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Abstract

Glucocorticoids (GCs), key mediators of stress signals, are also potent wound healing inhibitors. 

To understand how stress signals inhibit wound healing, we investigated the role of membranous 

glucocorticoid receptor (mbGR) by using cell-impermeable BSA-conjugated dexamethasone. We 

found that mbGR inhibits keratinocyte migration and wound closure by activating a Wnt-like 

phospholipase (PLC)/ protein kinase C (PKC) signaling cascade. Rapid activation of 

mbGR/PLC/PKC further leads to activation of known biomarkers of nonhealing found in patients, 

β-catenin and c-myc. Conversely, a selective inhibitor of PKC, calphostin C, blocks mbGR/PKC 

pathway, and rescues GC-mediated inhibition of keratinocyte migration in vitro and accelerates 

wound epithelialization of human wounds ex vivo. This novel signaling mechanism may have a 

major impact on understanding how stress response via GC signaling regulates homeostasis and its 

role in development and treatments of skin diseases, including wound healing. To test tissue 

specificity of this nongenomic signaling mechanism, we tested retinal and bronchial human 

epithelial cells and fibroblasts. We found that mbGR/PLC/PKC signaling cascade exists in all cell 
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types tested, suggesting a more general role. The discovery of this nongenomic signaling pathway, 

in which glucocorticoids activate Wnt pathway via mbGR, provides new insights into how stress-

mediated signals may activate growth signals in various epithelial and mesenchymal tissues.

INTRODUCTION

In addition to being major stress signals, glucocorticoids (GCs) are widely used therapeutic 

agents in treatment of both local and systemic inflammatory disorders. Prolonged 

therapeutic use of GCs has numerous side effects including potent inhibition of wound 

healing (Lee et al., 2005; Stojadinovic et al., 2007; Vukelic et al., 2011). Wound healing 

involves a complex, multistep process that requires an intricate balance of various signaling 

pathways to restore epidermal barrier. Aberrant signaling in response to injury leads to 

impairment of epithelialization, common for major types of chronic wounds (Brem et al., 

2007; Pastar et al., 2014; Stojadinovic et al., 2005). In spite of epidemic proportions of 

nonhealing wounds, development of new therapies is impeded by lack of understanding 

regarding mechanisms that inhibit healing (Eming et al., 2014).

We found that GCs are synthesized in epidermis and regulate inflammatory response during 

acute injury (Slominski et al., 2007; Slominski et al., 2005a; Slominski et al., 2005b; 

Slominski et al., 2004; Stojadinovic et al., 2007; Vukelic et al., 2011), whereas stress was 

found to impair wound healing (Stojadinovic et al., 2012). Emerging evidence that local 

production in skin may contribute to systemic GCs and vice versa suggests substantial cross-

talk between local and systemic hypothalamic-pituitary-adrenal axis that may influence 

healing outcomes (Jozic et al., 2014, Jozic et al., 2015; Skobowiat and Slominski, 2015; 

Slominski et al., 2015).

The membranous fraction of glucocorticoid receptor (mbGR) was found to regulate the 

activity of many signaling molecules (Almawi and Melemedjian, 2002; Chen and Farese, 

1999; Samarasinghe et al., 2012; Strehl and Buttgereit, 2014; Strehl et al., 2011; Vernocchi 

et al., 2013). These nongenomic changes do not require direct interaction of glucocorticoid 

receptor (GR) with a promoter. Instead, they activate secondary messenger systems to 

generate biological responses within minutes, serving as a priming event to prepare cells for 

subsequent genomic activity (Almawi and Melemedjian, 2002; Chen and Farese, 1999; 

Strehl and Buttgereit, 2014; Strehl et al., 2011; Vernocchi et al., 2013). Our recent discovery 

that GR localizes to the plasma membrane of keratinocytes adds to the complexity and 

suggests presence of additional pathways in skin (Stojadinovic et al., 2013).

Wnt pathway is essential for many aspects of skin development, physiology, and pathology 

(He et al., 1998). Previous microarray analyses of GC-treated keratinocytes, demonstrated 

upregulation of protein kinase C (PKC) (Stojadinovic et al., 2007), which regulates glycogen 

synthase kinase 3-β (GSK-3β) activity (Christian et al., 2002; Goode et al., 1992; Hart et al., 

1998; Hinoi et al., 2000; Nakamura et al., 1998). We found that β-catenin acts as a 

coregulator of GR-mediated transcriptional regulation of wound-inducible keratin genes and 

EGF-mediated migration (Lee et al., 2005; Radoja et al., 2000; Stojadinovic et al., 2005; 

Stojadinovic et al., 2007). Furthermore, we found that in epidermis of chronic wounds, 

activation of β-catenin, and consequentially c-myc, is associated with a nonhealing 
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phenotype (Stojadinovic et al., 2005). Thus, we postulate that activation of mbGR may 

activate a Wnt-like pathway, contributing to inhibition of wound closure. Indeed, we found 

that targeting mbGR by dexamethasone (Dex)-BSA leads to rapid activation of 

phospholipase-γ (PLCγ) and protein kinase C (PKC) that, in turn, leads to phosphorylation 

of GSK-3β, activation of nuclear β-catenin and subsequent overexpression of c-myc. This 

nongenomic signaling functionally impairs keratinocytes resulting in inhibition of migration 

and wound closure that can be reversed by selective inhibitors of PKC. Furthermore, we 

found that this signaling pathway functions in various cells and tissues, suggesting its more 

general role in integrating stress signals (mediated by GCs) into growth signals (mediated by 

Wnt pathway).

RESULTS

GCs promote nuclear localization of β-catenin through protein kinase C pathway

To test if GCs activate β-catenin, we stimulated primary human keratinocytes (HEKs) with 

Dex in the presence/absence of GR antagonist, Ru486, and evaluated localization of the 

phosphorylated β-catenin through indirect immunofluorescence (Ogiwara et al., 1998; 

Stojadinovic et al., 2005). As expected, treatment with lithium chloride resulted in activation 

and nuclearization of β-catenin (Figure 1a and b). Similarly, treatment with Dex led to a 

robust nuclearization of β-catenin, which could be blocked by pretreatment with GR 

antagonist, Ru486, suggesting that GCs may activate β-catenin pathway (Figure 1c and d). 

To determine if observed activation of β-catenin is mediated by PKC, we pretreated HEKs in 

the presence or absence of calphostin C (CC), a known inhibitor of PKC (Ogiwara et al., 

1998). Pretreatment with CC blocked the Dex-mediated activation of β-catenin, as 

evidenced by its absence from the nucleus of HEKs (Figure 1e). These findings suggest that 

GCs can mediate rapid effects, resulting in nuclear localization of β-catenin through 

activation of the PKC pathway.

Selective activation of membranous glucocorticoid receptor by BSA-conjugated 
dexamethasone does not contribute to transcriptional regulation of genomic 
glucocorticoid receptor

We and others found previously that a subpopulation of the GR is localized at the plasma 

membrane (Bartholome et al., 2004; Stojadinovic et al., 2013; Strehl et al., 2011). We used 

Dex-BSA to functionally characterize the mbGR because the large BSA moiety prevents 

entry into cells and biding to their intracellular receptors (Hu et al., 2010; Nahar et al., 2015; 

Samarasinghe et al., 2012). To test if mbGR is involved in activating β-catenin, we 

stimulated HEKs with Dex-BSA in the presence/absence of Ru486 and CC (GR and PKC 

antagonists, respectively) and evaluated localization of the phosphorylated β-catenin through 

indirect immunofluorescence. Dex-BSA treatment led to nuclearization of β-catenin, which 

was reversed by GR and PKC antagonists (Figure 1, f–h). We then treated HEKs with 1 μM 

Dex (D) or 100 nM Dex-BSA (DB) for 10, 15, 30, 45, 60, or 120 minutes and assessed 

activation of GR by immunoblotting of GR phosphorylation at S211 (Wang et al., 2002). We 

observed rapid activation of GR, within first 10 minutes, that reached its peak between 30 

and 45 minutes after stimulation with either ligand (Supplementary Figure S1a online). To 

discern genomic from nongenomic effects, we treated HEKs with either Dex or Dex-BSA in 
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the presence or absence of a transcriptional inhibitor, actinomycin D, and tested the 

expression of GILZ (GC response element-induced leucine zipper) via real-time PCR, which 

we found to be among the first transcriptionally regulated genes by GCs in HEKs 

(Stojadinovic et al., 2007). As expected, Dex stimulated induction of GILZ, whereas Dex-

BSA showed no change in GILZ expression (Supplementary Figure S1b online), suggesting 

that Dex-BSA-mbGR does not contribute to genomic effects by directly regulating gene 

expression. Furthermore, we treated keratinocytes with Dex or Dex-BSA and analyzed 

phosphorylated GR (S211) localization after subcellular fractionation and observed that 

treatment of keratinocytes with Dex stimulated nuclear translocation of phosphorylated GR, 

whereas treatment with Dex-BSA did not. There were no detectable changes in 

nuclearization of total GR as shown by immunofluorescence staining of HEKs after 

treatment with Dex or Dex-BSA (Supplementary Figure S1c online). Collectively, these 

results suggest that Dex-BSA selectively activates membranous GR in HEKs and does not 

contribute to transcriptional regulation of genomic GR.

Membranous glucocorticoid receptor activates phospholipase C/protein kinase C/
glycogen synthase kinase 3 beta pathway that induces c-myc

To assess if mbGR activates β-catenin and by which mechanism, we first examined the 

phosphorylation state of GSK-3β (Goode et al., 1992) by treating with either Dex or Dex-

BSA for 30 minutes and immunoblotting against phosphorylated GSK-3β (Supplementary 

Figure S1d online). We observed a clear induction of GSK-3β (S9) phosphorylation in 

keratinocytes treated with Dex-BSA (comparable to Dex), indicating rapid GSK-3β 
phosphorylation mediated by the mbGR. Because inhibition of PKC by treatment with CC 

resulted in a significant reduction of nuclear β-catenin (see Figure 1), we focused on testing 

whether PKC pathway was essential for mbGR-mediated induction of GSK-3β phospho-

inactivation and nuclear translocation of β-catenin. We treated keratinocytes with either Dex 

or Dex-BSA, and tested for activation of PKC and its upstream regulator PLCγ via 

immunoblotting. We observed a clear phosphorylation of both PKC (pan S660) and its 

upstream regulator PLCγ1 (Y783) (Supplementary Figure S1e online).

Next, we used a series of small enzymatic inhibitors of each step of the signaling pathway. 

HEKs were incubated with Dex-BSA alone or in combination with either GR-antagonist 

Ru486, PKC inhibitors CC or Go6976, and PLC inhibitor, genistein. Pretreatment of cells 

with Ru486 selectively inhibited the Dex-BSAemediated phosphorylation of GR (S211) 

shown by immunoblotting (Figure 2a). We observed that Dex-BSA induced phosphorylation 

of PLCγ1, whereas genistein pretreatment inhibited it (Figure 2b). Because genistein is a 

nonspecific tyrosine kinase inhibitor with multiple effects in the cell, we also performed 

experiments using a PLC-specific inhibitor, U73122, and found similar results 

(Supplementary Figure S1h online). Furthermore, Dex-BSA induced phosphorylation of 

PKC, which was ameliorated by pretreatment of cells with CC (Figure 2c). Lastly, we 

pretreated cells with either CC (general PKC inhibitor) or Go6976 (selective PKCα/β1 

inhibitor) and assessed phosphorylation of GSK-3β (S9) by immunoblotting. We observed 

that Dex-BSA induced phosphorylation of GSK-3β; however, pretreatment of cells with 

either CC or Go6976 selectively inhibited Dex-BSAemediated phosphorylation of GSK-3β 
(Figure 2d). Taken together, these results show that GCs mediate GSK-3β phosphorylation 
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by activating PLC/PKC pathway, thus resulting in nuclearization of β-catenin via a pathway 

that uses mbGR. To confirm that indeed Dex-BSAemediated activation of the PLC/PKC 

pathway results in transcriptionally active β-catenin, we tested the expression of c-myc (a 

known β-catenin target gene) (Stojadinovic et al., 2005) by incubating HEKs with Dex-BSA 

for 4 hours in the presence or absence of PKC inhibitor, CC. We confirmed that Dex-

BSAemediated induction of c-myc expression is effectively blocked by CC (Figure 2e). 

Altogether, we conclude that activation of mbGR induces c-myc expression in a PLC/PKC-

dependent manner.

Membranous glucocorticoid receptor/phospholipase C/protein kinase C pathway is not 
restricted to skin or epithelial cells

Because we observed a novel mbGR-mediated signaling mechanism in HEKs, we then 

examined whether the observed mbGR/PLC/PKC/GSK-3β signaling pathway is restricted to 

skin epithelium or whether it is found in cells of other epithelial origin. We treated D407 

human retinal epithelial cells (Figure 3a), undifferentiated or differentiated primary human 

bronchial epithelial cells (Figure 3b; Supplementary Figure S1f online) in presence or 

absence of 100 nM Dex-BSA for 30 minutes and assayed existence of the mbGR/PLC/PKC/

GSK-3β signaling cascade by immunoblotting. We observed a clear induction in 

phosphorylation of GR (S211), PLCγ1 (Y783), PKC pan (S660), and GSK-3β (S9) in both 

eye and lung epithelia (Figure 3a and b; Supplementary Figure S1f) as well as the 

downstream target c-myc in D407 human retinal epithelial cells (Supplementary Figure S1g 

online). Interestingly, we also observed the presence of the same signaling cascade in 

primary human fibroblasts (Figure 3c), leading us to conclude that mbGR signaling cascade 

is conserved not only in various epithelial cell types but also in other cells of mesenchymal 

origin, like fibroblasts.

Inhibition of protein kinase C restores keratinocyte migration in vitro and accelerates 
wound closure ex vivo

We found previously that activated GR inhibits wound healing by disrupting migration of 

keratinocytes (Lee et al., 2005; Stojadinovic et al., 2007). To functionally test whether 

activation of the PLC/PKC pathway by mbGR inhibits epithelialization and wound closure, 

migration of keratinocytes was quantified by a wound-scratch assay at 0 hours, 24 hours, 

and 48 hours. Keratinocytes were treated with Dex or Dex-BSA in the presence or absence 

of either inhibitors of GR (Ru486), PLCγ (genistein), and PKC (CC) or EGF, a known 

stimulator. We found that Dex-BSA inhibits keratinocyte migration similarly to Dex, 

suggesting that mbGR regulates inhibition of migration in HEK (Figure 4; Video 1). 

Furthermore, inhibition of either GR, PLCγ, or PKC (by Ru486, genistein, and CC, 

respectively) reversed the Dex-BSAemediated inhibition (Figure 4; Video 1). Similar effects 

can be observed as early as 4 hours after treatment with Dex-BSA (data not shown). We 

conclude that sustained stimulation of mbGR by GCs elicits activation of mbGR/PLCγ/PKC 

signaling cascade and leads to inhibition of keratinocyte migration.

To test functional implications of the mbGR nongenomic pathway, we used two established 

models: human skin ex vivo and organotypic culture wound model (Ojeh et al., 2014; 

Stojadinovic and Tomic-Canic, 2013). In both models, skin was wounded by 3-mm punch 
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biopsies and treated with Dex, Dex-BSA, and EGF as positive control. Histologic 

assessments at day 4 postwounding show that Dex-BSA treatment inhibited epithelialization 

similarly to Dex in both models (Figure 5; Supplementary Figure S2 online). Furthermore, 

pretreatment of skin with CC prevented Dex-BSAemediated inhibition of wound healing. 

When present alone, CC accelerated wound closure (Figure 5). This acceleration of wound 

closure by CC can be contributed by blocking of activation of mbGR by endogenously 

synthesized cortisol (Vukelic et al, 2011).

Taken together, our data show how a new molecular mechanism of activation of the 

PLC/PKC by GCs via the mbGR results in inhibition of keratinocyte migration and 

epithelialization, thus contributing to wound healing impairment. Conversely, inhibition of 

this pathway accelerates wound closure, providing new therapeutic approaches to stimulate 

wound healing.

DISCUSSION

Here we show a novel mechanism that converts incoming stress signal, mediated by mbGR, 

into growth signals similar to those of Wnt, by activation of the β-catenin (Figure 6). We 

also show that stress mediators, GCs, trigger fast-acting nongenomic effects via mbGR that 

activate the PLC/PKC/β-catenin pathway, induce c-myc, and contribute to impairment of 

healing. Furthermore, we show that inhibition of PKC restores keratinocyte migration and 

accelerates epithelialization. Importantly, this novel signaling pathway is functional in many 

cell types and tissues, suggesting a more general impact. The nongenomic GC signaling that 

activates PKC and merges multiple major pathways may have significant impacts on 

understanding molecular mechanisms that govern homeostasis or pathophysiology of 

cutaneous (and other) diseases. The potential implications of such a concept are immense, as 

components of the Wnt signaling are key regulators of cell differentiation and proliferation 

and have, thus, been found to be deregulated in many diseases ranging from skin, 

cardiovascular, and neuronal disorders to various forms of cancer (Abrahamsson et al., 2009; 

Clements et al., 2003; Tian et al., 2003; van Gijn et al., 2002). It also underscores the 

potential role of stress-related signaling in these diseases. However, the contribution of GC-

mediated activation of β-catenin in these processes remains to be elucidated.

In the context of skin, Wnt signaling controls development, stem cell cycling, hair follicle 

expansion, and terminal differentiation of the hair lineage (Fuchs et al., 2004; Zhou et al., 

1995). Although β-catenin promotes the recruitment of fibroblast to the wound site, 

uncontrolled Wnt signaling may lead to aggressive fibromatosis and resemble a hyperactive 

wound. In most types of chronic wounds, impairment of epithelialization arises from 

aberrant signaling that governs activity of keratinocytes in response to injury (Brem et al., 

2007; Brem et al., 2003; Pastar et al., 2014; Stojadinovic et al., 2005). A hyperproliferative 

epidermis is a hallmark of the nonhealing epidermal edge of chronic wounds (Nunan et al., 

2014; Stojadinovic et al., 2008) that was documented by activation of Wnt pathway and 

overexpression of c-myc (Eming et al., 2014; Stojadinovic et al., 2005). In spite of the 

activation of these growth signals, keratinocytes in chronic wounds are not epithelializing 

because of impairment in migration. In this report, we show a similar paradox. Although 

stimulation of the membranous fraction of GR results in activation of the same growth 
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signals (β-catenin nuclearization and subsequent induction of c-myc), it results in inhibition 

of wound closure. All these findings suggest that GCs, in part via mbGR, may play an 

important role in inhibition of epithelialization and pathophysiology of chronic wounds.

The identification of PKC as a downstream target of mbGR has multiple implications, 

especially if one takes into account the relative abundance of PKC signaling in tissues and 

systemic circulating presence of GC (Czerwinski et al., 2005; Helfrich et al., 2007; Mellor 

and Parker, 1998; Nishizuka, 1988; Selbie et al., 1993). The PKC family is involved in 

signals that control cellular survival, proliferation, and differentiation (Denning et al., 1998; 

Farese et al., 1992; Nishizuka, 1988; Nishizuka, 1995; Wertheimer et al., 2001), and 

therefore plays a major role in development of diseases (Braiman et al., 1999; Dlugosz and 

Yuspa, 1993; Gordge et al., 1996; Idris et al., 2001; Prevostel et al., 1995; Standaert et al., 

1997; Wallace et al., 2014). Our discovery of PKC activation by mbGR provides new 

insights into mechanisms by which systemic and local corticosteroids may contribute to 

PKC-mediated effects. Although we are currently investigating whether mbGR exhibits 

selective activation of PKC isoenzymes in both skin and other epithelia, further 

understanding of greater physiologic/pathologic implications of this mechanism that extend 

beyond skin will provide important insights into systemic GC action and its contribution to 

various diseases.

Deregulation of physiologic pathways underlies mechanisms of how psychosocial stressors 

are hypothesized to influence biology of chronic disease. Psychosocial stressors have been 

known to influence the hypothalamic-pituitary-adrenal axis, one of the major physiologic 

pathways controlling neuroendrocrine response. GCs are also commonly used as antiemetics 

in various forms of cancer therapy (Keith, 2008; Mitre-Aguilar et al., 2015; Rutz, 2002). 

Moreover, cancer patients frequently exhibit alterations in cortisol regulation (Sephton et al., 

2000). The discovery that a physiologically relevant dose of glucocorticoids in epithelial and 

mesenchymal cells stimulates a Wnt-like signaling cascade, which culminates in elevated 

expression of c-myc, a regulator of cell cycle, may have profound effects on how to 

potentially mitigate adverse effects of both endogenous and exogenous GCs in cancer 

patients and opens up many avenues to pharmaceutically target mbGR in conjunction with 

already established inducers of tumor cell death.

Selective targeting of mbGR, as we have shown above, could prove invaluable in not only 

understanding various disease development but also targeted steroid therapies and their side 

effects. This is particularly important in the context of the endogenous constitutive synthesis 

of cortisol by keratinocytes (Slominski et al., 2015; Slominski et al., 2013). Topical CC, by 

blocking mbGR activation triggered by endogenously synthesized cortisol, resulted in 

accelerated epithelialization and subsequent wound healing, suggesting that selective 

targeting of subsets of GR, such as mbGR, may have therapeutic effects or may alleviate 

multiple side effects of prolonged GC therapy. It is not surprising that CC shows less-

effective rescue of Dex-mediated wound healing inhibition when compared with Dex-BSA. 

Unlike Dex-BSA, which acts only on mbGR, Dex can stimulate multiple fractions of the 

receptor and simultaneously activates non-genomic and genomic GR effects.
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We identified a novel molecular mechanism by which mbGR exerts a rapid, nongenomic 

effect via PLC/PKC cascade, leading to activation of β-catenin and c-myc. A functional 

consequence of mbGR/PLC/PKC pathway is inhibition of keratinocyte migration and wound 

closure. This mechanism may have major effects on the understanding of how GC signaling 

regulates homeostasis and its role in development of skin diseases that possibly extends 

beyond to other tissues.

MATERIALS AND METHODS

Immunofluorescence

Immunofluorescence protocol was followed as previously described (Jozic et al., 2012). 

Cells were grown to 65% confluency. After washing with phosphate buffered saline, fixing 

in 5% formalin for 5 minutes, and being permeabilized with 0.1% Triton X-100 (Sigma, St. 

Louis, MO) for 10 minutes, cells were blocked with 1% BSA in phosphate buffered saline 

for 30 minutes and then incubated in β-catenin Ab in 1% BSA for 24 hours. This was 

followed by phosphate buffered saline washes and incubation with Alexa Flour Ab (Thermo 

Fisher Scientific, Waltham, MA) in 1% BSA for 1 hour. Cells were mounted and nuclei were 

visualized with propidium iodide.

Immunoblotting

Cell lysates for immunoblotting and cell fractionation were prepared from a subconfluent 

10-cm plate of HEKs following published protocol (Jozic et al., 2011; Jozic et al., 2012). 

Protein from each sample was resolved on 4 to 20% gradient Tris-Glycine gels (Bio-Rad 

Laboratories, Hercules, CA) and transferred onto polyvinylidene difluoride membranes. A 

list of antibodies used is provided in Supplementary Materials.

Quantitative PCR

RNA isolation and purification were performed as previously described (Ramirez et al., 

2015). A total of 1.0 μg of total RNA from HEK was reverse transcribed using a qScript 

cDNA kit and real-time PCR was performed in triplicate using the Bio-Rad CFX Connect 

thermal cycler and detection system (Bio-Rad Laboratories) and a PerfeCTa SYBR Green 

Supermix (QuantaBio, Beverly, MA). Relative expression was normalized for levels of 

HPRT1. The primer sequences are provided in Supplementary Materials. Statistical 

comparisons were performed using Student t test.

Wound migration assay

HEK were grown to confluence in a 96-well ImageLock plates (Essen Bioscience, Ann 

Arbor, MI), treated with 4cμg/ml mitomycin-C, and wounded by scratch with a 96-pin 

wound making tool (Wound-Maker, Essen Bioscience). Cells were incubated for 48 hours, 

and two representative images from each well of relative migration were taken every 2 hours 

after the initial wound using IncuCyte Zoom system (Essen Bioscience) and quantified using 

Cell Migration Analysis software module (Essen Bioscience).
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Ex vivo wound closure

Human skin specimens from reduction surgery were used to generate acute wounds as 

previously described (Ojeh et al., 2014; Stojadinovic and Tomic-Canic, 2013). Briefly, a 3-

mm biopsy punch was used to create acute wounds (n = 9 per treatment), which were treated 

at the time of wounding in presence, absence, or combination of 1 μM Dex, 0.1 μM Dex-

BSA, and 0.2 μM CC and treated daily for 4 days on air-liquid interface with DMEM, 1% 

antibiotic-antimycotic (Invitrogen) and 10% fetal bovine serum (Lonza, Basel, Switzerland) 

at 37°C, 5% CO2, and 95% relative humidity. Ex vivo acute wound specimens were frozen 

in optimal cutting temperature compound, and rate of healing was analyzed for 

epithelialization by histology assessment using a Nikon eclipse E400 microscope and NIS 

Elements software.

Statistics

Results from quantitative experiments are expressed as mean ± standard error of the mean. 

For pairwise comparisons we used the Student t test, and significance was accepted at a P < 

0.05. Where appropriate, two-way analysis of variance was also used via the Bonferroni 

multiple comparison procedure (GraphPad Prism; GraphPad Software, La Jolla, CA).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Abbreviations:

CC calphostin C

Dex dexamethasone

Dex-BSA BSA-conjugated dexamethasone

GC glucocorticoid

GR glucocorticoid receptor

GILZ glucocorticoid response element-induced leucine zipper

GSK-3β glycogen synthase kinase 3 beta

HEK human keratinocyte

mbGR membranous glucocorticoid receptor
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PKC protein kinase C

PLC phospholipase C
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Figure 1. GCs promote nuclearization of β-catenin through PKC.
Primary human keratinocytes control (a) or stimulated with either 30 mM LiCl (b), 1 μM 

Dex (c) or 100 nM Dex-BSA (f) for 24 hours in presence of 1 μM Ru486 (d and g) or 0.2 

μM CC (e and h) are shown. Presence of phospho-β-catenin (Y142) was visualized by 

immunofluorescence (green; left panels). Nuclei were visualized by staining with PI (red; 

middle panels) and relative nuclearization was assessed by merging the two images using 

ImageJ (with co-localization appearing yellow; right panels). CC, calphostin C; Dex, 

dexamethasone; Dex-BSA, BSA-conjugated dexamethasone; GC, glucocorticoid; LiCl, 

lithium chloride; PI, propidium iodide; PKC, protein kinase C. Scale bar = 50 μm.
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Figure 2. mbGR stimulation activates PLC/PKC signaling cascade and induces phosphorylation 
and subsequent inactivation of GSK-3β resulting in c-myc induction.
Cells were stimulated with vehicle (DMSO), 1 μM Dex, or 100 nM Dex-BSA (DB) for 30 

minutes upon treatment with GR antagonist Ru486 (1 μM), PLCγ inhibitor, genistein (50 

μM) or PKC inhibitors CC (200 nM) or Go6976 (4μM). Phosphorylation of GR (a), PLCγ 
(b), PKC (c), and GSK-3β (d) were assessed by western blot. (e) Cells were stimulated with 

vehicle (DMSO) or 100 nM Dex-BSA for 4 hours upon treatment with 200 nM CC, and 

induction of c-myc was assessed by western blotting. All quantifications were performed 

using ImageJ with error bars corresponding to standard deviation from n = 3. CC, calphostin 

C; Dex, dexamethasone; Dex-BSA, BSA-conjugated dexamethasone (DB); GR, 

glucocorticoid receptor; GSK-3β, glycogen synthase kinase 3 beta; mbGR, membranous 

glucocorticoid receptor; PKC, protein kinase C; PLC, phospholipase C. *P ≤ 0.05 (Student t 
test).
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Figure 3. mbGR mediated activation of PLCγ/PKC/GSK-3β is present not only in cells of 
epithelial origin (eye and lung), but also in cells of mesenchymal origin (foot fibroblasts).
Presence of mbGR mediated activation of PLCy/PKC/GSK-3B signaling cascade was 

assessed in (a) D407-human retinal epithelial cells and (b) primary human bronchial 

epithelial cells, as well as in cells of nonepithelial origin like (c) primary human foot 

fibroblasts. Cells were stimulated with vehicle (DMSO) or 100 nM Dex-BSA (DB) for 30 

minutes, and phosphorylation of PLCγ, GR, PKC pan, and GSK-3β were assessed by 

western blot, with Arpc2 serving as loading control. All quantifications were performed 

using ImageJ with error bars corresponding to standard deviation from n = 3. Dex-BSA, 

BSA-conjugated dexamethasone (DB); GR, glucocorticoid receptor; GSK-3β, glycogen 

synthase kinase 3 beta; mbGR, membranous glucocorticoid receptor; PKC, protein kinase C; 

PLC, phospholipase C. *P ≤ 0.05 (Student t test).
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Figure 4. Selective activation of the mbGR results in inhibition of keratinocyte migration.
Primary human keratinocytes were pretreated with 4 μg/ml mitomycin-C and stimulated 

with vehicle (DMSO), 25 ng/ml EGF (positive control), 1 μM Dex or 100 nM Dex-BSA 

(DB). Cells were wounded by a scratch and their migration was assessed at the time of the 

scratch (0 h) every 2 hours for 48 hours. Representative images at 0, 24, and 48 hours after 

the initial scratch were used to quantify migration by using Cell Migration Analysis software 

module (Essen Bioscience) comparing relative wound density, with light gray corresponding 

to initial wound scratch and dark gray corresponding to repopulation of the wound over 

time. Error bars correspond to standard deviation from n = 16. *P ≤ 0.05 (Student t test). 

Dex, dexamethasone; Dex-BSA, BSA-conjugated dexamethasone (DB); mbGR, 

membranous glucocorticoid receptor.
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Figure 5. Selective targeting of mbGR by Dex-BSA impedes epithelialization and can be 
ameliorated by inhibiting PKC in an ex vivo model of wound closure.
Normal human skin was wounded using a 3-mm biopsy punch and maintained at the air-

liquid interface in presence or absence of 1 μM Dex, 100 nM Dex-BSA (DB), or PKC 

inhibitor CC (0.2 μM). Wound healing was assessed at day 4 after wounding, a time when 

exponential epithelialization occurs. Wound closure was quantified by histology using 

ImageJ software. Gross photos show visual signs of closure and correspond to the histology 

assessments with black arrows pointing to epithelial tongue location at day 4. Error bars 

correspond to standard deviation from n = 4. *P ≤ 0.05 (Student t test). Scale bar 1 = mm. 

Dex, dexamethasone; Dex-BSA, BSA-conjugated dexamethasone (DB); mbGR, 

membranous glucocorticoid receptor; PKC, protein kinase C.
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Figure 6. Proposed mechanism by which GC-mediated activation of mbGR contributes to 
inhibition of keratinocyte migration and wound healing.
A diagram summarizing findings from this study is shown. Upon binding to the 

membranous fraction of GR, GCs induce a phosphorylation and activation of GR, followed 

by activation PLCγ (via PTK), PKC, and subsequent phospho-inactivation of GSK-3β. This 

in turn liberates β-catenin from the inactivation complex thereby allowing it to translocate 

into the nucleus and induce c-myc expression, thus inducing cell proliferation while 

delaying keratinocyte migration and subsequent epithelialization. GC, glucocorticoid; GR, 

glucocorticoid receptor; GSK-3β, glycogen synthase kinase 3 beta; mbGR, membranous 

glucocorticoid receptor; P, phosphorylation; PKC, protein kinase C; PLC, phospholipase C; 

PTK, protein tyrosine kinase; U, ubiquitination.
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