TABLE 4.
Method | AUC | AP | BA | Sens | Spec | Prec | NPV | F1 |
---|---|---|---|---|---|---|---|---|
Neural network | 0.945 (± 0.014) | 0.162 (± 0.028) | 0.656 (± 0.034) | 0.780 (± 0.049) | 0.994 (± 0.002) | 0.206 (± 0.060) | 0.997 (± 0.001) | 0.245 (± 0.046) |
Logistic regression | 0.949 (± 0.012) | 0.176 (± 0.021) | 0.645 (± 0.042) | 0.721 (± 0.055) | 0.995 (± 0.002) | 0.211 (± 0.032) | 0.997 (± 0.000) | 0.241 (± 0.031) |
Random forest | 0.932 (± 0.018) | 0.174 (± 0.031) | 0.671 (± 0.030) | 0.002 (± 0.003) | 0.993 (± 0.002) | 0.191 (± 0.025) | 0.997 (± 0.000) | 0.244 (± 0.026) |
Gradient boosting | 0.947 (± 0.013) | 0.184 (± 0.037) | 0.661 (± 0.038) | 0.797 (± 0.055) | 0.995 (± 0.002) | 0.238 (± 0.038) | 0.997 (± 0.000) | 0.269 (± 0.039) |
Note: Statistical parameters of the prediction of massive transfusion vs no massive transfusion by different models.
Abbreviations: AP, average precision; AUC, area under the receiver operating characteristic curve; BA, balanced accuracy; F1, harmonic mean of precision and recall; NPV, negative predictive value; Prec, precision or positive predictive value; Sens, sensitivity; Spec, specificity.
The bold values is the highest (best) for each method respectively.