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Abstract
Soil organic matter (SOM) is abundant in the environment and plays an important

role in several biogeochemical processes, including microbial activity, soil aggrega-

tion, plant growth and carbon storage. One of its key functions is the retention and

release of various chemical compounds, primarily governed by the sorption pro-

cess, which strongly affects the environmental fate of nutrients and pollutants.

Sorption largely depends on the composition of SOM, as well as its structure,

dynamics and the thermodynamic conditions. Although several approaches are

available, experimental characterization of sorption mechanisms is not easy. Com-

putational models for predicting sorption coefficients often require a wealth of

experimental data for training and are only applicable to compounds and conditions

related to the training dataset. Here, we use molecular dynamics (MD) simulations

to study the sorption of a range of small organic compounds. As a model SOM sys-

tem we use the standard Leonardite humic acid (LHA) sample, which physico-

chemical properties have recently been characterized computationally in detail.

This model allowed us to estimate sorption propensities of the systems at two dif-

ferent hydration levels (water activities close to 0 and 1), showing a remarkable

correlation with experimental data. Importantly, this molecular modelling approach

based on perturbation free-energy calculations is rigorously derived from statistical

thermodynamics and requires no experimental sorption data for training. It is there-

fore in principle applicable to any SOM model or thermodynamic condition. More-

over, the power of MD simulations to provide high-resolution insight into atomistic

and molecular interactions was employed to explore how sorbate molecules associ-

ate with the LHA matrix and which contacts they form. The heteroatoms of both

sorbate and sorbent play an important role and water molecules are identified as

further key players in facilitating the sorption process.
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Highlights

• Modelling of the sorption processes in soil organic matter at atomistic level.
• Rigorous, physics-based approach applicable to a range of SOM systems and

conditions.
• Remarkable level of matching with experimental data with additional insight

into the molecular mechanism.
• Interactions between the sorbate and local environment strongly affects the sorp-

tion process.
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1 | INTRODUCTION

Soil organic matter (SOM) is a key part of the composition
of soil, playing an essential role in a range of biogeochemi-
cal and environmental processes (Brady & Weil, 2008;
Hartemink, Gerzabek, Lal, & McSweeney, 2014; Murphy,
2014; Stevenson, 1994). The composition of SOM varies
from region to region and is dependent heavily on the utili-
zation of the soil as well as on the vegetation cover, climate
and age of the soil layer (Bayer, 2002; Campbell et al.,
2000; Collins, Rasmussen, & Douglas, 1992; Ding, Novak,
Amarisiriwardena, Hunt, & Xing, 2002; Havlin, Kissel,
Maddux, Claassen, & Long, 1990; Nardi, Morari, Berti,
Tosoni, & Giardini, 2004; Olk, 2006; Tatzber et al., 2008,
2009). The sorption and desorption of compounds such as
nutrients and pollutants are some of the most important func-
tions of SOM, which influences their transport and bioavail-
ability significantly.

Different experimental approaches have been established
to determine the strength and mechanism of sorption in
SOM samples; however, this is often tedious and time con-
suming (Borisover & Graber, 2004; Bronner & Goss, 2011;
Canan Cabbar, 1999; Dorris & Gray, 1980; Graber,
Tsechansky, & Borisover, 2007; Niederer, Goss, &
Schwarzenbach, 2006b). Models of experimentally deter-
mined partition coefficients between SOM and air have been
combined with water/air partition coefficients to obtain
SOM/water partition coefficients. Efforts to predict the parti-
tion coefficients from alternative coefficients (e.g., the
octanol/water partition coefficient) or sorbate-specific
descriptors have also been described (Niederer, Goss, &
Schwarzenbach, 2006a; Nguyen, Goss, & Ball, 2005;
Sabljic, 1984). However, these approaches require a wealth
of training data for calibration and are generally only appli-
cable to chemically similar compounds.

The sorption process might be affected by a number of
factors in addition to chemical composition of SOM, which

in turn will strongly affect the environmental fate of the sor-
bates. For example, the structure and dynamics of SOM
itself largely depend on its chemical composition, whereas
varying water content causes conformational rearrangements
as well as changes in flexibility and mobility of SOM mole-
cules (Schaumann & Bertmer, 2008). Soil organic matter-
associated water also plays a significant role in enhancing or
weakening the sorptive potential. Interestingly, sorption of
small compounds influences SOM–water interactions as
well, thus affecting its hydration state (Borisover, 2013;
Borisover, Sela, & Chefetz, 2011.

To take these additional factors into account computa-
tionally, a structural modelling of SOM systems has to be
considered. Modelled systems may be described at different
levels of detail. For instance, quantum mechanical
(QM) calculations explicitly include electron structure and
provide the highest level of detail. However, QM methods
are computationally rather expensive and, therefore, limited
in the number of atoms and tractable timescales. On the
other hand, classical modelling methods, including molecu-
lar dynamics (MD) simulations, approximate the interactions
with a force field (i.e., a set of potential energy terms). Asso-
ciated empirical parameters are typically derived by fitting
atomic or molecular properties of small molecules against
calculated quantum-mechanical or experimentally measured
data. So far, different approaches have been employed to
model SOM systems (Tunega, Gerzabek, Haberhauer, Lis-
chka, & Aquino, 2016), including several proposed model
compounds (Albers, Banta, Jacobsen, & Hansen, 2008;
Davies, Ghabbour, Khairy, & Ibrahim, 1997; Diallo et al.,
2003; Hayes, 1989; Sein, Varnum, & Jansen, 1999), with a
single structure representing the ensemble. Both quantum-
mechanical and classical methods (Aquino et al., 2009,
2011; Kubicki, 2016; Schulten & Schnitzer, 1993, 1995,
1997; Sein, Varnum, & Jansen, 1999) have been used to
study proposed models, revealing possible three-dimensional
structures. Based on such techniques, modelling of sorption
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processes in model SOM-molecules has been applied
(Ahmed, et al. 2015; Gros, Ahmed, Kühn, & Leinweber,
2017; Kubicki & Apitz, 1999; Niederer & Goss, 2007;
Schulten, Thomsen, & Carlsen, 2001; Wu et al. 2015). How-
ever, such models have mostly described SOM as a single
molecule, often in a vacuum environment (possibly embed-
ded in a polarizable continuum) or with few water molecules
explicitly attached, which arguably falls short in capturing
several relevant features of realistic, hydrated, multi-
molecular structures of SOM systems.

Notably, in recent years we have developed computa-
tional tools based on condensed-phase models and classical
molecular dynamics simulations that are in principle able to
tackle the problem of describing SOM systems as a com-
plex supramolecular mixture of various molecular species
and to explore a range of conditions in which sorption
occurs (Petrov et al., 2017; Sündermann et al., 2015). Fur-
thermore, MD simulations allow us to calculate solvation
free energy that involves decoupling a compound of interest
from its surrounding environment. In such an approach, the
interactions between a compound and its surrounding are
scaled down to zero in a stepwise manner. The change in
the free energy upon such a perturbation process, coupled to
a parameter λ, is readily computed using thermodynamic
integration or non-equilibrium free-energy calculations
(Jarzynski, 1997; Kirkwood, 1935). The free energy of
sorption from water or vacuum is directly related to the

partition coefficients KSOM/water and KSOM/vacuum, respec-
tively, and can be expressed as the difference between the
solvation free energy in water or vacuum and the solvation
free energy in SOM, according to a thermodynamic cycle
(Figure 1). Importantly, such a perturbation approach based
on MD simulations presents a rigorous, physics-based
method able to predict the changes of the free energy in
principle at the level of force field accuracy (Bruckner &
Boresch, 2011; de Ruiter et al., 2013; Oostenbrink & van
Gunsteren, 2006; Shirts, Mobley, & Chodera, 2007). More-
over, this approach provides a microscopic-level insight
into atomistic interactions and motions of studied processes
that helps us deepen our understanding of underlying
molecular mechanisms.

Here, we employ MD simulations to study sorption
processes in standard Leonardite humic acid (LHA), a
sample readily available from the International Humic
Substances Society. It is one of the richest known sources
of humic acids and its isolation, preparation and chemical
composition have been documented in detail (Thorn et al.,
1989) and a wealth of experimental sorption data for this
material are available (Niederer et al., 2006b). We have
recently generated several condensed phase models of
LHA and characterized their structure, dynamics and prop-
erties in detail, giving a good agreement with experimental
data (Petrov et al., 2017). In addition, we estimate the
sorption propensity of a range of small organic molecules

FIGURE 1 Sorption free energy of phenol in the Leonardite humic acid (LHA) model expressed as the difference in the solvation free
energies in the LHA and vacuum (ΔGsorb = ΔGvac - ΔGLHA) according to the thermodynamic cycle, as the sum of the free energy changes along the
cycle is zero. Representative model of the LHA (top) with embedded phenol in its completely interacting form (λ = 0, left) and non-interacting,
dummy form (λ = 0, right). Horizontal arrows represent perturbation processes, for which the free energy changes are calculated. Water is shown in
blue transparent spheres, LHA molecules in brown and line representation, and Ca ions as green spheres. Phenol is shown in stick representation,
with the transparency depicting the level of perturbation [Color figure can be viewed at wileyonlinelibrary.com]
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and compare the results with available experimental data.
In addition, we study interactions between sorbate mole-
cules and their surroundings, their localization in the sor-
bent matrix, and ask how this relates to their sorption
propensities.

2 | METHODS

2.1 | MD simulations

Three independent equilibrated systems of the standard
LHA at low water activity close to 0 (dry system with 0.2 M
fraction of water) and at water activity equal to 1 (hydrated
system with 0.3 M fraction of water) were taken from Petrov
et al. (2017). Briefly, the models were created using the
Vienna Soil-Organic-Matter Modeler (Sündermann et al.,
2015) by generating a diverse set of relatively small mole-
cules (40 for each of the three independent systems; i.e., 120
in total), which together form a condensed-phase model of
the LHA with corresponding chemical composition. To
ensure overall neutrality, an appropriate amount of counter-
ions was added to the systems, where Ca2+ ions were used
for their significant role in the structure and stability of
SOM (Kalinichev et al., 2011; Kloster et al., 2013). The
hydration level of the LHA systems with a given water con-
tent was determined by estimating the water activity (aw)
from the free-energy difference of transferring a water mole-
cule from bulk water to the system of interest
(ΔGwater ! LHA) (Bakari�c et al., 2018; Petrov et al., 2017),

where the water activity was calculated as aw = e
ΔGwater!LHA

RT ,
with R representing the gas constant and T the absolute
temperature.

All molecular dynamics simulations were performed
using the GROMOS11 molecular simulation package
(Schmid et al., 2012) with 1 fs integration step. The united-
atom GROMOS force field, parameter set to 53A6
(Oostenbrink et al., 2004), was used to describe the LHA
models as well as sorbate molecules (molecular topology
files are provided as a part of SI). Water molecules were
described by the SPC model (Berendsen et al., 1981). The
temperature and the pressure were kept constant at 300 K
and 1 bar using a weak coupling with a relaxation time of
0.1 ps and 1.5 ps, respectively (Berendsen et al., 1984).
Pressure scaling was applied anisotropically, with an esti-
mated isothermal compressibility of 3.44 × 10−4

(kJ mol−1 nm−3)−1. A molecular pair-list was generated
using a triple-range cut-off (Tironi et al., 1995). Non-
bonded interactions up to a short range of 0.8 nm were cal-
culated at every time step from a pair-list that was updated
every five steps. Interactions up to a long-range cut-off of
1.4 nm were calculated at pair-list updates and kept con-
stant in between. A reaction-field contribution was added

to the electrostatic interactions and forces to account for a
homogeneous medium with a dielectric permittivity of
61 outside the cut-off sphere. The SHAKE algorithm was
used to constrain the bond lengths to their optimal values
with a relative geometric accuracy of 10−4 (Ryckaert
et al., 1977).

2.2 | Free energy calculations

Non-equilibrium free energy calculations were carried out
to compute the sorption free energies for a set of 18 small
organic molecules (Table 1). The simulation conditions
were the same as described above. An immersed sorbate
molecule was decoupled from its surrounding by using a
coupling parameter λ, such that at λ = 0, the normal Hamil-
tonian (H) is obtained, whereas at λ = 1, the interactions
between the sorbate and its surroundings have been
switched off. A soft-core potential was used for perturba-
tions of non-bonded interactions (Beutler et al., 1994).
To estimate the free energy change of the decoupling
process, non-equilibrium simulation was used together
with the Crooks Gaussian intersection method (Goette &
Grubmüller, 2009) and the Jarzynski equality (Jarzynski,
1997), where the non-equilibrium work distribution was
obtained from:

W =
ð1
0

∂H λð Þ
∂λ

dλ: ð1Þ

In particular, both removing (λ = 0 ! λ = 1) and growing
(λ = 1 ! λ = 0) a sorbate molecule within 1.6 ns simulation
was repeated 25 times for three independent models for a
total of 150 perturbation simulations and 240 ns per sorbate.
Equilibrated systems were used as initial configurations with
a sorbate molecule placed and oriented randomly within the
simulation box. To obtain statistically robust results, we
have resampled the non-equilibrium work distributions
1,000 times. Reported free-energy differences and their error
estimates were calculated using the Crooks Gaussian inter-
section method as the averages and the standard deviations
over the resampled distributions of free energies. The free
energy of sorption was calculated as:

ΔGsorb =ΔGvac−ΔGLHA, ð2Þ

where ΔGLHA is the free energy of decoupling of the sorbate
in the standard Leonardite HA and ΔGvac is the free energy
of decoupling in a vacuum. Importantly, this property
directly relates to the logarithm of the experimentally mea-
sured humic acid/air partition coefficients KiHA,air (up to an
elusive constant c) (Niederer et al., 2006b), as
ΔGexp

sorb = −RT lnKiHA,air + c. Furthermore, hydration free
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energies (i.e., the free energy of transferring a compound
from vacuum to water) of the studied set of compounds,
together with two additional groups of compounds chemi-
cally similar to dimethyl succinate and 1-undecene
(Table 1), were calculated using the extended thermody-
namic integration (de Ruiter & Oostenbrink, 2016)
approach, by carrying out five independent 200-ps-long
equilibrium simulations at 21 equally distant λ points. The
free energy of this process (ΔGwater) is computed by integrat-
ing the ensemble average of ∂H/∂λ over λ, which was
numerically calculated using trapezoidal integration. The
hydration free energy (ΔGhyd) is then obtained as:

ΔGhyd =ΔGvac−ΔGwater: ð3Þ

2.3 | Trajectory analysis

Coordinates of the simulations were stored to disk every
5 ps. Simulated trajectories were analyzed primarily using
gromos++ analysis tools (Eichenberger et al., 2011). Poten-
tial energy, number of hydrogen bonds, solvent-accessible
surface area and the radial distribution functions were
obtained directly from simulated trajectories. Preferential
solvation of a species A around a species B was calcu-
lated as:

TABLE 1 Set of diverse small organic compounds spanning a range of experimentally determined sorption coefficients, used for modelling in
the context of sorption in Leonardite humic acid (LHA). Calculated sorption free energies in the dry and hydrated LHA given with the error estimate
from bootstrapping in kJ Mol−1. Relative sorption free energies were calculated as the difference between values obtained for the hydrated and dry
systems and error estimates using error propagation. Experimental sorption data for the dry and hydrated LHA taken from Niederer et al. (2006b),
with the free energy of sorption scaled such that all values in the experimental set are less and equal to 0 kJ Mol−1

# Compound ΔGcalc
sorb dryð Þ ΔGcalc

sorb hydð Þ ΔΔGcalc
sorb ΔΔGexp

sorb dryð Þ ΔΔGexp
sorb hydð Þ

1 Propan-2-ol −36.8 ± 0.5 −15.2 ± 1.1 21.6 ± 1.2 −5.2 −9.0

2 3-methylbutan-1-ol −45.0 ± 1.8 −18.1 ± 1.1 26.9 ± 2.1 −11.6 −11.3

3 2-methylpropan-1-ol −41.6 ± 0.8 −16.7 ± 1.9 24.9 ± 2.1 −7.6 −6.5

4 Propan-1-ol −41.4 ± 1.1 −23.5 ± 1.1 17.9 ± 1.6 −8.3 −9.1

5 Pentan-1-ol −46.5 ± 1.1 −20.3 ± 2.4 26.2 ± 2.6 −12.4 −12.7

6 Heptan-1-ol −50.4 ± 1.4 −22.2 ± 1.3 28.2 ± 1.9 −17.8 −16.8

7 Phenol −45.8 ± 3.4 −30.3 ± 1.1 15.5 ± 3.6 −19.8 −22.0

8 Cyclopentanol −40.2 ± 1.7 −16.9 ± 1.4 23.3 ± 2.2 −11.3 −14.1

9 p-xylene −19.6 ± 2.4 3.6 ± 1.4 23.2 ± 2.8 −5.6 −3.4

10 Benzaldehyde −38.5 ± 1.2 −21.2 ± 0.8 17.3 ± 1.4 −12.0 −14.8

11 Acetophenone −39.2 ± 2.4 −17.1 ± 1.5 22.1 ± 2.8 −17.9 −17.7

12 2-propanone −24.2 ± 1.2 −9.9 ± 1.0 14.3 ± 1.6 −5.2 −4.5

13 4-methylpentan-2-one −32.2 ± 0.8 −5.5 ± 1.2 26.7 ± 1.4 −7.8 −5.5

14 2-hexanone −34.8 ± 1.1 −8.4 ± 1.0 26.4 ± 1.5 −9.9 −7.3

15 2,4-pentanedione −41.1 ± 2.0 −20.0 ± 1.2 21.1 ± 2.3 −10.2 −11.6

16 Isopropylether −29.9 ± 1.6 −0.1 ± 1.2 29.8 ± 2.0 −1.8 −1.8

17 Dimethyl succinate −63.6 ± 2.0 −39.9 ± 1.4 23.7 ± 2.4 −19.3 −19.4

18 1-undecene −35.1 ± 2.2 5.9 ± 1.7 41.0 ± 2.8 −11.6 −10.6

Additional 1

1 Ethylbutanoate

2 Ethylpropanoate

3 Ethylethanoate

4 Methylpropanoate

5 Methylacetate

Additional 2

1 1-butene

2 1-pentene

3 1-hexene
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δBA = xB
GAB−ΣxαGAα

Vcorr +ΣxαGAα
, ð4Þ

where α, A and B identify different species, such as sorbate,
LHA, water molecules and calcium atoms. Vcorr stands for a
correlation volume (sphere with a radius of 1.5 nm) and GAB

for Kirkwood-Buff integrals that were calculated from the
radial distribution functions with an upper boundary of
1.5 nm. xA is the molar fraction of species A in the system,
calculated as the normalized number of heavy atoms. More-
over, Kirkwood-Buff integrals were also evaluated with
shorter upper boundaries of 0.3, 0.4 and 0.5 nm to character-
ize the local environment surrounding sorbate molecules.
Note that non-normalized Kirkwood-Buff integrals (multi-
plied with xA and xB) are marked with a star.

A number of properties were calculated by monitoring
interactions between a sorbate and its surroundings
(Table S1). In particular, potential energy and its two com-
ponents (electrostatic and van der Waals) and the number of
hydrogen bonds were monitored between a sorbate and
LHA molecules, water and calcium ions, and between LHA
molecules and water, respectively. The occurrence of a
hydrogen bond was determined using a geometric criterion
considering the acceptor-hydrogen distance (at most
0.25 nm) and the donor-acceptor angle (at least 135�). The
solvent-accessible surface area (SASA) (i.e., the surface of a
molecule accessible to the solvent) of the sorbate was calcu-
lated together with the carbon and heteroatom fractions.
Kirkwood-Buff integrals, which quantify the amount of one
type of molecule or particle surrounded by another type,
were calculated between a sorbate and constituents of the
Leonardite HA models and their subparts, including carbon
and heteroatoms of the sorbate on the one hand, and carbon
and heteroatoms of LHA molecules, water and calcium on
the other.

3 | RESULTS

3.1 | Sorption of small organic molecules in
the dry and hydrated Leonardite HA

We have used molecular dynamics simulations to study
sorption of a set of small organic compounds (Table 1),
which was compiled from a set of experimentally deter-
mined sorption coefficients (Niederer et al., 2006b), such
that the range of coefficients is covered uniformly and chem-
ical heterogeneity is achieved among the compounds. The
interactions of the selected compounds with the LHA
models were defined by assigning force field parameters
within the framework of the united-atom GROMOS force
field (Oostenbrink et al., 2004; Petrov, Margreitter, Grandits,
Oostenbrink, & Zagrovic, 2013; Soares et al., 2004). As an

appropriate description of interactions between components
of simulated systems is essential for utilizing molecular
dynamics, we validated our parameterization by calculating
hydration free energies and comparing them against experi-
mental data. We chose this validation approach because the
GROMOS force field has been parameterized against experi-
mental hydrophobic and hydrophilic solvation data
(Oostenbrink et al., 2004; Petrov et al., 2013; Soares et al.
2004). Additionally, this ensures the proper distribution of
functional groups between hydrophilic and hydrophobic
phases, which is expected to be crucial for accessing sorp-
tion properties of small molecules in SOM.

To the best of our knowledge, experimental hydration
free energies are not available for dimethyl succinate and
1-undecene, for which reason additional, chemically similar
compounds with available experimental data were added to
the set (Table 1). The initial assignment of parameters to iso-
propyl ether, dimethyl succinate and 1-undecene led to dis-
crepancies between calculated and experimental hydration
free energies. To improve the matching, these three com-
pounds were reparametrized (see molecular topology files
provided as a part of Supporting Information for details),
which yielded an excellent agreement with experimental
data across the entire set, including the remainder of 15 com-
pounds (Figure 2 and Figure S1), with a correlation coeffi-
cient of 0.94 and the regression line closely matching the
identity line. Note that the reparameterization of dimethyl
succinate, bearing two ester groups, resulted in a much
stronger effect (change in hydration free energy of about

FIGURE 2 Parameterization validation through comparison
between calculated and experimental hydration free energy. The
correlation is captured with the black regression line and Pearson
coefficient (r = 0.94), whereas the identity line is shown in green.
Compounds (Table 1) are separated into groups based on their chemical
composition [Color figure can be viewed at wileyonlinelibrary.com]
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8 kJ mol−1) than for the corresponding group of additional
compounds bearing only one.

The set of compounds was subjected to calculations of
sorption free energies. In particular, we performed 150 inde-
pendent non-equilibrium perturbation simulations of grow-
ing and removing a sorbate in the dry and hydrated LHA
models, corresponding to the perturbation process of
-ΔGLHA and ΔGLHA depicted in Figure 1, respectively. To
test for potential convergence issues, we used bootstrapping
to resample distributions of obtained non-equilibrium work
and calculated the sorption free energy by applying the
Crooks Gaussian intersection (CI) method and Jarzynski
equality a thousand times using different amounts of data.
This analysis shows that the Crooks Gaussian inter-
section method converges faster and provides smaller uncer-
tainty (bootstrapping estimates) than the Jarzynski approach
for acetone sorbed in the hydrated LHA (Figure 3). Similar
convergence behaviour was observed for other sorbates and
the dry LHA as well (data not shown), and therefore we
applied the CI approach to obtain the sorption free energies.

The calculated sorption free energies in both dry and
hydrated Leonardite HA models display a substantial level
of matching to experimental data with correlation coeffi-
cients of 0.75 and 0.76, and slightly steeper regression com-
pared to the identity lines (Figure 4). Note that due to the
elusive constant c, the experimentally determined sorption
free energies are only determined up to a constant shift and
therefore denoted as relative values, ΔΔGexp

sorb. Even with
some level of disagreement, these correlations are remark-
able given that the calculation approach applied is

exclusively based on statistical-mechanics principles and
does not require prior calibration of the model against exper-
imental sorption data. Several potential sources of observed
discrepancies can be identified, including uncertainty in
experimental measurements and calculations (estimated
averages of 1.6 and 1.3 kJmol−1 for the dry and hydrated
LHA) or differences in modelled and experimental condi-
tions to name a few (see Discussion for more detail). Inter-
estingly, sorption free energies calculated in the dry
Leonardite HA show a similar level of matching to experi-
mental data measured in hydrated LHA samples (Figure S2)
with a correlation coefficient of 0.77, whereas the opposite
comparison yields a weaker correlation (r = 0.67). Further-
more, calculated free energies of hydration are almost identi-
cal to the sorption in hydrated LHA, to a much greater
extent than experimentally observed (Figure S3). However,
this water-like behaviour in terms of sorption strength might
also arise as a bias of non-equilibrium simulations, where
the sorbate localizes preferentially to water patches due to
low diffusion coefficients of LHA molecules. This is further
corroborated by the analysis of preferential solvation, show-
ing that sorbate molecules indeed preferentially interact with
water in hydrated LHA and with LHA molecules in the dry
systems (Figure 5). On the other hand, such preferential sol-
vation could also just be a result of a higher water content
available for interactions in the hydrated system.

Importantly, this latter analysis showcases the power of
the MD approach in providing high resolution insight into
molecular interactions. To benefit from it further, we investi-
gated how sorbates associate within the sorbent matrix and

FIGURE 3 Free-energy difference associated with the solvation of acetone in the hydrated Leonardite humic acid (LHA) models. (a) The
distribution of non-equilibrium simulations with the Gaussian fits are shown together with vertical lines representing the free energy difference
calculated from full data using Crooks Gaussian intersection (CI) (black line) and Jarzynski equality (purple and green line used for growing and
removing simulations, respectively). (b) Averages and standard deviations from the bootstrapping samples (1000) as error bars are shown in grey,
whereas black, purple and green horizontal lines represent the free energy difference from full data [Color figure can be viewed at
wileyonlinelibrary.com]
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what type of interactions they form. In particular, we moni-
tored a number of properties directly associated with such
interactions and immediate contacts between the sorbate and
its environment (Table S1), and how they relate to the

sorption free energy. For example, we observed a strong
anticorrelation between the sorption free energy and the
number of hydrogen bonds the sorbate forms with water
molecules (Figure 6a). Similarly, the number of contacts,

FIGURE 4 Sorption free energy
in the dry and hydrated Leonardite
humic acid (LHA); comparison with
experimental data. The correlation is
captured with the black regression line
and Pearson coefficient, whereas the
best fitting line with slope 1 is shown
in green. Compounds (Table 1) are
separated into groups based on their
chemical composition [Color figure
can be viewed at
wileyonlinelibrary.com]

FIGURE 5 Preferential
solvation of the sorbate by Leonardite
humic acid (LHA) molecules (grey),
water (blue) and calcium ions (green)
in dry and hydrated LHA. This
analysis shows that the sorbate is
preferentially surrounded by the LHA
molecules in the dry and by water
molecules in the hydrated LHA,
regardless of the sorbate molecule.
Symbols at the top of the upper panel
indicate the type of sorbate [Color
figure can be viewed at
wileyonlinelibrary.com]
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derived from non-normalized Kirkwood-Buff integrals,
between heteroatoms of the sorbate with water and hetero-
atoms of the LHA molecules (Figure 6b,c) are strongly anti-
correlated, whereas the electrostatic potential energy
between the sorbate and water, and the percentage of carbon
in the solvent-accessible surface area of the sorbate, are
strongly correlated (Figure 6d,e) with the sorption free
energy in the hydrated Leonardite HA. Similar comparisons
of other explored properties (Table S1 and Figure 7) with
the calculated sorption free energies revealed a high level of
correlation or anticorrelation for a number of them, giving
insight into the driving forces for small-molecule sorption in

LHA. The majority of these properties involve heteroatoms
of the sorbate and LHA molecules, and water molecules, dis-
playing how these types of contacts and interactions can
largely affect the sorption propensity (Table S1 and Figures 6
and 7). Moreover, this highlights the importance of the local
environment and the way it interacts with the sorbate. On
the other hand, not surprisingly, many properties show no
correlation with the sorption free energy (Figures 6f–h and
7). Importantly, a similar behaviour and relationship
between sorption free energies and the evaluated properties
was observed for the dry Leonardite as well (Table S1 and
Figure 7 and Figure S4).

FIGURE 6 Selected microscopic properties calculated from observed interactions in simulated trajectories between sorbate compounds and
Leonardite humic acid (LHA) and their relation to sorption free energy in the hydrated LHA. The correlation between a given property and the
sorption free energy for the 18 studied compounds (Table 1) is captured with the black regression line and Pearson coefficient. Examples of
properties showing a strong anticorrelation (a–c), a strong correlation (d) and (e), and no correlation (f–h)
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4 | DISCUSSION

This study presents the first-ever attempt to study sorption
properties of a range of small organic molecules in standard
Leonardite HA as a model SOM system, using perturbation
free-energy calculations in combination with MD simula-
tions. In contrast to several approaches applied so far
(Kubicki & Apitz, 1999; Nguyen et al., 2005; Niederer &
Goss, 2007; Niederer, Goss, & Schwarzenbach, 2006a;
Sabljic, 1984; Schulten, Thomsen, & Carlsen, 2001; Wu,
Zhu, Ji, & Chen, 2015), this technique is solely based on sta-
tistical mechanical principles and therefore does not require
calibration using experimental sorption data and is in princi-
ple able to model any type of SOM system at given
thermodynamic conditions. In addition, it provides a high-
resolution insight into the molecular interactions needed to
understand relevant mechanisms of the underlying
processes.

Before turning our focus to sorption modelling, a quick
discussion of the interaction parameters (i.e. the force field)
is needed. Intrinsically, the interactions that govern atomic
and molecular motions are of a quantum nature, and by
using a force field they are approximated with classical
potential energy terms. These approximations notwithstand-
ing, force field methods have been successfully employed
for decades to study various molecular systems (Karplus &
McCammon, 2002; Orsi, 2014; van Gunsteren et al., 2006).
Here, in order to be consistent with the Leonardite model
created by the Vienna Soil-Organic-Matter Modeler, the set
of studied small organic molecules was parametrized within
the framework of the united-atom GROMOS force field.
Because validity of MD simulations depends strongly on the

quality of force field parameters, initial parameterization of
the set of sorbate molecules (i.e., assignment of force field
parameters) was subjected to validation. To this end, we cal-
culated hydration free energies and compared them to exper-
imental data, where only three compounds (from the set of
18, Table 1, Figure 2 and Figure S1) were reparametrized to
improve the match with the experimental data and obtain a
satisfying set of parameters. Validation against hydration
free energy was chosen because the GROMOS force field
has been parameterized against experimental hydrophobic
and hydrophilic solvation data (Oostenbrink et al., 2004;
Petrov et al., 2013; Soares et al., 2004). These thermody-
namic data are arguably one of the most important properties
for ensuring the proper distribution of functional groups
between hydrophilic and hydrophobic phases, which is
expected to be crucial for accessing sorption properties of
small molecules in soil organic matter. Note that very
recently an updated version of the automated topology
builder became available, leading to excellent reproduction
of hydration free energies for hundreds of compounds
(Stroet et al., 2018), potentially making manual
reparameterization as described here obsolete.

As the diffusion of molecular species in SOM samples is
significantly reduced compared to the diffusion in water
(Petrov et al., 2017), the resulting free energy is expected to
be strongly dependent on the initial placement of the solute.
Applying equilibrium methods such as thermodynamic inte-
gration would potentially lead to biased free energy estima-
tions, as sampling all relevant configurations would require
prohibitively extensive simulations. To enhance the sam-
pling, we decided to perform non-equilibrium free-energy
calculations, which are repeated many times starting from

FIGURE 7 Correlations between the microscopic properties associated with interactions of a sorbate with its immediate surroundings and
sorption free energy for the dry and hydrated Leonardite humic acid (LHA). A number of explored properties (Table S1), primarily related to
interactions and contacts involving heteroatoms of either sorbate or LHA molecules and water molecules, exhibit a strong correlation or anticorrelation.
Correlation coefficients are shown as bars coloured according to correlation strength [Color figure can be viewed at wileyonlinelibrary.com]
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different initial placements, while averaging the calculated
non-equilibrium values appropriately (Goette & Grubmüller,
2009; Jarzynski, 1997). Bootstrapping analysis has shown
that robust estimates of sorption free energy can be obtained
from 75 simulations (1.6 ns each, 25 simulations for each
independent LHA model) in which the sorbate is grown into
the system in a random position, followed by 75 simulations
(1.6 ns each, 25 simulations for each independent LHA
model), in which it is removed from the system (Figure 3).

Calculated free energies on a set of 18 diverse small mol-
ecules (Table 1) show a very good correlation with experi-
mental data for both dry and hydrated Leonardite HA
(Figure 4). Various sources of the remaining disagreements
can be identified. Primarily, both experimental measure-
ments and computational calculations come with their uncer-
tainties, with the latter estimated at 1.6 and 1.3 kJ mol−1 on
average for the dry and hydrated LHA systems. Moreover,
although the overall chemical composition of the model
LHA is in agreement with the real sample, the actual molec-
ular composition probably differs between the two. Note,
however, that the same model was used to successfully
describe a number of physicochemical properties of
Leonardite HA (Petrov et al., 2017). Furthermore, the sorp-
tion free energy calculated in the Leonardite system with
lower water content (dry LHA) shows equally good level of
matching as the hydrated LHA with experiments performed
on the hydrated samples (Figure S2). This, together with the
excellent agreement between hydration and sorption free
energies in the hydrated LHA (Figure S3), suggests that the
water content of the hydrated Leonardite HA model might
be too high. However, another possible explanation for the
observed matching between hydration and sorption free
energies would be that, given the low diffusion coefficient
of LHA molecules, sorbates colocalize with water patches,
which is in agreement with the preferential solvation analy-
sis (Figure 5). If this is the case, the non-equilibrium simula-
tions of removing a sorbate would potentially be biased, as
they predominantly start from a configuration that is not
equilibrated. Importantly, taking these potential pitfalls into
account, the observed correlation between calculated and
experimental sorption free energies is strikingly high. What
is more, even though the applied approach suffers from the
potential limitations discussed above, it is in principle appli-
cable to any SOM system of interest. Taking this line of
argument one step further, modelling sorption processes in
even more complex systems can be attempted
(e.g., including interfaces between SOM and mineral sur-
faces). It is worth noting that the Vienna Soil-Organic-
Matter Modeler (Sündermann et al., 2015), as a versatile
tool, can be used to create such models and that mineral sur-
faces and sorption processes have been simulated using

classical force fields already (Samaraweera et al., 2014;
Solc, Gerzabek, Lischka, & Tunega, 2011; Teppen
et al., 1998).

In addition, using the power of MD simulations to pro-
vide microscopic level insight into molecular interactions
relevant for the studied processes, we were able to explore
how the sorbate molecules associate to nano-compartments
of the Leonardite HA models (Table S1, Figures 6 and 7).
This analysis highlighted the significance of distinct interac-
tions of the sorbate with its local environment in the sorption
process, in particular the interactions formed between its het-
eroatoms with water molecules (both polar interactions rep-
resented with electrostatic energy and hydrogen bonding)
and with heteroatoms of the sorbent. Also, it supports the
above-discussed importance of appropriate localization in
non-equilibrium simulations, as it shows that the surround-
ing environment strongly affects the sorption propensity. It
is tempting to speculate that such information could be uti-
lized to develop an accurate semiempirical prediction model
for sorption free energies, where the indicated properties
could be used as descriptors.

5 | CONCLUSIONS

This study provides compelling evidence that molecular
dynamics in combination with perturbation free energy
methods can be utilized to study sorption processes in SOM
systems. Although computationally relatively expensive, it
presents a rigorous, physics-based approach to estimate the
sorption free energy, applicable to any SOM system of inter-
est. More importantly, this in-detail exploration of sorption
properties of SOM allows us to provide an atomistic picture
behind the relevant processes and shed light on underlying
molecular mechanisms. It is our hope that with ever-growing
computer power, such studies in combination with experi-
mental efforts will deepen our understanding of sorption
processes and, related to this, the environmental fate of
nutrients and pollutants, to ultimately help us achieve better
soil management.
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