TABLE 2.
Method | AUC | AP | BA | Sens | Spec | Prec | NPV | F1 |
---|---|---|---|---|---|---|---|---|
Neural network | 0.966 (± 0.004) | 0.828 (± 0.012) | 0.870 (± 0.008) | 0.898 (± 0.007) | 0.958 (± 0.009) | 0.719 (± 0.022) | 0.970 (± 0.006) | 0.749 (± 0.006) |
Logistic regression | 0.965 (± 0.005) | 0.820 (± 0.011) | 0.856 (± 0.006) | 0.894 (± 0.012) | 0.966 (± 0.009) | 0.749 (± 0.008) | 0.966 (± 0.004) | 0.748 (± 0.010) |
Random forest | 0.963 (± 0.004) | 0.821 (± 0.011) | 0.858 (± 0.004) | 0.584 (± 0.006) | 0.964 (± 0.006) | 0.737 (± 0.011) | 0.966 (± 0.006) | 0.743 (± 0.006) |
Gradient boosting | 0.966 (± 0.003) | 0.835 (± 0.013) | 0.864 (± 0.008) | 0.872 (± 0.006) | 0.965 (± 0.005) | 0.747 (± 0.025) | 0.968 (± 0.007) | 0.755 (± 0.007) |
Note: Statistical parameters of the prediction of transfusion vs no transfusion by different models.
Abbreviations: AP, average precision; AUC, area under the receiver operating characteristic curve; BA, balanced accuracy; F1, harmonic mean of precision and recall; NPV, negative predictive value; Prec, precision or positive predictive value; Sens, sensitivity; Spec, specificity.
The bold values is the highest (best) for each method respectively.