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Abstract

The differential susceptibility hypothesis proposes that individuals who are more sus-

ceptible to the negative effects of adverse rearing conditions may also benefit more

from enriched environments. Evidence derived from human experiments suggests

the lower efficacy dopamine receptor D4 (DRD4) 7-repeat as a main factor in

exhibiting these for better and for worse characteristics. However, human studies

lack the genetic and environmental control offered by animal experiments, complicat-

ing assessment of causal relations. To study differential susceptibility in an animal

model, we exposed Drd4+/− mice and control litter mates to a limited nesting/bed-

ding (LN), standard nesting (SN) or communal nesting (CN) rearing environment from

postnatal day (P) 2-14. Puberty onset was examined from P24 to P36 and adult

females were assessed on maternal care towards their own offspring. In both males

and females, LN reared mice showed a delay in puberty onset that was partly medi-

ated by a reduction in body weight at weaning, irrespective of Drd4 genotype. During

adulthood, LN reared females exhibited characteristics of poor maternal care,

whereas dams reared in CN environments showed lower rates of unpredictability

towards their own offspring. Differential susceptibility was observed only for licking/

grooming levels of female offspring towards their litter; LN reared Drd4+/− mice

exhibited the lowest and CN reared Drd4+/− mice the highest levels of licking/

grooming. These results indicate that both genetic and early-environmental factors

play an important role in shaping maternal care of the offspring for better and for

worse.
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1 | INTRODUCTION

1.1 | Differential susceptibility

Parental care is essential for survival and development of newborn

mammals, including humans. Variations in parental care substantially

contribute to the environmental variability experienced by offspring.

Extensive evidence indicates that poor parental care can contribute to

increased vulnerability to develop later-life psychopathology in

humans and impaired cognitive performance in rodents.1,2 This vul-

nerability crucially depends on a complex cross-talk between an indi-

vidual's genetic makeup and rearing environment.3 While the genetic

background of some individuals is related to a vulnerable phenotype

in the face of early-life adversity, others appear to be more resilient.

Interestingly, individuals who are genetically more susceptible to the

detrimental consequences of negative (rearing) conditions may also

experience greater benefits from a positive and stimulating (rearing)

environment.4,5 This crossover effect for better and for worse, also

called differential susceptibility, is supported by studies investigating

the role of human allelic variation across a variety of susceptibility

genes.6

An example of such differentially susceptibility concerns the exon

III 7-repeat polymorphism of the D2-like dopamine receptor D4 gene

(DRD4-7R). In humans, this variant has been associated with reduced

gene expression and efficiency7,8 and acts as a susceptibility marker

of dopamine-related genes.6 Carriers of this variant have an increased

risk of developing externalizing problems in relation to parental insen-

sitivity9 and chronic stress.10 However, these individuals also benefit-

ted most from enhanced positive parenting.11 Meta-analytic evidence

further supports an important role of dopamine-related genes in mod-

erating susceptibility to both positive and negative rearing environ-

ments.12 Of note, the DRD4 also plays a role in moderating parental

care itself.13,14

1.2 | Rodent models of impoverished or enriched
rearing environments

Studying differential susceptibility in humans is hampered by random

genetic variability. Moreover, it is often difficult to randomly allocate

individuals to specific environments while also taking genotype into

account. Therefore, we set out to study the causal contribution of

decreased Drd4 functioning to differential susceptibility with a truly

randomized experiment in rodents, allowing strict control for both

genetic variation and environmental factors.15 By using heterozygous

dopamine receptor D4 knock-out (Drd4+/−) mice, we aimed to mimic

the reduced DRD4 efficiency observed in human DRD4-7R allele

carriers.

We selected two rodent models developed to chronically induce

alterations in the quality and quantity of parental care received by off-

spring. First, limited availability of nesting and bedding (LN) material

to a mouse dam was used to induce an adverse early life environment;

this model increases unpredictability of maternal care received by the

pups,16-18 leading to increased corticosterone levels in pups19 and

altered offspring development and behavior in adulthood.20,21 Sec-

ond, as beneficial and stimulating social rearing environment we

selected a communal nesting (CN) condition, where two or more dams

share care-giving behavior towards multiple litters.22 In this condition,

pups experience higher levels of nest occupancy by at least one

dam18,23 and can interact with peers as well as siblings. Mice reared in

communal nesting conditions exhibit various neurobiological and

behavioral characteristics that are indicative of improved social

competences.24

1.3 | Outcome parameters

In line with a previous study,18 we focused on timing of puberty

onset, a key moment in development that is malleable by environmen-

tal influences as part of an adaptive reproductive strategy.25 Although

adverse rearing conditions in females are linked to accelerated puber-

tal onset in humans26 and rats,27 such effects have not yet been

observed in mice.18,28 In human males, adverse rearing conditions had

no effect on puberty onset,29 while puberty onset in male rodents

was either unaffected or delayed.18,27,30 However, rodent models of

early-life adversity (ELA) invariably decrease body weight gain, which

is an important mediator of puberty onset. Therefore, it is unclear

whether the delayed puberty onset observed in ELA reared animals is

the result of decreased body weight gain or whether a relative acceler-

ation irrespective of body weight exists in rodents as well.

A second outcome was maternal care provided by female off-

spring. In addition to sexual maturation, the theory submitted by

Belsky et al25 predicted that variations in early parental care would

have the potential to alter adult parental care in humans. Preclinical

rodent studies allow for feasible, controlled intergenerational studies

on maternal care and, in line with the life history theory, extensive evi-

dence suggests that alterations in maternal care may be transmitted

across generations.31 Variations in levels of licking/grooming

(LG) behavior and arched-back nursing (ABN), core features of posi-

tive parenting in rodents, have been shown to affect corticosterone

reactivity, hippocampal development and maternal care of the off-

spring.31 In addition, the limited bedding/nesting model, which evokes

changes in maternal care, results in aberrant patterns of maternal care

of the offspring,32 whereas mice reared in a communal nesting condi-

tion display improved maternal behavior towards their own pups.33

Taken together, these studies highlight the importance of maternal

care for offspring development, as well as the potential of maternal

care to be shaped by the early-life environment, contributing to the

intergenerational transmission of social behavior.

In this study, we tested heterozygous Drd4 knock-out (Drd4+/−)

mice and control litter mates on susceptibility to both adverse

(LN) and enriched (CN) rearing environments to model differential sus-

ceptibility in mice. Animals were examined on (a) puberty onset, to

track early development, (b) their own maternal care towards the next

generation as an indicator of transgenerational effects and (c) basal

corticosterone levels, to investigate involvement of the hypothalamic-
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pituitary-adrenal-axis (HPA-axis) in differential susceptibility. Although

puberty onset would be hypothesized to be accelerated in LN and del-

ayed in CN reared animals according to life history theory, previous

findings indicate that the opposite may be true in mice due to the

strong effects of body weight. LN reared mice were hypothesized to

display poor maternal care, whereas CN reared mice were hypothe-

sized to show enhanced maternal care. To confirm differential suscep-

tibility, these effects would have to be amplified in, or exclusive to,

Drd4+/− mice.

2 | MATERIALS AND METHODS

2.1 | Animals and housing

B6.129P2-Drd4tm1Dkg/J (Drd4+/−) mice34 were originally obtained

from the Jackson Laboratory (Bar Harbor, Maine, USA) and bred in-

house with C57BL/6JOlaHsd (breeding colony, originally obtained

from Harlan, France) mice for at least four generations before experi-

ments started. All breeding was performed in our own animal facility.

Wild-type (wt) female C57BL/6 mice were allowed to breed with male

Drd4+/− mice to generate Drd4+/− F1 offspring and Drd4+/+ control lit-

ter mates. Drd4+/− mice are viable, healthy and visually indistinguish-

able from control animals. Between postnatal day 2 and 14 (P2-14),

dam and litter were exposed to a limited nesting/bedding (LN), stan-

dard (SN) or communal nesting (CN) condition. A total of 129 female

and 116 male F1 offspring obtained from 40 breedings was used to

assess puberty onset and, in females (n = 75), maternal care of this

generation (see Figure 1. for a timeline of the experiment). Final num-

bers per experimental group are depicted in figure legends and speci-

fied per litter in Table S1. Puberty onset and F1 maternal care were

scored by a trained experimenter blind to rearing condition and geno-

type of the animals. Mice had ad libitum access to water and chow

and were housed on a reversed LD cycle (lights off 08:00 AM, temper-

ature 21-22�C, humidity 40%-60%). All experiments were performed

in accordance with the EC council directive (86/609/EEC) and

approved by the Central Authority for Scientific Procedures on Ani-

mals in the Netherlands (CCD approval AVD115002016644).

2.2 | Breeding conditions

Breeding was performed as described earlier.18 In short, one male was

paired with two females for 4 days, after which females were co-

housed until approximately 1 week prior to birth. Pregnant dams were

then housed in a type II short Macrolon cage (21.5 × 16 cm) with filter

top and a Nestlet (5 × 5 cm, Technilab-BMI, Someren, The Nether-

lands) as nesting material. Nestlets are made from sterilized cotton

fiber material that the dam can use to shred and form a nest site while

still allowing for observation of maternal behavior. Daily inspection

for the birth of litters was conducted at 09:00 AM, assigning the day

prior as P0. At P2, dam and litters were weighed and randomly

assigned to the LN, SN or CN condition. All litters were culled

(or cross-fostered if necessary) to six to seven pups per litter, with a

maximum addition of one pup per litter and a minimum of two pups

of each sex in each litter.

The LN condition consisted of placing the dam and litter in a cage

with limited bedding material, made inaccessible by a stainless steel

wired mesh. In addition only half the regular amount of nesting mate-

rial (Nestlet, 5 × 2.5 cm) was available. In the SN condition, standard

amounts of bedding (±3 cm bedding) and nesting material (Nestlet,

5 × 5 cm) were available to the dam. The CN paradigm consisted of

co-housing the experimental weight dam (and her genetically hetero-

geneous F1 litter) with another ear-punched dam (and wt litter) in a

type II regular Macrolon cage (32 × 16 cm, 5 × 5 cm Nestlet and regu-

lar bedding). The pups of this second mother were marked with surgi-

cal marker at P2 and P7 (ArcRoyal, Ireland) to ensure correct

allocation of the pups to their mother at the end of communal housing

at P14. At P9 and P14, all dams and litters were weighed and provided

with clean cages, adding a bit of used bedding material to maintain

odor cues. From P14 until weaning at P21, animals were housed in

standard nesting conditions. All mice were weighed at weaning and

ear punches were obtained to facilitate individual recognition and

genotype offspring.
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F IGURE 1 Outline of the experiments. Study design and timeline
of the experiment. A wild-type female was paired with a DRD4+/−
male to obtain litters of mixed genetic background. Experimental time
points for each generation of mice are depicted. W = weaning.
P = postnatal day. Colored bars indicate periods of home cage
maternal care observations
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2.3 | Maternal care observations F0

An instantaneous sampling method18 was used to score maternal

behavior of the dams in different conditions. Three 75-minute scoring

sessions were performed daily from P2-9 between 6:00-7:30 AM (end

light phase), 12:00-4:00 AM (mid dark phase) and 6:30-8:30 PM (end

dark phase). Red light conditions were used to score during the dark

phase sessions. Maternal behavior of each dam was scored every

3 minutes, leading to 25 observations per session and 75 observations

per day for each dam. Maternal behaviors were classified as: arched-

back nursing (ABN), passive nursing, licking/grooming pups (LG), nest

building, self-grooming on nest, feeding and self-grooming off nest.

For observations during which the behavior did not qualify for one of

these categories, only on or off nest location of the dam was scored.

A Samsung Galaxy Note 4 with Pocket Observer 3.3 software

(Noldus, the Netherlands) was used for behavioral scoring, and data

was analyzed using Observer XT 10.5 (Noldus, the Netherlands). Both

dams in the communal nesting condition were scored separately,

using average scores of each pair of dams as an indication of maternal

behavior received by the litter.

Assessment of maternal care was performed by looking at

(a) frequencies of the various maternal behaviors, (b) unpredictability

of maternal care and (c) fragmentation, using on/off nest transitions.

First, percentage of time spent on the various maternal behaviors was

calculated per day (pooling the three daily sessions) or circadian phase

(pooling over six postnatal days) to assess the development over days

and circadian rhythmicity of maternal care, respectively. Second, over-

all unpredictability of maternal behavior was evaluated using the

entropy rate of transitions between different maternal behaviors.16

The entropy rate is obtained by calculating the probabilities of certain

maternal behaviors predicting specific subsequent behaviors, in which

higher entropy rates are indicative of higher unpredictability. In addi-

tion, unpredictability of maternal care specifically on the nest site was

calculated by pooling all off-nest behaviors to enhance representation

of the unpredictability rate as experienced by the offspring. Third, the

average number of transitions from and to the nest site per observa-

tion was used as an index of fragmentation of maternal care.19

2.4 | Puberty onset F1

As an external measure of puberty onset in males, mice were restrained

and gently examined daily from P27 to P33 (10:00-12:00 AM) on the

potential to fully retract the prepuce and expose the glans penis which

was designated as puberty onset.35 Female mice were scored daily from

P24 to P36 for vaginal opening, here taken as sign of puberty onset.36

All mice were weighed at puberty onset.

2.5 | Maternal care F1

During adulthood (>P70), female F1 mice were allowed to breed with

a wild-type male as described for F0. All F2 litters were culled/cross-

fostered to six pups and reared in standard nesting conditions. At P2,

P9, P14 and P21, clean cages were provided and animals were

weighed. Maternal care observations were performed as described for

F0 maternal behavior. At P7 between 10:00-12:00 AM, pup retrieval

behavior was measured using a 5 minute pup retrieval test as

described earlier.18 If a dam did not retrieve all three pups within

5 minutes, a latency of 300 seconds was assigned.

2.6 | Plasma corticosterone levels F1

To measure plasma corticosterone levels, all F1 dams were decapi-

tated in random order between 1:00 and 5:00 PM at least 3 weeks

after weaning of F2 litters. Trunk blood was collected in heparin con-

taining tubes (Sarstedt, The Netherlands) on ice and centrifuged for

10 minutes (15 682 rcf) at 4�C. Plasma was collected and stored at

−20�C until radioimmunoassay (MP Biomedicals, The Netherlands;

sensitivity 3 ng/mL).

2.7 | Statistical analysis

Data are expressed as mean ± SEM. Values deviating >3.29 SD from the

mean were defined as outlying and winsorized accordingly.37 The

entropy rate of one F0 LN dam was winsorized. Data were analyzed

using SPSS 23 (IBM) and litter effects in all F1 measures were

accounted for using the SPSS complex samples module. However, no

effect sizes are provided in this model. In other analyses, eta squared

effect sizes (η2), representing the explained variance relative to the

total model variance, are reported. Overall ANOVA statistics are pres-

ented in Tables S1-S3, Tukey HSD (main effects) or Sidak (interactions)

corrected post hoc comparisons are depicted in figures.

Greenhouse-Geisser corrected repeated measures ANOVAs with

breeding condition as the between-subject factor and postnatal

day or observation as within-subject factors were used to analyze

F0 maternal behaviors. Maternal behaviors from two observation

sessions at P2 were analyzed separately to dissociate acute effects

of novel environment exposure from more chronic alterations in

maternal care. P2 maternal behavior, entropy rates and fragmenta-

tion were analyzed using a one-way ANOVA with breeding condition

as the between-subjects factor. Pup retrieval latencies of F1 dams

were analyzed using cox regression, as this method is preferred if

a subset of animals fails to complete a certain task.38 All other F1

measures were analyzed using a two-way ANOVA including rearing

condition and genotype as independent variables. Pearson correla-

tions were used for correlational data. Mediation analysis was con-

ducted using the PROCESS v3 SPSS macro,39 with rearing

condition as a multicategorical independent variable and the SN

group as the reference category. The day of puberty onset was

used as dependent variable and body weight at weaning and

received entropy rates as potential mediators. Significant media-

tion was assigned when 95% confidence intervals of mediation did

not include zero.
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3 | RESULTS

3.1 | Maternal care by F0: care provided in an
enriched or impoverished environment

The maternal care of mouse dams was affected by environmental con-

dition (Figure 2, Table S1). Arched-back nursing (ABN) levels in LN

dams were increased compared to CN dams (Figure 2A), while passive

nursing was decreased in CN dams compared to SN dams (Figure 2B).

Taking the sum of ABN and passive nursing together, total nursing

levels displayed by individual CN dams were decreased compared to

LN and SN dams (Figure 2C), but feeding behavior in the CN condition

increased (Figure S1A). Although environmental conditions did not

affect licking/grooming behavior from P3-8, LG levels were affected

more acutely at P2 (Figure 2D). Post hoc testing indicated that specifi-

cally pups in a LN setting were deprived from LG on this first day of

novel environment exposure. Overall nest occupancy of LN dams was

increased compared to SN and CN dams (Figure 2E), but this was
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mostly due to an increase in the time LN dams were engaging in non-

pup directed behaviors on the nest site (self-grooming and other

behavior, see Figure S1).

Despite a reduction of nest occupancy by individual CN dams

compared to both LN and SN mice, the nest site in the CN setting had

higher levels of nest occupancy by at least one dam compared to the

SN condition (Figure 2F). Moreover, circadian rhythmicity of maternal

behavior was altered by exposure to different conditions (Figure 2E,

right panel). The pattern of maternal care displayed towards the end

of the dark phase (third observation time-point) was more comparable

to the light phase (first observation time-point) in LN dams, whereas

CN and SN dams displayed similar levels of maternal behaviors during

both dark phase observations (second and third observation time-

points). This pattern appeared to be consistent across different behav-

iors but reached significance for ABN, nest occupancy and off-nest

behaviors.

The overall unpredictability of behavior displayed by dams was

not significantly affected by environmental condition (Figure 2G).

However, unpredictability of behavior specifically on the nest site

(on nest entropy rates) was altered (Figure 2H). Post hoc compari-

sons revealed that the LN dams displayed increased unpredictability

of maternal care compared to the SN and CN dams. Nesting condi-

tion also affected fragmentation of maternal care, measured by the

number of transitions from and to the nest site (Figure 2I); CN

dams exhibited increased fragmentation compared to SN and

LN dams.
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3.2 | Effects of enriched or impoverished rearing
conditions on F1

3.2.1 | Effects of rearing conditions on early
development

At P14, body weight of LN litters was decreased compared to SN and

CN litters (Figure 2J), an effect that remained at weaning in both

males (Figure 2K) and females (Figure 2l). Puberty onset was also

affected by rearing condition in both males (Figure 3A) and females

(Figure 3F); LN reared animals displayed a delay in puberty onset com-

pared to SN and CN reared mice. In females (Figure 3G), but not males

(Figure 3B), body weight at puberty onset was increased in CN reared

animals compared to SN and LN mice. In both males and females,

body weight at weaning negatively correlated with puberty onset

(Figure 3C,H), whereas a positive correlation between received

entropy rates during early development and puberty onset was only

observed in females (Figure 3D,I). Mediation analysis revealed that in

males, the delayed puberty onset observed in LN reared mice was

partly mediated by the reduced body weight at weaning (95%

CI = [0.36, 1.17], Figure 3E). In females, body weight at weaning was a

significant mediator of puberty onset for both LN (95%CI = [0.36,

1.66], Figure 3J) and CN reared animals (95%CI = [−0.96, −0.08]).

However, entropy rates did not mediate the effects of rearing condi-

tion on puberty onset (LN: 95%CI = [−1.21, 0.83]; CN: 95%CI = [−0.29,

0.23]).

3.2.2 | Maternal care by F1: effects of rearing
conditions on later-life maternal care

Mice that were exposed to LN rearing conditions during early devel-

opment displayed decreased levels of arched-back nursing (ABN)

towards their own offspring compared to SN-reared animals

(Figure 4A). While passive nursing levels were not affected by rearing

condition (Figure S2A), total nursing behavior was decreased in LN

reared mice compared to CN reared animals (Figure S2B). In addition,

the total time spent on the nest site was decreased in LN-reared ani-

mals compared to both SN and CN reared mice (Figure 4B). A main

effect of rearing condition was also observed for the percentage of

time dams spent licking/grooming their own pups, a key maternal

behavior; LN-reared dams spent less time licking/grooming than dams

reared in a communal nesting environment (Figure 4c).

While F0 dams did not differ in total entropy rate, the total

entropy rate of F1 maternal behavior was decreased in CN reared

mice compared to dams reared in a SN environment (Figure S2C). In

addition, CN-reared dams displayed lower on-nest unpredictability

rates compared to LN reared animals (Figure 4C). Fragmentation of

maternal care was not affected by early life condition. Thus, while CN

animals were raised with more fragmented maternal care, they did not

differ in this behavior themselves when allowed to breed in a standard

nesting condition. Cox regression revealed that pup retrieval was

unaffected by rearing condition (hazard ratio 95%CI = [0.72, 1.39],

P = .986). Although P2 body weight of the next generation (F2) was

Condition Puberty Onset Maternal Care

2 14 24 36 70+

Condition Puberty Onset

2 14 24 36

+/+ +/- +/+ +/- +/+ +/-
0

100

200

300

400

C
O

R
T

(n
g
/m

l)

LN SN CN

+/+ +/- +/+ +/- +/+ +/-
0

5

10

15
%

o
f

ti
m

e

LN SN CN

+/+ +/- +/+ +/- +/+ +/-
0

20

40

60

80

100

%
o

f
ti
m

e

LN SN CN

COND, p<0.01 COND, p<0.05
COND*Genotype, p<0.05

*
**

*

(B) (C)(A)

(E) (F)(D)
COND, p<0.05

*

+/+ +/- +/+ +/- +/+ +/-
0

1.5

2.0

E
n

tr
o

p
y

ra
te

LN SN CN

+/+ +/- +/+ +/- +/+ +/-
0

20

40

60

%
o

f
ti
m

e

LN SN CN

*

COND, p<0.05

Arched-back nursing Time on nest Licking/grooming pups

+/+ +/- +/+ +/- +/+ +/-
0

2

4

6

T
ra

n
s
iti

o
n
s
/o

b
s
e
rv

a
ti
o
n

LN SN CN

Fragmentation
On-nest

Unpredictability
Corticosterone

F IGURE 4 Effects of different
rearing conditions and Drd4 genotype
on maternal care and basal
corticosterone levels in female F1
offspring. Overall (P2-9) levels of
(A) Arched-back nursing, (B) time on
nest and (C) licking grooming exhibited
by F1 female dams. (D), On-nest
unpredictability and (E) fragmentation
(on/off nest transitions) of maternal
behavior. (F), Basal corticosterone
levels. +/+: control, +/−: heterozygous
Drd4. Group size: LN +/+: n = 10, LN
+/−: n = 12, SN +/+: n = 16, SN +/−:
n = 16, CN +/+: n = 10, CN +/−:
n = 11). Asterisks indicate post hoc
comparisons. *P < .05, **P < .01

KNOP ET AL. 7 of 12



decreased in offspring from a LN reared mother compared to off-

spring from SN and CN reared dams (Figure S2E), this was normalized

at weaning at P21 (Figure S2F). Finally, basal levels of blood plasma

corticosterone were not affected by rearing condition (Figure 4F).

3.3 | Effects of heterozygous Drd4 knock-out
on F1

In males, but not females, heterozygous knock-out of the dopamine

receptor D4 (Drd4+/−) resulted in a decreased body weight at weaning

(Figure 2K). Drd4+/− mice did not differ from Drd4+/+ animals in any of

the sexual maturation measures (Figure 3). In addition, home-cage

maternal care levels towards the next generation were unaffected by

Drd4 genotype (Figure 4 and Figure S2). However, maternal respon-

siveness, as measured by pup retrieval, was improved in Drd4+/− dams

compared to Drd4+/+ animals (Figure S2D); Drd4+/− dams showed a

higher completion rate in all rearing conditions (hazard ratio 95%

CI = [1.03, 2.85], P = .040).

3.4 | Moderation of rearing condition effects by
Drd4 genotype

Different rearing conditions did not interact with Drd4 genotype to

determine body weight at weaning (Figure 2) or sexual maturation

(Figure 3). In addition, basal corticosterone levels and most measures

of maternal care were not affected by a gene-early environment inter-

action (Figure 4). However, an interaction effect was observed for the

percentage of time dams spent licking/grooming their own offspring

(Figure 4C). In line with the differential susceptibility theory, Drd4+/−

dams reared in the LN environment exhibited the lowest LG levels,

whereas CN reared Drd4+/− mice spent the most time licking/

grooming their own pups.

4 | DISCUSSION

In this study, we examined the causal role of Drd4 in differential sus-

ceptibility to the environment using a randomized experiment in

rodents, allowing strict control for both genetic variation-using

Drd4+/− mice- and early-life environmental factors. After extensive

characterization of the effects of different environmental conditions

on maternal care, we observed a differential susceptibility effect only

for licking/grooming levels of adult female offspring towards their

own litter. LN and CN reared Drd4+/− mice exhibited the lowest and

highest levels of licking/grooming, respectively. In addition, we dem-

onstrated main effects of rearing conditions on sexual maturation and

maternal care towards the next generation. Mice reared in a limited

nesting/bedding environment displayed characteristics of poor moth-

ering, whereas communal nesting during early development resulted

in higher predictability of maternal care.

4.1 | Modeling impoverished and enriched rearing
environments

The pattern of F0 maternal care resulting from exposure to the LN

condition was largely in line with earlier findings using this model.16-19

While different pup-directed maternal behaviors remained relatively

unaltered, the unpredictability of maternal behavior, particularly on

the nest site, increased. In addition, pups in the LN condition were

deprived from normal levels of licking/grooming upon first exposure

to this condition on P2, whereas LG levels were similar to the SN and

CN conditions from P3-P8. In contrast to other reports, but in line

with previous findings from our lab,18 fragmentation of maternal care

was similar to control conditions, a difference that could be due to the

difference in timing of observations. In this study, maternal behaviour

was observed predominantly during the dark phase of the animals,

whereas previous studies focused more on the light phase of the

day/night cycle.16,19 This difference in timing of observations is

important as we observed, in line with earlier reports from our lab,18 a

different circadian pattern in nest occupancy and ABN. LN dams

exhibited altered circadian rhythmicity in maternal care, stressing

the point that multiple time-points or continuous monitoring across

the day-night should be examined to better grasp the implications

of the LN condition.

Individual mouse dams adapted their maternal care to the commu-

nal nesting condition by decreasing nursing levels and increasing feed-

ing behavior. Despite decreased nursing time per dam, offspring body

weight was similar compared to SN reared animals. This could be

explained in part by the observation that pups in the communal nesting

condition have increased accessibility to at least one mouse dam, a hall-

mark of the early social enrichment provided by this model.24 In addi-

tion, litters in the CN condition are of a larger litter size, likely requiring

less energy per pup to regulate body temperature.

4.2 | Rearing conditions affect sexual maturation

The delayed puberty onset observed in both male and female LN

reared mice was mediated by a decrease in body weight gain at

weaning. The importance of body weight and leptin in regulating

puberty onset is well-known for both humans40,41 and rodents.42 We

therefore also measured body weight at puberty onset for the adoles-

cent mice that were raised in different early life conditions. The mini-

mal differences in body weight at puberty onset suggest that,

irrespective of early life background and subsequent body weight at

weaning, the majority of mice postpone the onset of puberty until a

certain body weight is reached. This is in contrast to a recent study

where body weight at vaginal opening was increased in female mice

that were reared in a LN condition from P2-9.28 However, because

body weight at weaning of control groups is similar in both studies,

this is unlikely to be a result of measurement differences. Future stud-

ies should therefore help to elucidate whether body weight at puberty

onset is consistently affected by limited nesting rearing conditions.
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In our study, only female mice reared in a CN setting showed

increased body weight at puberty onset, indicating that these animals

might exhibit, in line with the acceleration hypothesis, a relative delay

in puberty onset, irrespective of bodyweight. It should be noted that

early-life adversity not only affects body weight but also alters adi-

pose tissue, plasma leptin and leptin mRNA levels.43 Therefore, the

mediation of puberty onset following LN is more complex and should

be studied in more detail than only examining body weight per

se. Nevertheless, the lack of differences in body weight at puberty

onset between LN and SN reared mice, in combination with the del-

ayed puberty onset of female mice that experienced increased

unpredictability during rearing are not in line with the acceleration

hypothesis of life history earlier proposed in humans. This may point

to species differences but could also signify the relevance of uncon-

trolled factors in humans (eg, caloric intake) that are controlled for in

the current design.

4.3 | Rearing conditions affect later-life
maternal care

Different rearing conditions have been shown to affect maternal care

provided to the next generation in the LN32 and CN33 models.

Although previous results from our lab showed no effects of either

LN or CN from P2-9 on adult maternal behavior,18 the results pres-

ented here do support long-lasting effects of rearing condition on

maternal care. This could be explained by the duration and timing of

exposure to early-life rearing conditions (P2-P9 in previous study

compared to P2-14 in this study). Given the different trajectories in

brain circuit development,44,45 the effects of early-life adversity, and

potentially also enrichment, strongly depend on the critical period

during which it occurs.46 The importance of this critical or sensitive

period is highlighted by a recent study showing that different win-

dows of exposure to a combination of maternal separation with lim-

ited nesting differentially alter susceptibility to social defeat stress

during adulthood.47 By extending the exposure of pups to different

rearing conditions the development of brain regions involved in the

regulation of maternal care, such as the MPOA and mPFC,48 may have

been targeted more profoundly.

Extensive research from Meaney and co-workers have identified

the pivotal beneficial role of arched-back nursing and licking/

grooming behavior in rodent development.31,49,50 Many studies inves-

tigating intergenerational transmission of maternal care observe a sim-

ilar phenotype in the offspring and the mother.51,52 Interestingly, the

lower ABN and nest occupancy levels of LN reared female mice

observed in our current study did not coincide with a lower ABN or

nest presence of their own mother. On the contrary, female LN-

reared pups experienced increased levels of nest occupancy by the

dam compared to the SN condition, but showed lower levels of nest

occupancy when taking care of a litter themselves. Similarly, CN

reared mice received comparable levels of unpredictability as standard

reared mice, yet provided more predictable maternal behavior

towards their own offspring. Finally, LN-reared animals received

increased on-nest unpredictability but showed similar on-nest entropy

rates compared to SN reared dams. Thus, although the differences in

maternal care of F1 dams presented here are not mimicking the phe-

notype of the mother, the quality of the early-life environment (poor

vs enriched) did affect the quality of F1 maternal care under standard

breeding conditions.

4.4 | Drd4 genotype moderates the effects of
rearing conditions

For licking/grooming behavior, the effects of rearing conditions were

restricted to Drd4+/− animals, whereas rearing conditions had no

effect on LG levels in wild-type animals. Using Drd4 genotype as a

susceptibility factor, this is supportive evidence for differential sus-

ceptibility in a controlled animal model. Interestingly, the alterations

were observed across generations, a finding that requires significant

effort to study in humans. Studies on differential susceptibility in

humans focused predominantly on the effects of maternal care on

child development, highlighting the increased susceptibility of

DRD4-7R carrying children to parental sensitivity.53 However, as

these studies have not yet examined parental care of the next genera-

tion, the translational relevance of results presented here is yet to be

studied.

Clearly, the exact mechanisms through which the early-life envi-

ronment impacts on later-life behavior remain to be elucidated. Previ-

ous studies suggest an important role for the methylation of genes

involved in the HPA-axis.54 Human studies also link the DRD4-7R

genotype to alterations in components of the HPA-axis. Gene-early

environment effects have been observed for basal cortisol in

children,53 as well as stress induced cortisol levels of young adults.55

A prominent role for alterations in circulating basal corticosterone

levels in adulthood is not supported by our data. However, stress

reactivity was not assessed and could, at least in part, underlie the

observed alterations in maternal care.

Other systems may also be critical in the mechanism underlying

differential susceptibility. Recent studies using different molecular

tools and mouse knock-in models have begun to unravel the exact

function of the DRD4-7R in corticostriatal glutamatergic neurotrans-

mission, enhancing our understanding of the Drd4 receptor and sus-

ceptibility to the environment.56,57 Other studies used a wide array

of techniques to show the involvement of other dopamine receptors

in mediating the social deficits observed after severe early-life

stress.58 At a meta-analytic level, however, the effects of early-life

adversity on the dopaminergic system appear limited, although sig-

nificant for some parameters and areas.59 It is important to note that

none of the studies included in the meta-analysis examined Drd4 as

a potential target, highlighting the lack of preclinical evidence on the

role of Drd4 expression in mediating effects of adverse rearing con-

ditions. The advances in our understanding of Drd4 functioning at a

molecular level and the role of other dopamine receptors in regulat-

ing susceptibility will help to guide future studies into the role

of DRD4.
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Finally, there is increasing awareness that most consequences of

early-life rodent models have small effect sizes,21 which is also the

case in our study. Although we have sizable group numbers compared

to common practice in the field, we should take this into consideration

and interpret the results with care. To increase statistical power in

future experiments, animal numbers should be adapted to realistically

expected effect sizes and animal ethical committees should be aware

of this.60 Moreover, more meta-analyses in this field should be stimu-

lated and can help in designing future studies.21

5 | CONCLUSION

The research presented here provides a translational approach to

examine the contribution of the Drd4 gene in differential susceptibil-

ity. While other preclinical studies on differential susceptibility in

socially monogamous prairie voles focused on the role of prenatal

stress in enhancing developmental plasticity to both adverse and sup-

portive contexts,61,62 we show that adverse or enriched postnatal

environments also interact with genetic factors in mice, for better and

for worse. Future experiments should be targeted to test which neu-

robiological mechanisms are involved in mediating the effects of

DRD4 with regard to differential susceptibility.
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