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A B S T R A C T   

In this paper, we investigate how the relationship between oil and the US stock market has 
changed after the onset of Covid-19 crisis. To do so, we compute upside and downside correla-
tions between the two markets. Our findings are as follows. First, we document the correlation 
asymmetry: the downside correlation is higher than the upside correlation. Second, we find that 
both upside and downside correlations increased after the crisis. This indicates that after the start 
of the Covid-19 crisis, a positive (negative) oil shock is even better (worse) news for the stock 
market than an equivalent shock before the crisis.  

1. Introduction 

The Covid-19 pandemic severely impacted the dynamics of global financial markets over the last months. One of the notable 
impacts is a large decline and rebound of oil market and US stock market. Investors seem to be paying more attentions to oil markets 
because the oil demand might signal whether and how the global economy recovers from the damage caused by the Covid-19 
pandemic. 

In this paper, we investigate how the relationship between oil markets and the US stock market has changed after the Covid-19 
pandemic crisis. For this purpose, we compute the correlation asymmetry between the oil market and the US stock market, using the 
concept of exceedance correlations used by Longin and Solnik (2001) and Ang and Chen (2002). The correlation asymmetry is 
defined as the difference between upside and downside correlations. The upside correlation is computed as a correlation under the 
condition when both the oil and stock market show positive returns. The downside correlation is computed as a correlation under the 
condition when both the oil and stock market shows negative returns. 

Our main finding is that the correlation asymmetry has changed after the global financial markets entered the Covid-19 crisis. 
Before the crisis, the correlation asymmetry arose only from the downside correlation. Specifically, the empirical downside corre-
lation was higher than the theoretical value computed from the bivariate normal distribution with historical unconditional 
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correlation, while the upside correlation was close to the theoretical value. This indicates that before the crisis, the correlation 
between the oil market and the US stock market became higher only when both markets declined. 

After the onset of the Covid-19 crisis, the correlation asymmetry has become more pronounced. Both upside and downside 
correlations increased over the last four months. This indicates that after the start of the Covid-19 crisis, a positive (negative) oil 
shock is even better (worse) news for the stock market than an equivalent shock before the start of the crisis. 

We formally test whether the empirical conditional correlations can be explained with the bivariate normal distribution by 
employing H statistic proposed by Ang and Chen (2002). We document statistical evidence of non-normality. As a robustness check, 
we also apply a nonparametric test proposed by Hong et al. (2007). We confirm that there exists correlation asymmetry. 

We then examine which model can explain the correlation asymmetry. We estimate a bivariate normal mixture, a bivariate t- 
distribution mixture, and a threshold dynamic conditional correlation model. We document that the t-distribution mixture model 
outperforms the other models. 

Finally, we discuss the economic impact of failing to capture the asymmetry for portfolio optimization. We consider an investor 
with a power utility function. We document that the benefit of capturing the correlation asymmetry increased after the start of the 
Covid-19 crisis. 

The rest of the paper is organized as follows. Section 2 reviews the literature. Section 3 explains our econometric approach.  
Section 4 describes the data used in this study. Section 5 discusses our empirical results. Section 6 concludes. 

2. Literature 

There have been several empirical studies focusing on the relationship between the oil and stock markets. 
The most closely related paper is González-Pedraz et al. (2015). They compute exceedance correlation to study the relationship 

between the oil and stock markets during the 1990–2010 period. Consistent with our finding, they find that the downside correlation 
is higher than the upside correlation between the oil and stock markets. 

Filis et al. (2011) employ a dynamic conditional correlation model to investigate how the correlations between stock and oil 
prices evolve. They document that the oil market is not a safe haven for protection against stock market decline. 

Barragán et al. (2015) apply wavelet analysis for studying the correlation between oil and stock markets. They find evidence of 
contagion when stock market declined in 2008 and 2011. 

Baruník et al. (2016) also use wavelet analysis for studying the correlations between gold, oil and stocks. They show that cor-
relations among these assets increased and became homogenous after the 2008 crisis. 

Different from these studies, we focus on the change in the relationship between the oil market and the US stock market after 
Covid-19 pandemic hits the global economy. 

3. Econometric approach 

3.1. Definition of exceedance correlation 

To study the correlation asymmetry, we employ the exceedance correlations used by Longin and Solnik (2001) and Ang and 
Chen (2002). The exceedance correlation consists of the upside correlation + ( ) and the downside correlation ( ). These two 
correlations are defined as 

= > >+ ( ) corr(˜ , ˜ |˜ , ˜ ), where 0.x y x y (3.1)  

= < <( ) corr(˜ , ˜ |˜ , ˜ ), where 0,x y x y (3.2) 

where θ is called threshold. ˜x and ˜y are stochastic variables and standardized: = =E[˜ ] E[˜ ] 0x y and = =Var[˜ ] Var[˜ ] 1x y . The 
standardization allows us to set the threshold level θ independent of the volatility level of variables, x and y. In our empirical analysis, 
the stochastic variable x̃ is a log return of an oil price and the stochastic variable ỹ is a log return of a stock market index. 

We define the exceedance correlation ρe(θ) as 

=
+

( )
( ), where 0.
( ), where 0.

e

Notice that the exceedance correlation has two values at = 0. If data is generated by a symmetric distribution, =+ (0) (0). 
Otherwise, + (0) (0). 

In what follows, we compare empirical exceedance correlations ˜ ( )e with theoretical values ρe(θ, ρnormal) under a bivariate 
normal distribution with historical unconditional correlation ρnormal. If the empirical exceedance correlations are different from the 
theoretical values, it indicates non-normality of the relationship between two assets. We discuss a formal test of non-normality based 
on H statistic proposed by Ang and Chen (2002). The details are discussed in the Appendix A. 

If + ( ) ( ), we consider that there exists correlation asymmetry. To show the existence of correlation asymmetry, we 
conduct a nonparametric test developed by Hong et al. (2007). Their test is model-free because it does not rely on a specific sym-
metric distribution. In our empirical analysis, we conduct this nonparametric test, although we do not discuss the detailed procedure 
here because of the space limitation. 
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3.2. Normal mixture model 

We estimate a normal mixture model and test whether the estimated normal mixture model can describe the (asymmetric) 
empirical exceedance correlations. We denote =˜ (˜ , ˜ )t x y . The normal mixture model is specified as 

N µ p
N µ p

˜
( , ), with probability .
( , ), with probability 1 .t

u u

d d (3.3) 

where N is a bivariate normal distribution. μu and μd are the vector of the means under each state ( =s u d,t ). Σu and Σd are the 
covariance matrix under each state ( =s u d,t ). In what follows, we denote the vector of the variances at each state with 

= ( , )u x u y u
2

,
2

,
2 and = ( , ),d x d x d

2
,

2
,

2 respectively. Similarly, the correlation at each state is denoted with ρu and ρd, respectively. p is 
the mixing probability of two states ( = =s u pProb( )t ). 

Note that we ensure that the unconditional average = =E[˜ ] E[˜ ] 0x y and the unconditional variance = =Var[˜ ] Var[˜ ] 1x y . 
Therefore, given μu and p, μd is solved. Given σu and p, d

2 is also solved. 

3.3. t-distribution mixture model 

We also estimate a t-distribution mixture model. The t-distribution mixture model is specified as 

T µ p
T µ p

˜
( , , ), with probability .
( , , ), with probability 1 .t

u u u

d d d (3.4) 

where T is a bivariate t-distribution. νu and νd are the degree of freedom for the t-distribution under each state ( =s u d,t ). The other 
parameters are defined as the same way as in the normal mixture model. 

Similar to the normal mixture model above, we ensure that the unconditional average = =E[˜ ] E[˜ ] 0x y and the unconditional 
variance = =Var[˜ ] Var[˜ ] 1x y . Therefore, given μu and p, μd is solved. Given σu, νu, νd, and p, d

2 is also solved. 

3.4. Threshold DCC model 

As an alternative approach, we employ a threshold dynamic conditional correlation (DCC) model which is an extension of DCC 
model developed by Engle (2002).1 Let us consider 

N 0˜ ( , ),t (3.5) 

where 0 is a zero vector. Following Cappiello et al. (2010), we define = Q Q Q* *t t t t
1 1 where Q*t is a diagonal matrix with 

=Q q*ii t ii t, , . It guarantees the positive semi-definiteness of Σt. 
The core of the threshold DCC model is the dynamics of Qt specified as 

= + +
+ +

+ +

+ + +

Q R R R N N Q
n n n n

( ¯ ¯ ¯ ¯ ¯ )
,

t t t t

t t t t

1

(3.6) 

where = < <n I ·t t{ 0, 0}x y and =+
> >n I ·t t{ 0, 0}x y . An indicator function =I 1{·} if the condition is satisfied. Otherwise, =I 0. For 

=R̄ E[ ],t t the mean-reverting level of correlation = =R R¯ ¯ ¯12 21. The expectations =+ + +N n n¯ E[ ],t t and =N n n¯ E[ ]t t are replaced 
with sample average. ρ0 is a correlation value at =t 0. In summary, ¯, αρ, βρ, +, , ρ0 are constant parameters to be estimated. 

4. Data 

We download the historical data of the prices of WTI oil price and S&P 500 index from FRED, the website of the Federal Reserve 
Bank of St. Louis. We have two sample periods: The pre-Covid crisis period starts from May 18, of 2010 to January 31, of 2020. The 
Covid-crisis period starts from February 3, of 2020 to May 31, of 2020. Our main results below are qualitatively similar if we select 
January 1, of 2020 as start date of the Covid-19 crisis. We use daily log return. We exclude April 20, of 2020 because of negative price 
of WTI. As a robustness check, we also conduct the same analysis for the historical data of Brent oil prices obtained from FRED. 

5. Results 

5.1. Testing correlation asymmetry 

Table 1 shows estimated parameters of a GARCH model for each variable. For both WTI and S&P 500, the mean-reverting level of 
volatility ¯ and volatility of volatility β increased after the onset of the Covid-19 crisis. We use a GARCH-filtered return in our analysis 
below to disentangle the impact of time-varying volatility from correlations. 

1 As an application of DCC models to commodity, (Klein, 2017) modifies the DCC model and study precious metals. 
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Fig. 1 shows the exceedance correlations between WTI and S&P 500 index. The x-axis is threshold θ. The y-axis is the correlation 
ρe(θ). The black-colored solid line shows empirical exceedance correlations during the pre-Covid-19 crisis. The black-colored dotted 
line is the exceedance correlations based on the estimated bivariate normal distribution. We can observe the correlation asymmetry: 
the downside correlation is higher than the upside correlation. It is also higher than its theoretical value based on the bivariate 
normal distribution. By contrast, the upside correlation is close to its theoretical value. This empirical pattern is qualitatively the 
same as the exceedance correlations between international stock markets documented by Longin and Solnik (2001).2 

Now let us look at the red-colored solid line that shows empirical exceedance correlations during the Covid-19 crisis. The red- 
colored dotted line is the exceedance correlations based on the estimated bivariate normal distribution. Interestingly, the red-colored 
solid line indicates that both the upside and downside correlations become higher after the onset of the Covid-19 crisis. Although we 
cannot identify causality from correlation, this result suggests that after the start of the Covid-19 crisis, a positive (negative) oil shock 
is even better (worse) news for the stock market than an equivalent shock before the crisis. 

Table 2 shows the empirical estimates of upside and downside correlations ( +̂ (0) and ^ (0)), as well as the H statistic with two 
different specifications of the weight (HE and HT) under bivariate normal distributions. Note that all of these exceedance correlations 
are computed using standardized log returns after we filter out volatility by the GARCH model. 

Table 1 
Estimates of GARCH model parameters. The standard deviations of each parameter are calculated based on QML 
(=Quasi Maximum Likelihood) estimator. The GARCH model is specified as = + +t t t

2
1

2
1

2 where 
= (1 ) ¯ 2. *** shows that the estimate is statistically significant at the 1% level.      

Pre-crisis ¯ α β  

WTI 1.39%⁎⁎⁎ 0.92⁎⁎⁎ 0.07⁎⁎⁎ 

S&P 500 0.49% 0.79⁎⁎⁎ 0.17  

During-crisis ¯ α β 

WTI 2.77%⁎⁎⁎ 0.76⁎⁎⁎ 0.22⁎⁎⁎ 

S&P 500 0.97% 0.65⁎⁎⁎ 0.28 

Fig. 1. Exceedance correlations between WTI oil and the S&P 500 index. The black-colored solid line is the empirical exceedance correlation before 
the Covid-19 crisis period (2010/5-2020/1). The red-colored solid line is the empirical exceedance correlation during the Covid-19 crisis period 
(2020/2-2020/5). The black-colored dotted line is theoretical exceedance correlations under bivariate normal distributions with historical un-
conditional correlations =¯ 32.8%normal before the crisis. The red-colored dotted line is theoretical exceedance correlations under bivariate normal 
distributions with historical unconditional correlations =¯ 32.9%normal during the crisis. (For interpretation of the references to colour in this figure 
legend, the reader is referred to the web version of this article.) 

2 Longin and Solnik (2001) document that the downside correlation is higher than the upside correlation between stock indices in different 
countries such as US, UK, France and Germany. 
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We make two observations: First, H statistic is statistically significant in all cases. It provides an empirical evidence of non- 
normality. Second, H statistic increased after the start of the Covid-19 crisis. It indicates that non-normality is more pronounced over 
the last four months. 

Note that we obtain similar results for the exceedance correlations between Brent oil and Euro stoxx 50. 
As a robustness check, we conduct a nonparametric test by Hong et al. (2007). We find that the statistical significance of cor-

relation asymmetry is weak (10%) before the Covid-19 crisis. However, it becomes stronger (1%) after the crisis. 

5.2. Performance comparison of mixture models and threshold DCC model 

Tables 3, 4, 5 show estimated parameters of the normal mixture, t-distribution mixture, and the threshold DCC models, re-
spectively, to fit the bivariate dynamics of WTI and S&P 500. The estimation methodology is based on maximum likelihood esti-
mation. We generate exceedance correlations based on these estimated parameters for each model and then compute H statistic under 
each model. By looking at H statistic, we can see whether and to what extent these three models with estimated parameters can 
explain the correlation asymmetry. 

Table 6 shows the upside and downside correlations as well as H statistic under the three estimated models. The H statistic under 
any of these three models is smaller than H statistic under the bivariate normal distribution in Table 2. For example, HT is 0.203 under 
the bivariate normal model during the crisis while HT is 0.163, 0.139, and 0.193 for the normal mixture, t-distribution mixture, and 
the threshold DCC models, respectively. Also, we can see that the t-distribution mixture mode is the best performer in both two 
periods in terms of HT. 

5.3. Estimated economic impact 

We evaluate the economic impact of failing to capture the correlation asymmetry, following the procedure described in the 
Appendix B. Because we are interested in the pure impact of the correlation asymmetry, we turn off GARCH volatility dynamics and 
use the constant volatility equal to the sample standard deviation during 2019/6-2020/5. The mean of the return for each asset is also 
set equal to the average return during the same period. For the portfolio optimization problem, we use a bivariate normal mixture 

Table 2 
Exceedance correlations and H statistics under normal distribution. +^ (0) is the empirical estimate of the upside correlation with zero threshold. 
^ (0) is the empirical estimate of the downside correlation with zero threshold. + (0)normal and (0)normal are the theoretical value of upside and 
downside correlations under a bivariate normal distribution, respectively. H stastistics are computed using bivariate normal distribution as a 
benchmark. HE is the H statistic with the equal weight. HT is the H statistic with threshold-dependent weight. ** and *** indicate statistical 
significance at the 5% and the 1% level, respectively.         

Pre-crisis +^ (0) + (0, )normal ^ (0) (0, )normal HE HT   

16.4% 15.1% 25.6% 15.1% 0.074⁎⁎⁎ 0.068⁎⁎⁎  

During-crisis +^ (0) + (0, )normal ^ (0) (0, )normal HE HT  

23.5% 15.2% 36.4% 15.2% 0.330⁎⁎⁎ 0.203⁎⁎ 

Table 3 
Estimates of the normal mixture model parameters. The t value of each para-
meter is calculated based on QML(=Quasi Maximum Likelihood) estimator. ** 
and *** show the estimate is statistically significant at the 5% level and 1% 
level, respectively. Note that µ ,x

d µ ,y
d

x
d and y

d are computed from the con-
ditions of =E[ ] 0t and =Var[ ] 1t .      

Pre-crisis During-crisis  

µx
u 0.17⁎⁎⁎ 0.08⁎⁎⁎ 

µy
u 0.11⁎⁎⁎ 0.04⁎⁎⁎ 

x
u 0.71 0.96⁎⁎⁎ 

y
u 0.76⁎⁎⁎ 0.72⁎⁎⁎ 

ρu 0.17 0.22 
ρd 0.27 0.37 
p 0.72 0.89 
µx

d 0.44 0.64

µy
d 0.29 0.35

x
d 1.42 1.10 

y
d 1.41 2.19 

Y. Sakurai and T. Kurosaki   Finance Research Letters 37 (2020) 101773

5



model as a true model describing dynamics of two assets. We use Monte Carlo simulation to compute the expected utility. We set 
simulation paths equal to 1,000,000. 

We find that the impact of not capturing the correlation asymmetry is 0.34% before the Covid-19 crisis and 0.54% after the 
start of the crisis. The portfolio return is reduced by these values in relative terms. The result suggests that the economic benefit of 
capturing the correlation asymmetry increased after the start of the Covid-19 crisis. 

6. Conclusion 

In this paper, we investigate how the relationship between the oil market and the US stock market has changed after the onset of 
Covid-19 crisis. Our focus is correlation asymmetry between the two markets. In doing so, we compute upside and downside cor-
relations, following Longin and Solnik (2001) and Ang and Chen (2002). We conduct statistical tests and discuss the economic impact 
of failing to capture the asymmetry for portfolio optimization. 

The main message of this paper is that the correlation asymmetry becomes more pronounced after the start of the crisis. 

Table 4 
Estimates of the t-distribution mixture model parameters. The t value of each parameter is calculated 
based on QML(=Quasi Maximum Likelihood) estimator. ** and *** show the estimate is statistically 
significant at the 5% level and 1% level, respectively. Note that µ ,x

d µ ,y
d

x
d and y

d are computed from the 
conditions of =E[ ] 0t and =Var[ ] 1t .       

Pre-crisis During-crisis   

µx
u 0.16⁎⁎⁎ 0.08⁎⁎  

µy
u 0.11⁎⁎⁎ 0.04⁎⁎⁎  

x
u 0.71 0.96  

y
u 0.76 0.72  

ρu 0.18 0.24⁎⁎⁎  

ρd 0.28⁎⁎ 0.39⁎⁎⁎  

p 0.69 0.85⁎⁎⁎  

νu 10718 8.53  
νd 6.78 3.37  
µx

d 0.35 0.45

µy
d 0.23 0.23

x
d 1.16 0.00  

y
d 1.14 1.05  

Table 5 
Estimates of threshold DCC model parameters. The t value of each parameter is calculated based on QML 
(=Quasi Maximum Likelihood) estimator. ** and *** show the estimate is statistically significant at the 
5% level and 1% level, respectively.       

Pre-crisis During-crisis   

¯ 0.33 0.33  
αρ 0.96⁎⁎⁎ 0.45⁎⁎⁎  

βρ 0.01 0.21  
+ 0.02⁎⁎⁎ ***0. 17

0.01 0.21  
ρ0 0.31 0.99  

Table 6 
H statistics under three different bivariate models. H statistics are computed using three different modes as a benchmark. The normal mixture, t- 
distribution mixture, and threshold DCC models are denoted with nm, tm, and DCC, respectively. HE,i is the H statistic with the equal weight under 
the i model. HT,i is the H statistic with threshold-dependent weight under the i model.         

Pre-crisis HE,nm HT,nm HE,tm HT,tm HE,DCC HT,DCC   

0.071 0.061 0.067 0.056 0.066 0.061  

During-crisis HE,nm HT,nm HE,tm HT,tm HE,DCC HT,DCC  

0.266 0.163 0.239 0.139 0.315 0.193    
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Specifically, both upside and downside correlations increased. This indicates that after the start of the Covid-19 crisis, a positive 
(negative) oil shock is even better (worse) news for the stock market than an equivalent shock before the crisis. 

CRediT authorship contribution statement 

Yuji Sakurai: Conceptualization, Methodology, Writing - original draft. Tetsuo Kurosaki: Data curation, Formal analysis, 
Writing - review & editing.   

Appendix A. Description of the H statistic 

To make our paper self-explanatory, we explain the definition of the H statistic developed by Ang and Chen (2002) in this 
subsection. 

The H statistic is defined as 

=
=

H w ( )( ˜ ( ) ( , )) ,
i

N

i
e

i
e

i
1

2
1/2

(A.1) 

where ϕ is a vector of model parameters. Nθ is the total number of thresholds θi. ˜ ( )i is the empirical exceedance correlation 
computed based on actual data. 

ρ(θi, ϕ) is the theoretical value of the exceedance correlation calculated under the benchmark model. For a bivariate normal 
distribution, ϕ is reduced to the correlation parameter ρnormal. In our empirical analysis, we use the historical unconditional corre-
lation as n̂ormal. If the empirical exceedance correlation is described by the normal distribution, the H statistic should be close to zero. 

There are two specifications for the weight w(θi). The first specification is the equal weight defined as 

=w N( ) 1/ .i (A.2) 

The second specification is the threshold-dependent weight defined as 

=
=

w T
T

( ) ( )
( )

,i
i

i
N

i1 (A.3) 

where the number of samples T(θ) is defined as 

= =
< <

=
> <

T ( )
1 , if 0.

1 , if 0.
,t

N

t

N
1

{˜ ,˜ }

1
{˜ ,˜ }

T

x y

T

x y
(A.4) 

where NT is the total number of sample. Notice that == w ( ) 1i
N

i1 for both specifications. 
Following Ang and Chen (2002), our preference is the second approach HT to the first approach HE because HT takes into account 

that the number of samples satisfying the condition decreases as the absolute level of the threshold θ increases. Hence, the weight is 
designed to be smaller for the larger threshold θ in the second specification. 

To test non-normality of the H statistic, we need to compute its standard deviation. To do so, we generate two stochastic variables 
sampled from the bivariate normal distribution with ρnormal and compute the H statistic for the generated time series. The time length 
is the same as the empirical data. For each path, one estimate of the H statistic is obtained. We iterate the procedure 1000 times and 
calculate the standard deviation of the H statistic. 

Appendix B. Economic impact of correlation asymmetry 

We assume that an investor has a power utility function. 

=U WE
1

,T
1

(B.1) 

where the final wealth WT is calculated as 

= + +W W w r w r w w r( exp( ) exp( ) (1 )exp( )),T oil oil stock stock oil stock f0 (B.2) 

where roil and rstock are log returns of the oil and the US stock index, respectively. W0 is the initial wealth. woil and wstock are the 
allocation for the oil and the stock index, respectively. We consider that the estimated bivariate normal mixture model is a true model 
for roil and rstock. γ is the risk aversion parameter. We set = 4 following Ang and Chen (2002). We also assume that the risk-free rate 

=r 0f in our empirical analysis because the time frequency of our data is daily and it is natural to assume that the daily risk-free 
return is close to zero during the Covid-19 crisis. 

First, we solve the portfolio optimization problem under the estimated bivariate normal mixture model. 
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=U W* max E
1

.w w nm
T

,

1

oil stock
(B.3)  

Second, we solve the portfolio optimization problem under the bivariate normal distribution in which the correlation is set to the 
empirical unconditional correlation. 

=w w W( **, ** ) argmax E
1

,oil stock w w normal
T

,

1

oil stock (B.4) 

where w**oil and w**stock are the optimal allocation under the normal distribution. 
Third, we calculate the expected utility under the normal mixture model but with the quasi-optimal allocation (w**,oil w**stock). 

=U W w w** E
1

with ** and ** .nm
T

oil stock

1

(B.5)  

Fourth, we compute the certainty equivalent wealth for both cases as follows: 

=W U((1 ) ) ,T
k k 1/(1 ) (B.6) 

where =W U W U( , ) ( *, *)T
k k

T or W U( **, **)T . 
Finally, we define the economic impact of not capturing the correlation asymmetry as 

= W W
W W

Economic Impact ( **/ ) 1
( */ ) 1

1,T
d

T
d

0

0 (B.7) 

where d is set equal to 252 in order to annualize the value of the economic impact. Equation (B.7) shows that how much an investor 
could lose the return on their wealth if they do not capture the correlation structure correctly, compared to the case when they 
correctly capture it. The impact is measured in relative term. 

Note that the economic impact is always negative because W **T is smaller than W *T given the fact that the sub-optimal expected 
utility U⁎⁎ is lower than the optimized expected utility U*.  
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