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Geminiviruses are a family of plant viruses with circular single-

stranded DNA genomes. They have been deconstructed by

researchers for multiple biotechnological applications, including

protein expression, gene silencing and genome editing, in plants

(Lozano-Dur�an, 2016). Under the deconstructed virus strategy,

the coat protein and movement protein genes were removed

from the geminiviruses, while the sequences required for repli-

cation were retained. The replicons replicate after delivery to

plant cells and increase the copy number of carried DNA; this

leads to high levels of gene expression (Lozano-Dur�an, 2016).

Although a few geminiviral replicon-based vectors have been

used in gene targeting (Baltes et al., 2014; Cermak et al., 2015;

Wang et al., 2017), the list of DNA replicon-based vectors is still

limited in plants, especially for food crops. In this study, we

developed sweet potato leaf curl virus (SPLCV) replicon-based

expression vectors. We tested the efficiency of these vectors in

CRISPR-Cas-mediated RNA targeting and gene editing by using

Nicotiana benthamiana as model plant.

SPLCV is a monopartite geminivirus belonging to the genus

Begomoviruses (Bi and Zhang, 2012). The coding region of

SPLCV-JS (accession number: KF040468.1) replication-associated

proteins (Rep:1900 bp, encoding four proteins: AC1, AC2, AC3

and AC4) and intergenic region (IR:284 bp) were synthesized and

cloned into the binary vector pCambia0390 together with GFP

expression cassette (U4:GFP) in an IR-GFP-Rep-IR origination to

produce the reporter vector SPLCV-GFP (Figure 1a). A regular

T-DNA vector (T-GFP) harbouring the same expression cassette

was used as control. N. benthamiana leaves infiltrated with

Agrobacterium tumefaciens containing SPLCV-GFP significantly

showed stronger GFP fluorescence than T-GFP (Figure 1b). We

confirmed the circularization between the two IRs by PCR with a

prime pair facing opposite directions in the SPLCV-GFP-infiltrated

leaves (Figure 1c). The GFP transcripts in SPLCV-GFP-infiltrated

leaves were 22.5 times higher than those in T-GFP (Figure 1d).

After several days of infiltration, evident necrosis was found in

most SPLCV-GFP-infiltrated leaves. To decrease cell lethality, three

mutational SPLCV vectors were constructed: (i) AC4m: a T-to-A

mutation was introduced in the coding region of Rep, thereby

resulting in a premature stop of translation of AC4 (AC4:26T?A

(Leu9TAA); AC1:183T?A(Leu61Leu)); (ii) AC2m: a premature

termination codon mutation was introduced in the coding region

of AC2, and this mutation changed one amino acid of AC1

(AC2:31A?T(Lys11TAG); AC1:1034A?T(Glu345Val)); and (iii)

AC2m/AC4m double mutant. All constructs were sequenced to

confirm the correct mutation sites. The GFP expression cassette

was cloned into the three mutational vectors, and the expression

efficiency was compared with that of SPLCV-GFP (WT). No visible

decrease in GFP fluorescence was observed in N. benthamiana

leaves infiltrated with A. tumefaciens containing these muta-

tional constructs at days 3 and 9 (Figure 1e). The GFP transcripts

exhibited no significant difference between the WT and AC2m/

AC4m vectors (Figure 1f). These mutational constructs did not

induce necrosis at day 12 (Figure 1g). We then tested the RNA-

silencing suppressor (RSS) activity of these basic viral vectors

through a GFP silencing experiment in N. benthamiana (16C)

leaves. Figure 1h shows that GFP silencing was only observed in

empty and AC2m/AC4m vectors. This result implied that the

AC2m/AC4m construct lost RSS activity. Insertion of up to 9 kb

noncoding DNA sequence in AC2m/AC4m still resulted in strong

GFP expression (Figure 1i). This result suggested that the cargo

capacity of SPLCV was sufficient to deliver CRISPR nucleases.

We then tested whether the SPLCV vector can enhance

LwaCas13a-mediated RNA targeting activity in plants (Abudayyeh

et al., 2017). The AC2m/AC4m construct was used for this series

of experiments. We artificially synthesized the DNA sequence of

plant codon-optimized LwaCas13a and cloned into AC2m/AC4m

and regular vectors with 39Flag fusion on the C terminus and a

dual-flanking nuclear localization sequence (NLS) under the

expression of the U4 promotor. Moreover, we designed two

gRNAs against the mGFP5 transcript and recombined the

targeting vectors (SPLCV-based vector: SV; T-DNA vector: TV;

Figure 1j). The same vectors containing a non-targeting (NT)

spacer were used as control. After 4 days of infiltration, a higher

accumulation of LwaCas13a and gRNA transcripts and the

LwaCas13a protein was found in SV-infiltrated leaves than in

TV-infiltrated ones (Figure 1k and l). In comparison with the left

side of leaves infiltrated with mGFP5/NT constructs, a visible

decline in GFP fluorescence was observed in the corresponding
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Figure 1 Improving CRISPR-Cas-mediated RNA targeting and gene editing using SPLCV replicon-based expression vectors in Nicotiana benthamiana. (a)

Schematic of the SPLCV-GFP construct. DNA replicon is presented as a circle. (b) Time course of GFP expression in N. benthamiana leaves infiltrated with

SPLCV-GFP (left side) or regular vector (right side; T-GFP). (c) Confirmation of the SPLCV replicon in N. benthamiana leaves. Genomic DNA was amplified by

PCR using outward-facing primers. (d) Quantification of GFP transcripts. (e) GFP fluorescence in N. benthamiana leaves infiltrated with wild type (WT) and

mutational SPLCV-GFP vectors, namely AC4m, AC2m and AC2m/AC4m. (f) Quantification of GFP transcripts in WT- and AC2m/AC4m-infiltrated leaves. (g)

Phenotype of cell necrosis after 12 days of infiltration of various GFP vectors. (h) Representative images (out of three) showing RSS activity in various viral

vectors as indicated by GFP silencing experiments. (i) Effect of size on AC2m/AC4m-mediated GFP expression in N. benthamiana leaves. (j) Schematic of the

LwaCas13a vectors used to evaluate mGFP5 targeting activity (SPLCV-based vector: SV; regular vector: TV). (k) Expression levels of LwaCas13a and gRNAs

(target 1) in N. benthamiana leaves infiltrated with SV and TV. (l) Western blot detection of the LwaCas13a protein. (m) Representative images showing

mGFP5 knockdown by using SVs and TVs. The left and right sides of leaves were infiltrated with mGFP5 and non-targeting (NT) vectors or mGFP5 and

targeting vectors, respectively. (n) Quantification of mGFP5 expression level. (o) Representative Western blot results showing mGFP5 accumulation. (p)

Targeting of an endogenous transcript NbPDS1 using SV and TV. (q) Schematic of the SpCas9/LbCas12a vectors used to evaluate gene editing efficiency.

(r) Expression levels of SpCas9/LbCas12a and crRNAs (NbPDS1 target 1) in SV- and TV-infiltrated N. benthamiana leaves. (s) Western blot detection of the

SpCas9/LbCas12a protein. (t-u) Detection of the mutant frequencies in different targets by qPCR. The relative amplification was calculated by setting the

expression of NT-infiltrated samples as 1.0.
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right side infiltrated with SVs at day 4. This phenomenon was not

apparent in TVs (Figure 1m). The SVs resulted in significantly

higher levels of knockdown of mGFP5 (67% for gRNA1, 70% for

gRNA2) than TVs (25% for gRNA1, 32% for gRNA2; Figure 1n).

The SVs-infiltrated samples accumulated less mGFP5 protein than

TVs (Figure 1o). In addition, we obtained the similar results when

targeting an endogenous transcript NbPDS1 (Figure 1p). These

results clearly showed that SPLCV-based RNA-targeting vectors

were more efficient than regular ones.

We further tested whether SPLCV vector can enhance SpCas9-

and LbCas12a-mediated gene editing in plants. The AC4m-

derived constructs could be efficient for gene editing in plants

due to the loss of cell lethality but maintained RSS activity

(Figure 1h; Mao et al., 2018). Thus, the AC4m vector was used in

this series of experiments. We cloned plant codon-optimized

SpCas9 (with NLS fusion on the C terminus) and LbCas12a (with

39HA and NLS fusion on the C terminus) into AC4m and regular

vectors under the expression of the U4 promotor. We designed

several crRNAs against NbPDS1 and mGFP5 in wild type and 16C

N. benthamiana, respectively, and recombined the SVs and TVs

(Figure 1q). The same vectors containing NT crRNA were used as

control. After 6 days of infiltration, a higher accumulation of

nucleases, crRNA transcripts and the nuclease protein was found

in SV-infiltrated leaves than in TV-infiltrated ones (Figures 1r and

s). The average relative amplification values of the target sites

obtained using the qPCR-based method were approximately 1.01

and 0.90 in NT-infiltrated and TV-infiltrated samples, respectively

(Figures 1t and u; Peng et al., 2018). Such a notion suggests that

the mutation frequency for TVs was approximately 10%, and this

result was similar to a previous report (Bernab�e-Orts et al., 2019).

However, the average relative amplification values of five target

sites were approximately 0.65 in SV-infiltrated samples (Figures 1t

and u). Thus, the mutation frequencies for SVs were 35% and

much higher than those of TVs.

In summary, our work expands the existing list of geminiviral

replicon-based vectors in plants. The SPLCV-based vectors offer

an opportunity to enhance the efficiency of CRISPR-Cas-mediated

gene knockdown, knockout and knockin in plants, especially for

its host sweet potato; gene editing through de novo induction of

meristems may also be conducted in this important hexaploid

crop in the near future (Maher et al., 2020).
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