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Abstract

Background: The ability to predict transfusions arising during hospital admis-

sion might enable economized blood supply management and might furthermore

increase patient safety by ensuring a sufficient stock of red blood cells (RBCs) for

a specific patient. We therefore investigated the precision of four different

machine learning–based prediction algorithms to predict transfusion, massive

transfusion, and the number of transfusions in patients admitted to a hospital.

Study Design and Methods: This was a retrospective, observational study in

three adult tertiary care hospitals in Western Australia between January 2008

and June 2017. Primary outcome measures for the classification tasks were the

area under the curve for the receiver operating characteristics curve, the F1
score, and the average precision of the four machine learning algorithms used:

neural networks (NNs), logistic regression (LR), random forests (RFs), and gra-

dient boosting (GB) trees.

Results: Using our four predictive models, transfusion of at least 1 unit of

RBCs could be predicted rather accurately (sensitivity for NN, LR, RF, and GB:

0.898, 0.894, 0.584, and 0.872, respectively; specificity: 0.958, 0.966, 0.964,

0.965). Using the four methods for prediction of massive transfusion was less

successful (sensitivity for NN, LR, RF, and GB: 0.780, 0.721, 0.002, and 0.797,

respectively; specificity: 0.994, 0.995, 0.993, 0.995). As a consequence, predic-

tion of the total number of packed RBCs transfused was also rather inaccurate.

Conclusion: This study demonstrates that the necessity for intrahospital

transfusion can be forecasted reliably, however the amount of RBC units trans-

fused during a hospital stay is more difficult to predict.

1 | INTRODUCTION

Due to the implementation of patient blood management
(PBM)1 in the past few years, the number of transfusions
is decreasing in most developed countries.2 Although
most, if not all, patients benefit from the implementation
of PBM,3 it can be speculated that there are certain patient

Abbreviations: AP, average precision; AUC, area under the receiver
operating characteristic curve; CCI, Charlson Comorbidity Index; DRG,
diagnosis-related group; FFP, fresh frozen plasma; GB, gradient
boosting; Hb, hemoglobin; LR, logistic regression; NNs, neural
networks; PBM, patient blood management; RBC, red blood cell; RFs,
random forests; RMSE, root mean squared error; ROC, receiver
operating characteristic.
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TABLE 1 Demographic data

Variable

All patients
N = 206 271
(100%)

Had no RBC
transfusion
n = 180 615 (87.6%)

Had RBC
transfusion
n = 25 656
(12.4%)

Had transfusion but
no massive
transfusion
n = 24 688 (12.0%)

Had massive
transfusion
n = 968 (0.4%)

Patients, n (%)

Hospital 1 60 246 (29.2) 53 085 (29.4) 7161 (2.8) 6943 (28.1) 218 (22.5)

Hospital 2 29 832 (14.5) 25 986 (14.4) 3846 (1.5) 3752 (15.2) 94 (9.7)

Hospital 3 116 193 (56.3) 101 544 (56.2) 14 649 (5.7) 13 993 (56.7) 656 (67.8)

Specialty, n (%)

General surgery 47 471 (23.0) 43 411 (24.0) 4060 (15.8) 3737 (15.1) 323 (33.4)

General medicine 37 510 (18.2) 32 286 (17.9) 5224 (20.4) 5109 (20.7) 115 (11.9)

Orthopedics 29 449 (14.3) 25 348 (14.0) 4101 (16.0) 4054 (16.4) 47 (4.9)

Cardiology 27 699 (13.4) 26 159 (14.5) 1540 (6.0) 1445 (5.9) 95 (9.8)

Other 64 142 (31.1) 53 411 (29.6) 10 731 (41.8) 10 343 (41.9) 388 (40.1)

Age, y, median
(range)

65 (48-78) 65 (47-78) 70 (56-81) 71 (56-81) 60 (76-43)

Sex, n (%)

Female 90 213 (43.7) 78 625 (43.5) 11 588 (45.2) 11 317 (45.8) 271 (28.0)

Male 116 058 (56.3) 101 990 (56.5) 14 068 (54.8) 13 371 (54.2) 697 (72.0)

Charlson comorbidity
index

0 (0/1) 0 (0/1) 1 (0/3) 1 (0/3) 1 (0/3)

Length of stay, d,
median (range)

4 (3-8) 4 (2-7) 9 (2-19) 9 (5-19) 19 (9-35)

Length of stay ICU, h,
median (range)

0 (0-0) 0 (0-0) 0 (0-0) 0 (0-0) 90 (24-216)

Anemia at admission

None 120 425 116 193 4232 3963 269

Mild 39 871 36 066 3805 3598 339

Severe 7354 862 6492 6339 153

Hemoglobin
concentration
admission, g/dL,
median (range)

12.9
(11.2-14.3)

13.2 (11.7-14.5) 9.5 (7.9-11.5) 9.4 (7.9-11.5) 10.9 (8.9-12.9)

RBC transfusion,
median (range)

0 (0-0) 0 (0-0) 2 (2-4) 2 (2-4) 11 (5-17)

Cryo transfusion,
median (range)

0 (0-0) 0 (0-0) 0 (0-0) 0 (0-0) 4 (0-9)

FFP transfusion,
median (range)

0 (0-0) 0 (0-0) 0 (0-0) 0 (0-0) 6 (2-10)

Platelet transfusion,
median (range)

0 (0-0) 0 (0-0) 0 (0-0) 0 (0-0) 1 (0-3)

Complications

Postprocedural 14 353 9220 5133 4655 478

Infections 2704 1278 1426 1318 108

Cardiovascular 14 401 9529 4872 4507 365

Respiratory 7358 4564 4564 2556 238

Gastrointestinal 7815 7815 2794 2484 174

1978 MITTERECKER ET AL.



populations in whom applying the principles of PBM has a
more pronounced influence on outcome. Presumably, the
patients who benefit most from a PBM program are those
who are most likely to undergo transfusion in the course of
the hospital stay.4 These are typically those patients who
either suffer bleeding or encounter anemia around their
hospitalization. Many of them might have better outcomes
if the triad of anemia, bleeding, and transfusion could be
avoided or treated properly.3 In this context, transfusion
can therefore be seen as a consequence of the combination
of anemia and blood loss in many cases, and thus can be
used retrospectively as an indicator to identify those
patients, who have the highest necessity to focus on bleed-
ing, anemia, and transfusion, to avoid each of these.5 Pur-
poseful application of PBM is possible, and special efforts
can be delivered to this patient group with the aim to avoid
the triad of anemia, bleeding, and transfusion.

Furthermore, the proper identification of patients
who need a transfusion of RBCs could help blood sup-
pliers to improve the supply of blood products6 for the
hospital. Both the provision of too much blood and the
provision of too little blood are either expensive and
unnecessary or dangerous for the safety of the patient.
Therefore, prediction of transfusion needs might also
help to economize the supply chain of blood providers.7

There are several publications that describe the
influencing factors on perioperative transfusion,8–10 but
to date only small studies exist11–13 that evaluate a multi-
modal, machine learning–based prediction model in a
large jurisdictional cohort. Therefore, it is the aim of this
study to evaluate a machine learning–based prediction
model, based on a large cohort, and to test this model by
cross validation. We hypothesize that modern machine
learning tools can predict the necessity for transfusion
reliably and thus help to identify the patient group that
might benefit from a PBM program the most.

2 | MATERIAL AND METHODS

This is a multicentric, retrospective study with one
cohort. The data included in this study were sourced

from the Western Australia PBM data system. This sys-
tem consolidates data from five core hospital information
systems: patient administration, laboratory, transfusion
medicine, theater management, and emergency depart-
ment. Details of the linking are published elsewhere.3

The study included all emergency and elective multiday-
stay inpatients aged 18 years and older who were admit-
ted to the three adult tertiary care hospitals in Western
Australia between January 2008 and June 2017. The data
are not restricted to a few specific specialties but contain
74 different ones, from which the top 10 were hematol-
ogy, tracheostomy, general surgery, gastroenterology,
orthopedics, cardiothoracic surgery, trauma, vascular sur-
gery, urology, and cardiology.

The study was reviewed by the Royal Perth Hospital
Human Research Ethics Committee and received institu-
tional approval from the three sites involved. An overview
of the most important demographic and preoperative data
included are presented in Table 1. In this table, mean
values are provided for numerical features along with stan-
dard deviations shown in parentheses. In total, the data
consisted of 233 577 hospital stays from 144 420 unique
patients.

The data preprocessing and cleaning was done as
following:

1. We removed patients for whom the hemoglobin
(Hb) at admission time was missing. Additionally,
patients with unknown sex and patients with unusual
admission dates were removed. This left us with
206 271 stays from 131 041 unique patients.

2. We removed variables that contain information col-
lected after admission, as we wanted to develop a pre-
dictive model at admission time at the hospital.
Further, all variables containing free text were
removed, since we could not use them easily for our
prediction. This led to the following 21 features
remaining: age at admission, sex, elective/nonelective,
primary diagnosis code, secondary diagnosis codes,
diagnosis-related group (DRG) code, Charlson Comor-
bidity Index (CCI), admission Hb level (g/L), had any
transfusion (red blood cells [RBCs], fresh frozen

TABLE 1 (Continued)

Variable

All patients
N = 206 271
(100%)

Had no RBC
transfusion
n = 180 615 (87.6%)

Had RBC
transfusion
n = 25 656
(12.4%)

Had transfusion but
no massive
transfusion
n = 24 688 (12.0%)

Had massive
transfusion
n = 968 (0.4%)

Genitourinary 7237 5157 2658 2374 191

Hematological 4350 866 3484 3253 231

Mortality (%) 2.2 1.6 6.4 5.9 18.1

Note: Demographic parameters of patients included.
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plasma [FFP], platelets, cryoprecipitate), had RBC
transfusion, had massive transfusion, total number of
cryoprecipitate units transfused, total number of
plasma units transfused, total number of platelet units
transfused, total number of RBC units transfused, in-
hospital mortality.

3. We encoded the year of the admission as an additional
numerical feature, as the transfusion consumption
became less over time.

4. We standard normalized all numerical variables (eg,
age at admission, admission Hb, etc.).

5. The primary diagnosis code, given as an International
Classification of Diseases, Revision 10 code, was split,
and only the first part of the code was used as an addi-
tional feature.

6. If the primary or secondary diagnosis code occurred
in <0.1% of the records (fewer than 206 occurrences
in the data set), they were set to category “minor.”

7. Afterwards, all categorical features were one-hot
encoded. One-hot encoding is a widely used encoding
scheme. It works by creating a column for each cate-
gory present in the feature and assigning a 1 or 0 to
indicate the presence of a category in the data. The
final data set had 1357 columns.

We chose the occurrence of RBC transfusion (binary
outcome, classification) and the occurrence of massive
transfusion (binary outcome, classification) as classifi-
cation targets. Massive transfusion was defined as
transfusion of at least 10 RBCs within 24 hours during
hospital stay. For the two classification scenarios, we
employed the model selection procedure for four state-
of-the-art machine learning methods: logistic regression
(LR), random forests (RFs),14 artificial neural networks
(NNs),15 and gradient boosting (GB).16 Additionally we
predicted the number of RBC transfusions (integer
outcome).

To investigate the ability of machine learning to learn
these outcomes, the following model selection procedure
was performed: from the cohort we set aside 10% of the
data for parameter tuning (20 461 rows; 13 104 unique
patients). The remaining 90% of the data was used for
training and test set using fivefold cross validation to
assess each methodʼs ability to generalize to previously
unseen cases. If a patient had several hospital admissions,
then all of the admissions of this person were either
solely attributed to the training or the test set. This is nec-
essary to avoid overestimation of the model’s ability to
generalize to previously unseen data. The procedure was
performed for all five folds. The best hyperparameters for
our methods were chosen by an extensive random search
(see Appendix S1 A and B, available as supporting infor-
mation in the online version of this paper).T
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For the classification task, the models were evaluated
on the following criteria: balanced accuracy, area under
the receiver operating characteristics [ROC] curve (AUC),

precision (also known as positive predictive value, recall,
F1 score, and average precision (AP; the area under the
precision recall curve). We fixed the decision threshold to

FIGURE 1 Transfusion of

at least 1 RBC unit. Transfusion

of at least 1 RBC unit. A, ROC

curves for the different

methods. B, Precision-recall

curve for the different methods

[Color figure can be viewed at

wileyonlinelibrary.com]

TABLE 3 Feature importance for transfusion

Rank
Random forest Gradient boosting Logistic regression

Feature Importance Feature Importance Feature Importance

1 Hb at admission 137.95 Hb at admission 157.49 Hb at admission 32.43

2 Secondary diagnosis
code D64.9: Anemia,
unspecified

49.09 Age 101.28 Secondary diagnosis
code D64.9: Anemia,
unspecified

14.50

3 Age 36.53 CCI 33.03 DRG F10B:
Interventional
coronary procedures

10.34

4 Secondary diagnosis
code D50.0: Iron
deficiency

26.04 Secondary diagnosis
code D64.9: Anemia,
unspecified

15.54 Secondary diagnosis
code D50.0: Iron
deficiency

9.32

5 CCI 18.31 Hb at admission
grouped

12.82 Secondary diagnosis
code D62: Acute
posthemorrhagic
anaemia

6.90

6 Secondary diagnosis
code D62: Acute
posthemorrhagic
anaemia

16.62 Sex 11.53 DRG minor class 6.52

7 Sex 10.16 Secondary diagnosis
code Y92.22: Health
service area

10.88 DRG F41B: Circulatory
disorders, Adm

5.69

8 Secondary diagnosis
code D63.0: Anemia
neuroplastic disease

7.36 Admission year 8 8.03 DRG I68B: Nonsurgical
spinal disorders,
minor complexity

5.67

Note: Feature importance for transfusion of at least 1 RBC unit for random forest, gradient boosting, and logistic regression. Details of how
the importance of features was calculated can be found inAppendix S1 C, available as supporting information in the online version of this
paper.
Abbreviations: CCI, Charlson Comorbidity Index; DRG, diagnosis-related group; Hb, hemoglobin.
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the value that maximized the F1 score, which is the har-
monic mean between precision and recall. The F1 score
was chosen here due to its robustness to class imbalance
(assigning all patients to the larger class would result in a
very high accuracy but a very low sensitivity).

Additionally, we predicted the number of RBC trans-
fusions using four different regression models: RFs, artifi-
cial NNs, Huber regression,17 and GB. We predicted the
number of transfusions for each patient individually for
those patients who received at least one RBC transfusion.
To estimate the quality of methods, a linear regression
between the number of RBC transfusions predicted and
the number of RBC transfusions actually administered
has been performed. We calculated the root mean
squared error (RMSE) and the R2 score.

3 | RESULTS

Overall, 206 271 inpatient admissions were included in
the final data set of our 10-year study. An overview of
the demographic data is given in Table 1. The median
patient age was 65 years (interquartile range, 30 y),
and 43.7% of patients were women. Of these admis-
sions, 12.4% of patients received at least 1 unit of
RBCs. In total, 93 375 units of RBCs, 24 662 units of
cryoprecipitate, 26 016 units of FFP, and 19 384 units of
platelets were transfused. In the group of patients who
received at least 1 unit of RBCs, the median number of
RBCs transfused was 2. The median of all other compo-
nents (cryoprecipitate, FFP, platelets) in this group was
0, indicating that typically 2 RBCs were administered
with the aim to increase Hb concentration, rather than
to treat acute bleeding with concomitant coagulopathy
in most of the cases. Only 0.5% of all patients under-
went massive transfusion. In these, a median of 11 RBC

units, 4 cryoprecipitate units, 6 FFP units, and 1 unit of
platelets were transfused.

Using our four predictive models, transfusion of at least
1 unit of RBCs could be predicted rather accurately. Using
NNs, LR, RFs, and GB the AUCs were 0.966, 0.965, 0.963,
and 0.966, respectively. The F1 scores were 0.749, 0.748,
0.743, and 0.755, respectively, and the corresponding aver-
age precision values were 0.828, 0.820, 0.821, 0.835, respec-
tively (for details see Table 2 and Figure 1). The features
overall that were most important (details of how the
importance of features were calculated can be found in
Appendix S1 C, available as supporting information in the
online version of this paper) for prediction of transfusion
of at least 1 unit of RBCs were the Hb at admission, the
age of the patient and the CCI (see Table 3). The CCI pre-
dicts the 1-year mortality for a patient who may have a
range of comorbid conditions.

Use of the four methods of predicting massive trans-
fusion was less successful. Although the AUC values of
the ROC analysis were quite high (0.945, 0.949, 0.932,
0.947, respectively), the AP values were rather low
(0.162, 0.176, 0.174, 0.184, respectively) due to the asym-
metric nature of this prediction task (Table 4 and
Figure 2). The features overall that were most important
for prediction of transfusion were also not that clear
anymore (Table 5).

Since prediction of massive transfusion is not reliable
with the features available, it is also not surprising that the
prediction of the number of RBCs transfused was unsatis-
factory. Depending on the model used, the R2 score was
0.152 for NNs, 0.122 for Huber regression, 0.137 for ordi-
nal regression, 0.135 for RFs, and 0.176 for GB, with
RMSE of 16.549, 17.140, 16.890, and 16.094, respectively,
for each of these models (Table 6), indicating that the
actual number of transfusions cannot be predicted accu-
rately with the features used.

FIGURE 2 Massive

transfusion. Prediction of

massive transfusion. A, ROC

curves for the different

methods. B, Precision-recall

curve for the different methods

[Color figure can be viewed at

wileyonlinelibrary.com]
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4 | DISCUSSION

Predicting the number of patients transfused during their
hospital stay will likely be useful for two different rea-
sons. First of all, it enables reliable management of the
supply chain for allogeneic blood,6,7 but more impor-
tantly, it also could help to classify the risk profile of an
individual patient to undergo transfusion,11 pointing out
the necessity in this specific patient to implement the
measures of PBM as thoroughly as possible. However, at
the time point of hospital admission, only a very low
number of features is known that could help to predict
the necessity for transfusion in the following time course.
Using modern machine learning tools, we could reliably
predict which patients will be in need for transfusion of
RBCs with a manageable number of features provided at
hospital admission. In contrast to other studies, we did
not restrict prediction to one patient group, like others
have done18,19 but provided a model that can be used
over a broad range of indications. However, although this
prediction has proven to be very reliable for classification
of “transfusion” vs “no transfusion,” we found out for
our database that the total number of RBC transfusions
per patient and the occurrence of massive transfusion in
a specific patient cannot be predicted reliably, a phenom-
enon that has been described in liver transplantations by
other groups.20 This is (a) mainly due to the strong asym-
metry of this classification task, and (b) likely due to the
fact that the features containing the necessary informa-
tion are probably not part of our data set. It can be specu-
lated that the reasons for massive transfusion mainly do
not occur before the treatment process has started, and
therefore it will be impossible to predict massive transfu-
sion in advance. Furthermore, the influencing factors for
the number of RBCs necessary might not be known at
the time point of prediction.

Modern methods of machine learning have the poten-
tial to revolutionize prediction tasks in many areas of
daily life, especially in the medical field.21 Whereas a few
years ago it was possible to perform linear categorization
tasks only with the help of LR models, nowadays many
nonlinear relationships can also be described reliably
with the help of modern methods of machine learning,
for example, decision trees or NNs. However, the accu-
racy of these modern methods outperforms the classical
approach significantly only if the underlying data cannot
be described linearly.22 In our data set, the application of
a LR model already led to surprisingly good results for
the classification task of transfusion vs no transfusion.

Depending on the outcome parameters, the best pre-
diction performance was achieved by GB, which is
reflected by the high AUC, the high precision recall
values, and the best F1 score. This makes GB a valuableT
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tool for our clinical setting, although it must be stated
that the other methods were just slightly worse and that
there is no clear winner regarding the different machine
learning methods.

In addition to the very high negative predictive value,
which was delivered by all methods, the acceptable

positive predictive value of all methods plays an impor-
tant role for our clinical scenario. In >70% of the cases
where the model predicts that transfusion will be admin-
istered, the patient will actually be transfused. In >99.5%
of cases where the model indicates that a transfusion
would not be administered, the patient will actually not
be transfused.

This mathematical selectivity can be used for different
clinical situations. First of all, using our GB model trans-
fusion probability could be calculated for every hospital
admission after first blood sampling. Currently, patients
are mainly allocated to a PBM program in the lead-up to
a surgical procedure, whereas medical patients are often
ignored.23 However, this approach neglects the potential
to identify all patients (including those not in the lead-up
to a surgical procedure) that could benefit from initiation
of PBM. Surprisingly, admission type (elective or non-
elective) and DRG code do not play the most dominant
role in our model, indicating that surgery is only one con-
tributing factor for transfusion needs. Although PBM
should not be seen as a measure initiated only in a spe-
cific group of (surgical) patients but more as a general

TABLE 5 Feature importance for massive transfusion

Rank

Random forest Gradient boosting Logistic regression

Feature Importance Feature Importance Feature Importance

1 Hb at admission 73.38 Hb at admission 111.55 DRG: Uncommon
group

7.79

2 Age 37.01 Age 77.77 Primary diagnosis
code: Uncommon
diagnosis

5.94

3 Secondary diagnosis
code D62: Acute
posthemorrhagic
anemia

26.09 CCI 30.64 Secondary diagnosis
Z72.0: Tobacco use

5.79

4 CCI 23.62 DRG minor class 22.00 Secondary diagnosis
code U73.9:
Unspecified activity

5.28

5 Secondary diagnosis
code T81.0:
Hemorrhage

22.22 Secondary diagnosis
T81.0: Hemorrhage

18.07 Hb at admission 5.27

6 DRG: Uncommon
group

20.68 Secondary diagnosis
D62: Acute
posthemorrhagic
anemia

17.28 DRG F62B: Heart
failure and shock …

5.19

7 DRG A06B:
Tracheostomy …

18.25 Primary diagnosis code:
Uncommon diagnosis

15.71 Age 4.99

8 DRG: Uncommon
group

17.47 Sex 14.93 DRG F62A: Heart
failure and shock …

4.67

Note: Feature importance for massive transfusion for random forest, gradient boosting, and logistic regression. Details of how the importance
of features was calculated can be found in Appendix S1 C, available as supporting information in the online version of this paper.
Abbreviations: CCI, Charlson Comorbidity Index; DRG, diagnosis-related group; Hb, hemoglobin.

TABLE 6 Prediction of number of RBCs transfused

Method RMSE R2

Baseline: Mean 19.533 (± 1.488) 0.000 (± 0.000)

Baseline: Median 22.236 (± 1.273) −0.140 (± 0.022)

Neural network 16.549 (± 1.200) 0.152 (± 0.008)

Huber regression 17.140 (± 1.379) 0.122 (± 0.009)

Random forest 16.890 (± 1.295) 0.135 (± 0.004)

Gradient boosting 16.094 (± 1.344) 0.176 (± 0.014)

Note: Statistical parameters of the prediction of the number of RBCs
transfused by different models.
Abbreviations: MAE, mean absolute error; RMSE, root mean
square error; R2, coefficient of determination.
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paradigm to treat all patients, it seems advisable that the
patients with the highest risk for transfusion are identi-
fied in advance of the hospital stay to take necessary
measures.

The three features found to be most important in our
model are the Hb at admission, the patientʼs age, and the
CCI score. It is well known that these three features can
play an important role for the prediction of transfusion in
the clinical setting,24 but we achieved the best classifica-
tion results using modern machine learning tools. Of
note, all publications describing prediction of transfusion
so far deal with specific clinical situations, mainly total
hip or total knee replacement. Classification quality of
these models is generally below our model, despite the
fact that in these publications more specific features
could be used due to the uniform preparation of these
specific patient groups.

We also trained LR models with features we identi-
fied as the most important (Hb at admission, age, and
CCI) to check if additional features significantly help or
not. The additional features are indeed very helpful and
the results of this ablation study can be found in Appen-
dix S1 D, available as supporting information in the
online version of this paper.

The strength of our prediction model is the high num-
ber of patients that could be used for the training process.
To our knowledge, this is one of the biggest data sets that
has been used for such a task in a general hospital popu-
lation. Furthermore, we used data from three different
centers. Most of the other publications use typically
smaller data sets from one center in specific clinical situa-
tions. Therefore, our predictive model can be used in a
huge number of clinical scenarios without the necessity
to be adapted to a new training set. Our training set is
from Western Australian hospitals that implemented
PBM during the data collection time period.3 As a conse-
quence, PBM measures might play a minor role at the
beginning of data collection and might play a bigger role
at the end. Therefore, we cannot exclude some time
series effects that might occur during the collection phase
from 2008 to 2017. We used the year of admission as a
feature, since for later usage of our model every newly
included patient will have a higher year of inclusion than
all the patients of the training set. However, this fact
most likely reflects daily clinical practice nowadays, since
nearly all hospitals are in the process of implementation
of PBM at the moment, and therefore transfusion habits
might change over time generally. As a consequence, we
cannot exclude that our model will have worse results for
prediction of transfusion needs in the three Australian
centers beginning in a few years, when PBM is
implemented thoroughly throughout all of the hospitals.

We used only a very narrow feature set that is avail-
able at hospital admission. This approach enables trans-
ferability of our model to other hospitals. The drawback
of this approach is restricted precision of our model due
to some missing features that might help to identify
patients at risk for transfusion. However, we cannot
deduce from our results that any of the predicted transfu-
sions could be avoided by alternative treatment. There-
fore, at this stage clinical applicability is somewhat
reduced, since the help of any additional efforts to reduce
the risk of bleeding, anemia, and transfusion is unclear.

We used four different prediction models for our
investigation. LR was used as the “gold standard” of clas-
sification tasks. RFs, GB, and NNs were used as the more
modern competitors that also enable out-of-the-box
nonlinear modeling. These tools have been demonstrated
to be very successful for prediction purposes in the medi-
cal field. However, there are also other methods that have
not been used in our study and could outperform our
results.

5 | CONCLUSION

With use of modern machine learning algorithms, trans-
fusion can be predicted reliably at the time point of hos-
pital admission. Prediction of the amount of RBCs
transfused or prediction of massive transfusion was less
successful. Having the knowledge of which patients are
at risk for anemia, bleeding, and transfusion after admis-
sion might help in the future to improve their treatment
and outcome.
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