Skip to main content
. 2020 Jun 28;60(9):1977–1986. doi: 10.1111/trf.15935

TABLE 4.

Prediction of massive transfusion

Method AUC AP BA Sens Spec Prec NPV F1
Neural network 0.945 (± 0.014) 0.162 (± 0.028) 0.656 (± 0.034) 0.780 (± 0.049) 0.994 (± 0.002) 0.206 (± 0.060) 0.997 (± 0.001) 0.245 (± 0.046)
Logistic regression 0.949 (± 0.012) 0.176 (± 0.021) 0.645 (± 0.042) 0.721 (± 0.055) 0.995 (± 0.002) 0.211 (± 0.032) 0.997 (± 0.000) 0.241 (± 0.031)
Random forest 0.932 (± 0.018) 0.174 (± 0.031) 0.671 (± 0.030) 0.002 (± 0.003) 0.993 (± 0.002) 0.191 (± 0.025) 0.997 (± 0.000) 0.244 (± 0.026)
Gradient boosting 0.947 (± 0.013) 0.184 (± 0.037) 0.661 (± 0.038) 0.797 (± 0.055) 0.995 (± 0.002) 0.238 (± 0.038) 0.997 (± 0.000) 0.269 (± 0.039)

Note: Statistical parameters of the prediction of massive transfusion vs no massive transfusion by different models.

Abbreviations: AP, average precision; AUC, area under the receiver operating characteristic curve; BA, balanced accuracy; F1, harmonic mean of precision and recall; NPV, negative predictive value; Prec, precision or positive predictive value; Sens, sensitivity; Spec, specificity.

The bold values is the highest (best) for each method respectively.