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Abstract

We discuss using prediction as a flexible and practical approach for monitoring futility in clinical 

trials with two co-primary endpoints. This approach is appealing in that it provides quantitative 

evaluation of potential effect sizes and associated precision, and can be combined with flexible 

error-spending strategies. We extend prediction of effect size estimates and the construction of 

predicted intervals to the two co-primary endpoints case, and illustrate interim futility monitoring 

of treatment effects using prediction with an example. We also discuss alternative approaches 

based on the conditional and predictive powers, compare these methods and provide some 

guidance on the use of prediction for better decision in clinical trials with co-primary endpoints.
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1 Introduction

The use of more than one primary endpoint has become a common design feature in clinical 

trials evaluating preventative or therapeutic interventions in many disease areas such as 

cardiovascular disease, infectious disease and oncology. In complex diseases, co-primary 

endpoints (CPE) may be preferable to multiple primary endpoints (MPE) since the cause of 

disease may be multi-factorial with contributions from genetic, environmental, lifestyle and 

other factors. Furthermore the disease may have different and interdependent outcomes. 

Examples include Alzheimer’s disease, migraine, Parkinson’s disease, irritable bowel 

syndrome, and Duchenne and Becker muscular dystrophy. According to the two recently 

released regulatory guidance documents, i.e., Food and Drug Administration (FDA) draft 

guidance on “Multiple Endpoints in Clinical Trials” (FDA, 2017), and the European Medical 
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Agency (EMA) draft guideline on “Multiplicity Issues in Clinical Trials” (CHMP, 2016), 

CPE are defined when evaluating if the test intervention is superior (or non-inferior) to the 

control on all primary endpoints. Failure to demonstrate superiority (or non-inferiority) on 

any single endpoint implies that the effect of the test intervention to the control intervention 

cannot be concluded. In contrast, designing the trial to evaluate an effect on at least one of 

the primary endpoints is MPE. Although CPE are a special case of MPE, it is important to 

recognize their differences in the Type I and II error controls in the design and analysis of 

clinical trials. For CPE, no adjustment is needed to control the Type I error rate. However, an 

adjustment to control Type II error rate is necessary as the Type II error rate increases as the 

number of endpoints being evaluated increases. On the other hand, for MPE, an adjustment 

is required for the Type I error, but not for the Type II error. Hamasaki et al. (2018) 

summarize the concepts and related issues of CPE and MPE in clinical trials.

CPE could offer an attractive design feature as they capture a more complete 

characterization of the effect of an intervention. However, they create challenges. Generally 

it is more difficult to achieve statistical significance on all of the endpoints, compared with a 

single endpoint case. Such trials often require large sample sizes to maintain the desired 

power due to the conservative Type I error and the inflated Type II error. Many CPE trials 

have failed to demonstrate a joint effect on all of the primary endpoints. For example, Green 

et al. (2009) reported the results of a multicenter, randomized, double-blind placebo-

controlled trial in patients with mild Alzheimer disease (Tarenflurbil study), where CPE 

were cognition as assessed by the Alzheimer Disease Assessment Scale Cognitive Subscale 

(ADAS-Cog) and functional ability as assessed by the Alzheimer Disease Cooperative Study 

Activities of Daily Living (ADCS-ADL). The study was sized for 1,600 participants in total 

(equally sized groups) based on a power of 96% to detect the between-group joint difference 

in the two primary endpoints (using a one-sided test at 2.5% significance level, with the 

standardized mean differences between the two groups of 0.2 for both endpoints, assuming 

zero correlation between the two endpoints). As a result, the Tarenflurbil trial failed to 

demonstrate a beneficial effect of tarenflurbil as the observed ADCS-ADL scores in the 

tarenflurbil group were smaller (smaller scores being worse) than for the placebo group. If 

the design had included an interim futility assessment, then the trial may have been stopped 

earlier, preventing patients from being exposed to an ineffective intervention unnecessarily 

and thus saving valuable resources and time.

In practice, one well-accepted approach for interim monitoring is to use group-sequential 

designs. Group-sequential designs offer the possibility of stopping a trial early for efficacy 

and/or futility and such designs in clinical trials with CPE have been discussed by several 

authors (Asakura et al., 2014, 2015, 2017; Cheng et al., 2014; Hamasaki et al., 2015, 2018; 

Hung and Wang, 2009; Jennison and Turnbull, 1993; Schüler et al., 2017; Sugimoto et al., 

2019). However group-sequential designs and other related methods such as conditional and 

predictive power-based methods do not provide formal evaluation regarding potential effect 

size estimates and associated precision with continuation of the trial to aid in go/no-go 

decision-making.

In this paper, we discuss an extension of the prediction method by Evans et al. (2007) and Li 

et al. (2009) to interim futility monitoring in clinical trials with CPE, especially two 
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endpoints being evaluated as co-primary since the two co-primary case is fundamental and 

provides the basis for extending more than two endpoint case. Using the prediction could be 

a flexible and practical approach for monitoring interim data of clinical trials with CPE. This 

extension is appealing in that it provides quantitative evaluation of potential effect sizes and 

associated precision, with endpoint measurement continuation, thus providing statisticians 

and investigators with a better understanding of the pros and cons associated with 

continuation of endpoint measurement. We describe the statistical visualization for plotting 

the prediction as such visualizations could help to make complex scenarios more accessible, 

understandable and usable. In contrast to the prediction, we also discuss alternative 

approaches based on the conditional and predictive powers.

The paper is structured as follows: in Section 2, we describe the construction of predicted 

regions for CPE when two endpoints are continuous. In addition, we briefly outline the 

conditional and predictive power approaches for CPE. In Section 3, we illustrate interim 

monitoring of treatment effects using prediction and other approaches using an example. In 

Section 4, we discuss strengths and limitations of the predicted regions and provide guidance 

for use of the prediction method. In Section 5, we summarize the findings and discuss 

extensions such as applications to binary and time-to-event endpoints and more than two 

endpoints.

2 Tools for futility monitoring clinical trials with two CPE

2.1 Statistical settings

Consider a randomized clinical trial comparing the test intervention (T) with the control 

intervention (C) based on two continuous outcomes to be evaluated as CPE. Let n and rn be 

the total number of participants on the T and the C groups, respectively, where r is the 

sample size ratio and r = 1 means equally-sized group. Suppose that one interim monitoring 

is planned when n1 and rn1 participants are accumulated on the T and the C groups, 

respectively. Let responses to the T be denoted by YTki and responses to the C by YCkj (k = 

1,2; i = 1, … n; j = 1, …, rn). Assume that (YT1i, YT2i) and (YC1j, YC2j) are independently 

bivariate normally distributed as (YT1i, YT2i) ~ N2(μT, Σ) and (YC1j, YC2j) ~ N2(μC, Σ), 

where μT and μC are mean vectors given by μT = (μT1, μT2)T and μC = (μC1, μC2)T 

respectively. The common covariance matrix Σ is given by Σ = {ρkk′σkσk′} with 

var Y Tki = var Y Ckj = σk
2 and corr[YTki, YTk′i] = corr[YCkj, YCk′j] = σkk′ (k ≠ k′)

Let δk and Δk denote the mean difference and the standardized mean difference between the 

T and the C respectively, where δk = μTk − μCk and Δk = δk/σk (k = 1,2). Suppose that 

positive value of δk indicate favorability of the T over the C, and there is an interest in 

evaluating the T is superior to the C on two endpoints. The hypotheses for each endpoint are 

H0k: δk ≤ 0 versus H1k: δk > 0, and each hypothesis is tested at significance level αk. The 

hypotheses for CPE are H0
CPE: ∪k = 1

K H0k versus H1
CPE: ∩k = 1

K H1k. The size of test for CPE 

is α if each hypothesis is tested at significance level αk = α as the size is at most α with α = 

max(α1, …, αK) (Berger, 1982).
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2.2 Predicted regions

In this section, we discuss predicting mean difference estimates and constructing predicted 

regions for CPE. A predicted mean difference estimate δ k is a predicted value of the mean 

difference estimate for Endpoint k at a future timepoint and can be calculated as a weighted 

average of the observed mean difference at the monitoring and predicted mean difference 

regarding the data yet to be observed, for example:

δk = (n1δk1 + n2δk2)/n,

where δk1 is the observed mean difference at the monitoring, δ k2 is the predicted mean 

difference regarding the data yet to be observed and n2 is the number of participants yet to 

be observed.

Predicted regions are predicted confidence regions which could be constructed individually 

for the mean difference for each endpoint or simultaneously for the mean difference for both 

endpoints. A predicted interval (PI) composes the predicted region and a 100(1 − α)% PI for 

the mean difference between two means on Endpoint k:

δk ± t(1 + r)n − 2(α/2) (1 + r)
rn sk,

where s k is the predicted standard deviation, t(1+r)n−2(α/2) is the upper 100(α/2)th percentile 

of the t-distribution with (1 + r)n − 2 degrees of freedom. The predicted standard deviation 

s k is the predicted value of the pooled estimate of the standard deviation, where

sk
2 =

(n − 1)sTk
2 + (rn − 1)sCk

2

(1 + r)n − 2 ,

and s Tk
2  and s Ck

2  are the predicted values of the variance estimates of the T and C groups. 

The joint predicted region for the mean difference vector for both endpoints is described as 

the region of δ = (δ1, δ2) which satisfy the following equation:

(δ − δ)TV −1(δ − δ) ≤ 2(1 + r)n
rn2

(1 + r)n − 2
(1 + r)n − 3F2, (1 + r)n − 3(α),

where δ = (δ 1, δ 2), V = (s 1
2, s 2

2) and F2,(1+r)n−3(α) is the upper 100αth percentile of the F-

distribution with (2, (1 + r)n − 3) degrees of freedom.

In addition, we here consider constructing predicted regions using the PIs for each endpoint. 

Such regions can be more simply constructed and interpreted compared to the joint region as 

the limits of a PI for each endpoint would correspond to decision-making regarding the 

hypothesis for each endpoint in “co-primary” situation. There is another advantage for 

making decisions based on the predicted regions using the PIs that the decisions do not 

depend on the correlation among the endpoints, which is a nuisance parameter. The joint 
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predicted regions for the mean difference vector for both endpoints need some assumption 

regarding the correlation and it may affect the decision-making. On the other hand, the 

predicted regions using the PIs cannot assess a joint probability that both endpoints cover the 

true effect sizes or other various alternatives simultaneously. Therefore, quantitative 

evaluation of the joint region for both mean difference vectors, together with the predicted 

regions using the PIs for each endpoint could lead to better decision-making in stopping a 

trial early for futility.

In addition, the coverage probability that the PIs for both endpoints cover the true effect 

sizes, which will be referred to as conjunctive coverage probability, could be lower than the 

coverage probability on each endpoint (which will be referred to as marginal coverage 

probability) or the coverage probability of predicted region for the mean difference vector, as 

is the case with confidence intervals (CIs). Basically, predicted regions do not always cover 

true mean differences with the confidence levels (e.g., 95%), as long as mean differences are 

predicted based on the observed data. Conversely, coverage probability could be larger than 

the confidence level when the assumed effect sizes are close to the true effect sizes. For the 

details, please refer to Appendix A1.

A predicted mean difference δ k2, regarding the data yet to be observed, can be calculated by 

simulated future data, assuming that current trend continues, H1 is true, H0 is true, or other 

values under various scenarios. The predicted standard deviations s Tk and s Ck can also be 

estimated based on the simulated future data assuming that the pooled variance observed at 

the monitoring is true. Generating the future data many times by using simulation could 

incorporate sampling variation. When all of the primary endpoints are continuous, the 

multivariate normal distribution could be used for simulating the data yet to be observed. 

That generates a large number of predicted mean difference estimates and PIs, and an 

appropriate summary of them can aid in go/no-go decision-making. While they could be 

summarized as the final predicted region by taking means or medians of the limits of those 

PIs, it does not account for the sampling variation as discussed in Li et al. (2009). Graphical 

methods analogous to predicted interval plots (PIPs) in Li et al. (2009) could be extended to 

the multiple endpoints scenario and would be intuitive and helpful for comprehensive 

evaluation of the treatment effects at interim monitoring. The steps for constructing the joint 

predicted regions for both endpoints and the predicted regions using the PIs for each 

endpoint are given in Appendix A2.

The predicted mean difference estimates and PIs provide quantitative evaluation of potential 

size of mean differences and associated precision. PIs allow us flexible decision-making, 

especially for futility evaluation as it does not basically cause an inflation of Type I error rate 

and a loss of power as no formal test is performed. Early stopping for futility would be 

considered when the predicted mean difference estimates are not clinically meaningful. 

“Clinical meaningfulness” would depend on the disease area, the primary objective of the 

trial and other information such as the safety profile. In one situation, for example, where the 

upper bound of a PI for the mean difference is smaller than the lowest “acceptable” mean 

difference, it might be reasonable to discontinue the trial for futility.
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Here we consider that the trial is monitored when 258 participants per intervention group are 

observed, while the planned sample size is 516 per group to detect the joint effect of (Δ1, Δ2) 

=(0.2, 0.2) for two CPE, with the significance level of 2.5% and the power of 80%, for one-

sided test in the fixed-sample size design. We suppose that the standardized difference in 

means of (0.2, 0.2) is observed at interim and evaluate the predicted mean difference 

estimates and PIs.

Figure 1 plots the mean difference estimates and PIs. We adopt two-dimensional plots 

regarding the mean differences for two endpoints. The average PIs are shown in dashed 

lines, and the 95% CIs based on the observed data at monitoring are shown in solid lines. In 

this example the average PIs are based on the means of 95% PIs from 100,000 generated 

datasets of the future data. The gray circles represent the proportions (0.05, 0.2, 0.5, 0.8, 

0.95 and 0.99) of predicted mean difference estimates inside them. Each point corresponds 

to each set of predicted mean difference estimates and closely-spaced points represent high 

probability density of the predicted mean difference estimates. The lines on a bar represent 

values of δ1 or δ2 where the empirical cumulative distribution function of the predicted 

mean difference estimates is 0.05m (m = 1, …, 20). We assume that the current trend 

continues (i.e., the assumed mean difference is 0.2 for both endpoints) for Figure 1(a), and 

the effect size of (0.0, 0.0) is true for Figure 1(b), where the observed mean difference at 

monitoring is (0.2, 0.2), standard deviation is 1.0 and the correlation between endpoints is 

0.5. One could simulate the future data under various assumptions regarding the effect sizes 

and correlations, and evaluate whether the trial should stop for futility or not. In this case, 

the trial seems to be promising because almost all of the predicted mean difference estimates 

would be larger than zero and the average PI of (0.08, 0.32) for each endpoint would be 

sufficiently large, under the assumption where the current trend continues, and many of the 

predicted mean difference estimates would be larger than zero even when the effect size of 

zero for both endpoints is assumed to be true. Figure 1(c) illustrates that very few predicted 

mean difference estimates are larger than the planned effect size and the lower limits of 

average predicted region is smaller than zero, when the observed mean difference at 

monitoring is 0.0 for both endpoints and assuming the current trend continues. In this case, 

the lower limits of average PIs would be almost zero even when the effect size of 0.2 for 

both endpoints is assumed to be true, for Figure 1(d), and one would consider 

discontinuation of the trial with evaluating the trial seems to be unpromising.

2.3 Conditional power

Stochastic curtailment is another practical approach for monitoring of clinical trials. 

Conditional power (CP) provides conditional probability of rejecting H0 at the final analysis 

under the observed treatment effect at interim and the assumed treatment effect and variance, 

as a frequentist paradigm, and given by

CP = Pr k = 1
2 Zk > z(α) Δ = 1 − ϕ2

z(α) 2n − z 2n1 − n2Δ
2n2

ρ , (1)

where ϕ2(·|ρ) is the cumulative distribution function of the standardized bivariate normal 

distribution with the known correlation matrix ρ with its the off-diagonal element ρ12, Δ is 
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the vector of the standardized mean differences, Δ is the vector of the observed values of Δ, z 

is the vector of the observed values of Zk = (Y‒Tk − Y‒Ck) (σk (1 + r) (nr)), k = 1,2, and 

z(α) is the upper 100αth percentile of the standardized normal distribution. Because Δ is 

unknown, it is customary to substitute Δ, which is the estimated standardized mean 

difference at interim, or the assumed standardized mean difference during trial planning.

The advantage of evaluating the CP is providing quantitative information regarding 

statistical significance based on the observed treatment effects. Considering early stopping 

based on the CP would be helpful for futility evaluation, as is the case with a single endpoint 

where a criterion of 20% is often used (Ware et al., 1985; Dmitrienko et al., 2006). One 

could also recalculate sample size so that the CP reaches the targeted power when the 

interim data implies the low possibility of rejecting the null hypothesis (Asakura et al., 2014, 

2015; Mehta and Pocock, 2011).

On the other hand, an issue for CP is that the probability depends on an assumption 

regarding effect sizes and correlation between the endpoints and the decision may change 

with it. Similarly to a single endpoint case which is discussed in Posch et al. (2003), the 

decision-making based on CP with the estimated effect sizes from interim observed data as 

if the current observed trend continues could lead to misleading conclusions. One could 

evaluate Conditional Power Contour Plot (CPCP) in order to see how the CP varies with 

potential effect sizes, while it still depends on the assumed correlations. Figure 2 illustrates 

CPCP with the same situation as that in Section 2.2, where the observed mean difference at 

monitoring is (0.2, 0.2) and (0.0, 0.0), standard deviation is 1.0 and correlation between the 

endpoints is 0.5. When the observed effect size of (0.2, 0.2) is observed, for example, the CP 

would be 93.2% or 16.3%, depending on the assumed effect size of (0.2, 0.2) or (0.0, 0.0), 

on the left-hand plot. On the other hand, when the effect size of zero is observed for both 

endpoints, CP would be 16.3% or 0.0%, on the right-hand plot.

2.4 Predictive power

While CP provides the conditional probability of rejecting H0, it could not provide 

appropriate information regarding whether the trial would be promising or not, when the 

treatment effects are wrongly assumed. Predictive power (PP), which is a weighted average 

of the CP over a range of δk, has been discussed as a hybrid of frequentist and Bayesian 

paradigms by Herson (1979), Choi et al. (1985) and Spiegelhalter et al. (1986). Interim 

evaluation of efficacy or futility based on PP is similar to that based on the CP. On the other 

hand, selection of prior distribution of δk is an issue because there is no “correct” prior when 

evaluating PP (Spiegelhalter, 2004). One option is use of noninformative prior, while some 

authors have pointed that it tends to easily stop the trial for futility (e.g., please see Herson 

(1979), Spiegelhalter et al. (1986), and Jennison and Turnbull (1990)).

In this paper, we discuss PP based on noninformative prior with CPE:

PP = Pr k = 1
2 Zk > z(α) δ π(δ Δ)dδ2dδ1 = 1 − ϕ2

zα n1 n − z
n2 n

ρ , (2)

Asakura et al. Page 7

Stat Biopharm Res. Author manuscript; available in PMC 2021 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



where ρ is the correlation matrix. We find that the magnitude relation between CP (where 

the observed effect sizes are assumed to be true) and PP depends on the information time 

and z, because the argument of ϕ2 in (2) differs from that in (1) by a factor n1 n after Δ is 

replaced by Δ (Jennison and Turnbull, 2000). If one makes a decision only based on a cut-off 

value regarding “the conditional probability of trial success” (e.g., 20%), the decision may 

differ depending on which scale would be used. The futility criteria are identical whichever 

scales would be evaluated, and should treat the scales as methods to express the futility 

criteria, similarly as in a single endpoint situation by discussed Gallo et al. (2014).

Analogously to the single endpoint case (for example, please see Emerson et al. (2005), the 

futility evaluation based on PP could address some of the issues with CP such as the 

assumptions regarding effect sizes if there is a reliable prior distribution of δ. Although PP 

can be used to predict whether statistical significance would be attained at some future 

timepoint, accounting for the observed data at an interim, the foundational issues for CP 

approach still exists in PP approach, that is, PP does not provide quantitative evaluation of 

potential size of mean differences and associated precision.

In the same example in Section 2.2 and 2.3, where the observed mean difference at 

monitoring is (0.2, 0.2) and (0.0, 0.0), standard deviation is 1.0 and correlation between the 

endpoints is 0.5, the PPs based on noninformative prior would be 82.4% 

((Δ1, Δ2) = (0.2, 0.2)) and 0.5% ((Δ1, Δ2) = (0.0, 0.0)).

3 An illustration

We illustrate the concepts with an example from the Tarenflurbil study (Green et al., 2009) 

described in the Introduction. Recall that the study was designed to evaluate if tarenflurbil 

was superior to placebo on two CPE: (i) change score from baseline on the ADAS-cog, and 

(ii) change score on the ADCS–ADL. The original design called for 800 participants per 

intervention group to provide a power of 96% to detect the joint between-group difference in 

the two primary endpoints using a one-sided test at the 2.5% significance level, with an 

alternative hypothesis of a standardized mean difference of 0.2 for both endpoints. The 

correlation between the two endpoints was assumed to be zero. Although a negative change 

score from baseline on the ADAS-Cog indicates improvement, suppose that a positive value 

of a decrease in the score is preferable, consistently throughout this paper. We consider one 

interim monitoring for futility evaluation when 200, 400 or 600 participants per group are 

observed (i.e., at 25%, 50% or 75% information time), with three situations where (i) 

observed effect sizes for both endpoints are the same as those at the planning 

((Δ1, Δ2) = (0.2, 0.2)), (ii) observed effect sizes are positive but smaller than those at the 

planning ((Δ1, Δ2) = (0.1, 0.1)) and (iii) observed effect sizes are negative 

((Δ1, Δ2) = ( − 0.01, − 0.04)), with the observed correlation of 0.3 between the endpoints. In 

each situation we compare the decisions based on the PIs, CP and PP calculated at the 

interim monitoring.

Figures 3, 4, and 5 and Table 1 display the mean difference estimates and the PIs, the CPs 

and the PPs in the three situations. When the planned effect size of 0.2 are observed for both 
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endpoints as in situation (i), at any of the timings for the monitoring, almost all of the 

predicted mean difference estimates would be larger than zero and the average PI of (0.10, 

0.30) for both endpoints would cover sufficiently large effect sizes assuming the current 

trend continues. In this situation, predicted effect size estimates would support the decision 

based on CP or PP, which are 98.2%, 99.6% and nearly 100% for CP (where the observed 

effect sizes are assumed to be true), and 79.0%, 96.0% and nearly 100% for PP, at 25%, 50% 

and 75% information time, to continue the trial (or consider early stopping for efficacy). 

When the observed effect sizes are smaller than those at the planning as in situation (ii), 

some of the predicted mean difference estimates would have negative values and lower 

limits of the PIs, assuming the current trend, are almost zero. However, if optimistic effect 

sizes of (0.2, 0.2) are assumed, the PIs would cover modestly large values, and it would not 

provide strong evidence of early stopping. If a futility criterion of 20% based on the CP or 

PP is considered, all the approaches would support trial continuation because the CP would 

be 31.7%, 32.1% and 33.1% (where the observed effect sizes are assumed to be true) and the 

PP would be 30.8%, 31.5% and 32.7%, at 25%, 50% and 75% information time. In the last 

situation, the observed effect sizes at interim are the same as those actually observed in this 

trial (at the final analysis). Even if the optimistic effect sizes of (0.2, 0.2) are assumed, the 

predicted mean difference estimates would not be large enough and a part of them have 

negative values at 50% and 75% information time. The average PIs would also cover zero 

and upper limits of them would be smaller than the planned effect sizes. Early stopping for 

futility is implied by prediction method and it would support the decision of futility based on 

CP (where the observed effect sizes are assumed to be true) or PP, which would be nearly 

0%. When the negative effect sizes are observed at 25% information time, on the other hand, 

the average PIs may not imply early stopping with modestly large values under an optimistic 

assumption.

Figures 3, 4 and 5 show that the timing of monitoring has an impact on the variation of the 

predicted treatment effects. The variation of predicted mean difference estimates are smaller 

with later monitoring. The range of (δ1, δ2) which PIs cover with high proportions is wider 

and that with low proportions is narrower with the monitoring at 75% information time than 

that at 25% or 50% information time. The timing also has an impact on the magnitude of the 

average PIs when the assumptions regarding effect sizes are different from those observed at 

the monitoring. Predicted mean difference estimates and PIs with earlier monitoring would 

be more sensitive to the assumption regarding the effect sizes, while the average PIs would 

not depend on the timing when assuming the current trend continues. Prediction would 

provide the information regarding an impact of the uncertainty of the interim results on the 

estimated treatment effects at the final analysis.

The table shows that neither CP nor PP provides the information regarding the variation of 

the future results. The CP varies depending on the timing of the monitoring, especially when 

the assumed effect sizes are different from the observed effect sizes, while neither the CP, 

where the observed effect sizes are assumed to be true, nor the PP, based on the 

noninformative prior, would not depend very much on the timing.
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4 Guidance for practical use

Group-sequential designs, CP and PP are fundamental approaches for interim evaluation of 

efficacy and/or futility. When group-sequential designs are used in CPE clinical trials, the 

decisions at interim analyses are affected by the choice of boundary, and could be very 

conservative (i.e., early stopping is rarely allowed) with conservative boundaries such as 

O’Brien-Fleming type boundary (Asakura et al., 2014, 2015, 2017; Hamasaki et al., 2015).

CP and PP can provide clear information regarding statistical significance. However, CP and 

PP depend on the assumption regarding the effect sizes and decision-making with a futility 

criterion which is usually prespecified might be complex. In addition, they fail to convey 

information regarding clinical relevance. The prediction method can convey information 

regarding effect sizes and associated precision, and allow flexible decision-making for 

futility evaluation. They could incorporate sampling variation by predicting the future data 

by simulation. Assumptions regarding the treatment effects are required in order to predict 

the data yet to be observed, including unknown parameters or nuisance parameters such as 

correlations among the endpoints. Predicted effect size estimates under various assumptions 

should be comprehensively evaluated. This enables visualization of the sensitivity of the 

predicted estimates to those assumptions. Constructing predicted regions do not cause an 

inflation of Type I error rate and loss of power as no formal test is performed.

In contrast to traditional use of CP and PP, a decision would be made based on the predicted 

estimates evaluated under various assumptions. Therefore, since both of the information 

regarding clinical significance and statistical significance are essential for interim 

monitoring of clinical trials, use of prediction method in conjunction with other approaches 

such as group-sequential approach, CP or PP approach is recommended for better decision-

making. We summarized the strengths and limitations of prediction method, CP and PP in 

Table 2.

When the prediction method is used for futility monitoring in clinical trials, there are the two 

major questions. The first one is how much data should be generated by simulation. The 

number of replications for simulations should be carefully chosen to control simulation error 

in summarizing predicted regions and related statistics, and to make the predicted region 

stable. Note that increasing the numbers will not change the estimates. Based on our 

experience, we usually construct the regions with at least 10,000 replications. However, we 

recommend that plots are created with a couple numbers of replications, e.g., 1,000, 10,000 

and 100,000 and observe the results plotted. This could help to decide the appreciate 

numbers for specific situation.

The other question is what kind of scenario for mean differences could be considered. As 

suggested in Evans et al. (2007), the scenarios include (a) H1 is true, (b) H0 is true, (c) the 

current trend continues, or (d) best- or worst-case scenarios are true. In addition to mean 

differences, one may consider various assumptions regarding the predicted values of 

standard deviation of the difference and correlation between the endpoints. Standard 

deviation and correlation are not of interest as they are the nuisance parameters, but should 

be accounted for both hypothesis testing and confidence intervals for the parameters of 
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interest at the final analysis. Incorporating assumptions regarding the standard deviations 

and correlation into the constructions of joint predicted regions (and conditional and 

predictive powers) could make the decision-making more complicated, especially when 

using observed values of standard deviations and correlation.

To avoid complicated decision-making, we may evaluate the standardized mean differences 

rather than non-standardized ones. As shown in Sections 2 and 3, the predicted regions using 

the PIs for each endpoint do not depend on the correlation. Comparing this with the other 

plots or related statistics could help improve decision-making. Also, as shown in Asakura et 

al. (2014), CP does not change appreciably with the correlation and thus there is no major 

advantage in recalculating the sample size with the potential correlation values when the 

standardized mean difference for one endpoint is 1.5 times larger than that of other. Even 

when the standardized mean differences are approximately equal, the effect of correlation is 

modest in improving CP if the two endpoints are not highly correlated (e.g., 0.8 to 1.0).

The timing of interim monitoring is an important consideration. Its impact on the operating 

characteristics of group-sequential methods with a single endpoint (Togo and Iwasaki, 2013; 

Xi et al., 2017) or co-primary endpoints (Asakura et al., 2014, 2017; Hamasaki et al., 2015) 

have been discussed. When the prediction method is used, the timing of interim evaluation 

should be carefully considered given its impact on the size and variation of the predicted 

mean difference estimates. Earlier monitoring would be more sensitive to the assumption 

regarding the effect sizes.

5 Summary

Clinical trials with CPE enable us to comprehensively evaluate an intervention’s 

multidimensional effect. On the other hand, such trials require larger sample sizes compared 

to trials with a single endpoint and require careful planning to ensure efficiency. Information 

during trial planning could be substantially uncertain, and some trials would fail unless the 

accuracy of the design assumptions is evaluated at the interim. Interim monitoring in clinical 

trials with CPE provides an important opportunity to evaluate whether the trial is proceeding 

well, examine the necessity of a change of the study plan including early stopping for 

efficacy or futility, recalculation of the sample size and the extension or shortening of trial 

duration, as is the case of trials with a single endpoint.

In this paper, as an extension of work in Evans et al. (2007) and Li et al. (2009), which serve 

as the basis for the software EAST PREDICT and have been used to monitor trials (e.g., 

Evans et al., 2007; Asakura et al., 2017), we have discussed prediction methodology to 

monitor CPE clinical trials, especially two endpoints being evaluated as co-primary, in 

contrast to CP and PP. This extension is appealing in that it provides quantitative evaluation 

of potential effect sizes and associated precision, with trial continuation, thus providing 

statisticians and investigators with a better understanding of the pros and cons associated 

with trial continuation. The graphical methods may also provide data monitoring committees 

(DMCs) with useful visual displays that could enhance their ability to make informed 

recommendations.
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In this paper, we have discussed the most fundamental situation where continuous outcomes 

are as parameters of interest and the number of endpoints is two. In some disease areas, 

however, binary endpoints or time-to-event endpoints are employed as CPE. In trials with 

irritable bowel syndrome, for example, proportions of patients with adequate improvement 

in abdominal pain intensity and stool frequency or stool consistency are evaluated. Time-to-

event endpoints are common in oncology trials with overall survival and time to progression 

or progression free survival, for example. Our approach using prediction is applicable to 

other endpoint scales including binary and time-to-event endpoints in a straightforward way, 

by predicting the future data. In the single endpoint setting, Evans et al. (2007) and Li et al. 

(2009) discussed constructing PIs on binary or time-to-event endpoint scales, and it could be 

extended to the CPE case. On the other hand, how to define the association among binary or 

time-to-event endpoints is more complicated than that with continuous endpoints. As 

discussed in Hamasaki et al. (2013) and Sugimoto et al. (2013, 2017, 2019), characteristics 

of the dependence and censoring scheme among the endpoints should be carefully 

considered for time-to-event endpoints. When incorporating censoring scheme such as 

competing risks into prediction, even PIs for each endpoint could depend on the correlations 

among endpoints unlike the case of continuous endpoints. Evans et al. (2007) discussed two 

more aspects of constructing PIs for time-to-event endpoints. One is that censoring due to 

loss-to-follow-up or the timing of the interim monitoring should be considered distinctively 

for simulating the future data. The latter kind of censored values need to be predicted, while 

the former censored values would never be observed. The other is that one has an option to 

evaluate the additional precision with extension of the duration of follow-up or the decrease 

in precision with a shortening of follow-up by comparing PIs based on the extended or 

shortened trial duration and planned trial duration.

In some disease areas such as migraine pain, co-primary endpoints are required to evaluate 

the treatment effects. While we have considered the situation with two CPE, the prediction 

methods discussed in this paper can be extended to any number of endpoints. The 

application of the graphics introduced in this paper, on the other hand, would require 

creativity.

While we have mainly focused on futility evaluation in this paper, prediction could be 

utilized to evaluate efficacy with appropriate consideration regarding Type I error rate 

control. For example, use of repeated confidence intervals, discussed in Jennison and 

Turnbull (1989) in conjunction with PIs would be an option to control Type I error rate.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Appendix A1:: Coverage probability of average predicted intervals

Coverage probability of predicted intervals could be higher or lower than their confidence 

level. Table A1 displays the conjunctive coverage probabilities and the marginal coverage 

probabilities of average PIs for two endpoints. The number of replications for evaluation by 

Monte-Carlo simulation is 100,000. Coverage probability is higher as the correlation among 

the endpoints increases. Coverage probabilities are lower than the confidence level of 95% 

when the observed effect sizes are assumed to be correct. Coverage probabilities are close to 

1 when the assumed effect sizes are correct, and much lower, when the true effect size is 

zero for both endpoints even though PIs are calculated under the planned effect size.

Table A1.

Conjunctive and marginal coverage probabilities of average 95% predicted intervals 

calculated under the assumption where the planned effect size of 0.2 for both of the two 

endpoints or the observed effect size is true at the interim monitoring at 50% information 

time. The planned sample size of 516 is calculated based on a one-sided test with targeted 

power of 80% at the significance level of 2.5%, assuming no correlation between the 

endpoints.

True effect size ρ

Conjunctive coverage probability (marginal)

Planned effect size Observed effect size

(0.2, 0.2) 0.0 0.989 (0.995) 0.697 (0.834)

0.3 0.990 (0.995) 0.705 (0.835)

0.5 0.989 (0.994) 0.720 (0.835)

0.8 0.991 (0.995) 0.757 (0.833)

0.99 0.994 (0.995) 0.818 (0.835)

(0.1, 0.1) 0.0 0.900 (0.949) 0.694 (0.833)

0.3 0.905 (0.949) 0.704 (0.834)

0.5 0.911 (0.950) 0.720 (0.835)

0.8 0.923 (0.949) 0.757 (0.834)

0.99 0.944 (0.950) 0.817 (0.835)

(0.0, 0.0) 0.0 0.479 (0.692) 0.696 (0.834)

0.3 0.517 (0.691) 0.704 (0.834)

0.5 0.547 (0.691) 0.719 (0.834)

0.8 0.601 (0.691) 0.760 (0.836)

0.99 0.674 (0.693) 0.819 (0.836)
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Appendix A2:: Steps to construct a joint predicted region for both 

endpoints and predicted regions using PI for each endpoint by generating 

the future data

Step 1: Generate the data yet to be observed based on the bivariate normal distributions 

(N2(μT, Σ)) and (N2(μC, Σ)) based on assumptions regarding the mean differences, the 

common variance and the correlation between the endpoints.

Step 2: Calculate (i) the predicted mean difference estimate δ k, as the weighted average of 

the observed mean difference δk1 at interim and the predicted mean difference δ k2 based on 

the generated data, and (ii) the joint predicted region for both endpoints and/or predicted 

regions using PI for each endpoint, satisfying

(δ − δ)TV −1(δ − δ) ≤ 2(1 + r)n
rn2

(1 + r)n − 2
(1 + r)n − 3F2, (1 + r)n − 3(α)

and

δk − δk ≤ t(1 + r)n − 2(α/2) (1 + r)
rn sk,

respectively, where k = 1,2, δ = (δ 1, δ 2), V = (s 1
2, s 2

2), s k is the predicted standard deviation, 

F2,(1+r)n−3(α) is the upper 100αth percentile of the F-distribution with (2, (1 + r)n − 3) 

degrees of freedom and t(1+r)n−2(α/2) is the upper 100(α/2)th percentile of the t-distribution 

with (1 + r)n − 2 degrees of freedom.

Step 3: Repeat Steps 1 and 2 many times and visualize the calculated predicted mean 

difference estimates and predicted regions, and summarize them by taking means or medians 

of them.
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Figure 1. 
Predicted mean difference estimates and average 95% predicted intervals based on the 

observed mean difference of (0.2, 0.2) or (0.0, 0.0), the standard deviation of 1.0 and the 

correlation between the endpoints of 0.5, assuming the current trend continues or the null/

alternative hypothesis is true, when 258 participants are observed (the planned sample size is 

516). The number of generated datasets is 100,000.
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Figure 2. 
Conditional power contour plot based on the observed effect size ((0.2, 0.2) or (0.0, 0.0)) 

when 258 participants are observed (the planned sample size is 516). The horizontal axis 

(δ1) and the vertical axis (δ2) represent the assumed effect sizes.
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Figure 3. 
Predicted mean difference estimates and average 95% predicted intervals with the observed 

mean difference of (i) (0.2, 0.2), the standard deviation of 1.0 and the correlation of 0.3 at 

0.25, 0.50 and 0.75 information time in Tarenflurbil trial. The horizontal axis (δ2) and the 

vertical axis (δ2) represent the effect sizes. The number of generated datasets is 100000.
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Figure 4. 
Predicted mean difference estimates and average 95% predicted intervals with the mean 

difference of (ii) (0.1, 0.1), the standard deviation of 1.0 and the correlation of 0.3 at 0.25, 

0.50 and 0.75 information time in Tarenflurbil trial. The horizontal axis (δ1) and the vertical 

axis (δ2) represent the effect sizes. The number of generated datasets is 100000.
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Figure 5. 
Predicted mean difference estimates and average 95% predicted intervals with the observed 

mean difference of (iii) (−0.01, −0.04), the standard deviation of 1.0 and the correlation of 

0.3 at 0.25, 0.50 and 0.75 information time in Tarenflurbil trial. The horizontal axis (δ1) and 

the vertical axis (δ2) represent the effect sizes. The number of generated datasets is 100000.
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Table 1.

Conditional power and predictive power with the observed effect size of (i) (0.2, 0.2), (ii) (0.1, 0.1) or (iii) 

(−0.01, −0.04) at 25%, 50% and 75% information time in the tarenflurbil trial.

Observed effect size Information time Type of power Assumed effect size or prior Power (%)

(i) (0.2, 0.2) 25% CP Observed 98.2

Alternative 98.2

Null 3.5

PP Noninformative 79.0

50% CP Observed 99.6

Alternative 99.6

Null 32.1

PP Noninformative 96.0

75% CP Observed >99.9

Alternative >99.9

Null 96.4

PP Noninformative >99.9

(ii) (0.1, 0.1) 25% CP Observed 31.7

Alternative 92.9

Null 0.6

PP Noninformative 30.8

50% CP Observed 32.1

Alternative 87.1

Null 1.7

PP Noninformative 31.5

75% CP Observed 33.1

Alternative 75.7

Null 5.5

PP Noninformative 32.7

(iii) (−0.01, −0.04) 25% CP Observed <0.01

Alternative 74.7

Null <0.001

PP Noninformative 1.4

50% CP Observed <0.01

Alternative 18.5

Null <0.01

PP Noninformative <0.01

75% CP Observed <0.01

Alternative <0.01
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Observed effect size Information time Type of power Assumed effect size or prior Power (%)

Null <0.01

PP Noninformative <0.01
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Table 2.

Strengths and limitations of prediction, and conditional and predictive powers

Methods Strengths Limitations

Prediction • Provides information regarding potential effect size 
estimates and associated precision under several 
scenarios
• Does not cause an inflation of Type I error rate and loss 
of power as no formal test is performed
• Can be combined with other error-spending strategies
• Provides visualizations which could help to make 
complex scenarios more accessible, understandable and 
usable

• Does not provide a clear threshold for stopping a trial (e.g., 
stopping boundary)
• Does not provide a clear value directly used for study 
modification (e.g., sample size recalculation)

Conditional 
power

• Provides clear information regarding statistical 
significance
• Can be used for recalculating sample size

• Fails to convey information regarding clinical relevance
• Incorporates only within study information
• Depends on an assumption regarding effect sizes and 
correlation between the endpoints and thus the decision may 
change with them
• Needs to prespecified thresholds for the decision-making

Predictive 
power

• Provides clear information regarding statistical 
significance
• Can be used for recalculating sample size
• Incorporates study data and prior information to make 
predictions

• Fails to convey information regarding clinical relevance
• Depends on an assumption regarding effect sizes and 
correlation between the endpoints and thus the decision may 
change with them
• Provides a incorrect prediction when prior information is 
misspecified
• Needs to prespecified thresholds for the decision-making
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