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than the corresponding single-contrast VN reconstruction. This is intuitively clear, as the 

training was solely performed on registered data and the network learned to leverage this 

property as an additional prior in the reconstruction. However, such artifacts were almost 

entirely removed using our proposed motion mitigation technique which embeds translation 

and rotation operators in the network and utilizes the initial SENSE reconstructions to 

estimate the motion parameters. While good image quality was obtained on all test datasets, 

we observed a slight increase in NRMSE for rotations even when the exact motion 

parameters were used, which we assume is a consequence of the bilinear interpolation 

method used in this work. However, on the cost of some minor increase in computation time, 

further improvement is expected by employing more advanced interpolation techniques such 

as spline or sinc. Moreover, future work is required to analyze the sensitivity to errors in the 

motion estimation and how this could degrade the image quality of joint multi-contrast 

reconstructions. Although good agreement between the estimated and exact motion 

parameters was observed for the simulated in-plane translation and rotation, these results 

still need to be validated in in-vivo acquisitions, where further complications might arise 

from through-plane and intra-scan motion. In the latter case, prospective [37] or 

retrospective (data-driven) correction techniques [38], [39] could help to reduce associated 

artifacts.

Also, special attention was payed to potential artifacts caused by the mixing of clinical 

contrasts in the convolutional filters. While this was found to be beneficial for the 

reconstruction of highly accelerated datasets, it bears the risk of signal leaking from one 

scan to another, which could impede the clinical diagnosis. All test slices were carefully 

reviewed however such artifacts were never observed and we have the following explanation 

for this. In jVN multiple data-fidelity computations are embedded throughout the feed-

forward path of the network which helps to hold the contrast-mixing in check. If signal 

leaked from one scan to another, the data inconsistency between the current estimate of the 

image and the acquired scanner data would increase. Also, due to the coupling in the PI 

problem, artifacts would not only remain at the location of origin but spread to all coupled 

voxel locations, a global penalty which the filters in jVN efficiently learnt to avoid. 

Nevertheless, due to the small number of test subjects available in this study, further 

investigation with larger patient cohorts is necessary to confirm these initial findings 

especially in the presence of pathology.

In this work, we trained jVN across three contrasts (T1w, T2w, and T2-FLAIR-weighted) 

which are commonly used in clinical brain exams. However, we anticipate that further 

acceleration feasibility can be achieved by increasing the number of clinical contrasts, e.g. 

by including T2*w (SWI) [7] and/or post-contrast T1w scans [8]. This would not only 

provide improved regularization from increased anatomical information but also enable 

more efficient complementary k-space sampling and could pave the way for a very rapid 

multi-contrast brain exam (cf. [9], [40]). However, in such undertaking, it will be important 

to assess and potentially refine the jVN architecture to enable robust reconstructions across 

imaging contrasts with large background phase differences. In this work, all scans were 

acquired using a 3D TSE sequence, which resulted in the same image phase across all 

contrasts. However, phase variations may also arise from the coil sensitivity maps 

themselves which in the development phase of this work were calculated from the fully 
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sampled k-space data of each imaging contrast individually and then included in the forward 

model of the reconstruction. It was observed that such phase differences can cause 

degradation in the reconstruction performance when compared to reconstructions that use 

the same set of coil sensitivities across all the contrasts. We anticipate that such behavior is 

specific to the VN architecture, where real and imaginary feature maps are summed after the 

convolutional filtering (kt) and are not being kept as separate channels (cf. [31]). Moreover, 

we expect further improvement in the overall image quality by switching to deeper network 

architectures which should benefit both the single- and multi-contrast reconstructions.

In conclusion, we demonstrated the benefit of reconstructing multiple clinical contrasts 

jointly and investigated how complementary under-sampling and BPE/Wave-encoding can 

be facilitated to improve the image quality. We carefully evaluated the performance of our 

networks both on 2D and 3D acquisitions, analyzed potential artifacts from inter-scan 

motion and finally demonstrated the feasibility of obtaining T1w, T2w and T2-FLAIR-

weighted contrasts at high isotropic resolution in less than three minutes of scan time.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
jVN is based on the variational network architecture [28] and poses the image reconstruction 

as an unrolled gradient descent (GD) optimization. Each gradient descent step GDt contains 

a convolutional filter kt which mixes the different input contrasts u t
 and creates Nk feature 

channels. Non-linear activation ϕt and the transposed filter kt reduce the Nk feature channels 

to the number of input contrasts Nc. Data-fidelity is computed individually for each contrast, 

where each forward model matrix Ac contains a contrast-specific under-sampling mask that 

can vary between contrasts to enable complementary k-space sampling (compare Fig. 2). For 

BPE/Wave acquisitions, Ac additionally contains the Wave point-spread-function (Psf) to 

account for the voxel spreading along the readout direction.
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Figure 2: 
Our multi-contrast reconstructions (jVNc) employ complementary k-space under-sampling 

by imposing a contrast-dependent shift on the uniform sub-sampling mask.
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Figure 3: 
At R=6-fold acceleration, the SENSE reconstruction of T2-FLAIR resulted in large noise 

amplification and aliasing artifacts, which were mostly mitigated using the single-contrast 

VN network. However, by reconstructing T1w, T2w and T2-FLAIR contrasts jointly (jVNc) 

or utilizing BPE (VN+BPE), fine anatomical details were better preserved and the over-

smoothing reduced when compared to VN. The overall best performance was achieved by 

jVNc+BPE which is also reflected in the lowest NRMSE.
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Figure 4: 
Throughout all contrasts, jVNc+BPE better preserved the spatial resolution (bold arrows) 

and achieved lower NRMSE compared to VN. Moreover, the comparison demonstrates that 

jVNc+BPE retained the scan-specific contrast (thin arrows). Signal leakage from one 

contrast to another was not observed, as exemplarily demonstrated for a blood vessel (dark 

in all contrasts) and a region of CSF (hyper-intense only in T2w, but dark in T1w and T2-

FLAIR).
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Figure 5: 
Inter-scan motion caused artifacts in our joint multi-contrast reconstruction (jVNc+BPE), 

which were significantly reduced using our motion mitigation technique. The performance 

was evaluated using both the exact and estimated motion parameters which were derived 

from the initial SENSE reconstructions and are reported in the bottom of the figure.
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Figure 6: 
At R=4×4 acceleration, VN efficiently denoised the initial SENSE reconstruction but 

resulted in residual aliasing (thin arrow), striping artifacts and over-smoothing (fat arrow in 

zoom-in). This was improved in multi-contrast jVNc, however striping artifacts were only 

mitigated in the Wave reconstructions. The overall best performance was obtained by jVNc
+Wave.
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Figure 7: 
The variational networks were tested on prospectively accelerated data acquired at R=4×4 

acceleration (combined TA=2:53 min). The sequence specific contrast was retained in all 

scans, but jVNc+Wave better preserved fine anatomical details (fat arrow) and exhibits fewer 

artifacts (thin arrow) than VN. Nevertheless, at such high acceleration (R=16) also the jVNc
+Wave reconstructions resulted in small image blurring, for example in the cerebellum of 

T2-FLAIR.
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Figure 8: 
At 1 mm isotropic resolution T1w, T2w and T2-FLAIR were acquired at R=16-fold 

acceleration and reconstructed using jVNc+Wave (combined TA=2:53 min).
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Table 1:

Quantitative metrics (NRMSE, SSIM and PSNR) are provided for the T2-FLAIR reconstructions at R=6-fold 

acceleration. Improvement over VN was achieved by either reconstructing all contrasts jointly (jVN), 

employing complementary under-sampling (jVNc) or utilizing BPE. The overall best results were obtained 

from the synergetic combination (jVNc+BPE) and are highlighted in bold.

SENSE VN jVN jVNc VN+BPE jVN+BPE jVNc+BPE

NRMSE [%] 17.95 10.29 8.69 6.58 6.63 5.88 5.00

SSIM 83.36 94.79 95.95 97.45 97.54 98.12 98.53

PSNR 31.56 36.39 38.00 40.28 40.26 41.42 42.66
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