Skip to main content
. 2020 Jun 28;60(9):1977–1986. doi: 10.1111/trf.15935

TABLE 2.

Prediction of transfusion

Method AUC AP BA Sens Spec Prec NPV F1
Neural network 0.966 (± 0.004) 0.828 (± 0.012) 0.870 (± 0.008) 0.898 (± 0.007) 0.958 (± 0.009) 0.719 (± 0.022) 0.970 (± 0.006) 0.749 (± 0.006)
Logistic regression 0.965 (± 0.005) 0.820 (± 0.011) 0.856 (± 0.006) 0.894 (± 0.012) 0.966 (± 0.009) 0.749 (± 0.008) 0.966 (± 0.004) 0.748 (± 0.010)
Random forest 0.963 (± 0.004) 0.821 (± 0.011) 0.858 (± 0.004) 0.584 (± 0.006) 0.964 (± 0.006) 0.737 (± 0.011) 0.966 (± 0.006) 0.743 (± 0.006)
Gradient boosting 0.966 (± 0.003) 0.835 (± 0.013) 0.864 (± 0.008) 0.872 (± 0.006) 0.965 (± 0.005) 0.747 (± 0.025) 0.968 (± 0.007) 0.755 (± 0.007)

Note: Statistical parameters of the prediction of transfusion vs no transfusion by different models.

Abbreviations: AP, average precision; AUC, area under the receiver operating characteristic curve; BA, balanced accuracy; F1, harmonic mean of precision and recall; NPV, negative predictive value; Prec, precision or positive predictive value; Sens, sensitivity; Spec, specificity.

The bold values is the highest (best) for each method respectively.