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SUMMARY

Advancements in -omics techniques provide powerful tools to assess the potential effects in composition of

a plant at the RNA, protein and metabolite levels. These technologies can thus be deployed to assess

whether genetic engineering (GE) causes changes in plants that go beyond the changes introduced by con-

ventional plant breeding. Here, we compare the extent of transcriptome and metabolome modification

occurring in leaves of four GE rice lines expressing Bacillus thuringiensis genes developed by GE and seven

rice lines developed by conventional cross-breeding. The results showed that both types of crop breeding

methods can bring changes at transcriptomic and metabolic levels, but the differences were comparable

between the two methods, and were less than those between conventional non-GE lines were. Metabolome

profiling analysis found several new metabolites in GE rice lines when compared with the closest non-GE

parental lines, but these compounds were also found in several of the conventionally bred rice lines. Func-

tional analyses suggest that the differentially expressed genes and metabolites caused by both GE and con-

ventional cross-breeding do not involve detrimental metabolic pathways. The study successfully employed

RNA-sequencing and high-performance liquid chromatography mass spectrometry technology to assess the

unintended changes in new rice varieties, and the results suggest that GE does not cause unintended

effects that go beyond conventional cross-breeding in rice.
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INTRODUCTION

Genetic engineering (GE) is widely used to introduce desir-

able traits such as insect resistance, disease resistance,

herbicide tolerance, drought tolerance and improved nutri-

tion in crops (ISAAA, 2018). Amongst, the insect-resistant

GE (IRGE) crops producing insecticidal proteins, crystal

and vegetative insecticidal proteins derived from the bac-

terium Bacillus thuringiensis (Bt) have been widely grown

worldwide (ISAAA, 2018). During 2018, in total, 104 million

hectares of Bt-transgenic IRGE crops including soybean

(Glycine max), cotton (Gossypium species), maize (Zea

mays) and, to a small extent, eggplant (Solanum melon-

gena) and sugarcane (Saccharum officinarum) were

planted (ISAAA, 2018). The wide growth of Bt crops has

provided area-wide suppression of some major

lepidopteran crop pests such as pink bollworm (Pectino-

phora gossypiella) (Carri�ere et al., 2003), cotton bollworm

(Helicoverpa armigera) (Wu et al., 2008), European corn

borer (Ostrinia nubilalis) (Hutchison et al., 2010; Dively

et al., 2018) and corn earworm (Helicoverpa zea) (Dively

et al., 2018), leading to a significant decrease of broad-

spectrum chemical insecticide application (Kl€umper and

Qaim, 2014; NASEM, 2016; Brookes and Barfoot, 2018; Li

et al., 2020).

In contrast to the general acceptance of crops obtained

by conventional breeding and associated food products,

IRGE crops are subjected to rigorous evaluation. Common

concerns are the potential adverse effects on the environ-

ment and on human health. The latter, in particular,

appears to be an important factor delaying the commercial
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use of IRGE crops in many countries, including China (Li

et al., 2020). Sources of potential harm caused by GE

plants can be separated into two broad categories of

change, i.e., intended changes and unintended changes

(Ladics et al., 2015). Both are addressed in the pre-market

risk assessment for any novel GE crop. As the intended

changes in a GE plant concern the introduced genetic

material and the related desired trait, in general, the asso-

ciated risks can be anticipated and assessed (Ladics et al.,

2015). In contrast, unintended changes can hardly be antic-

ipated and are difficult to be detected raising caution when

assessing the risk of GE plants (Ladics et al., 2015; Schnell

et al., 2015; NASEM, 2016; Wang et al., 2018b). Unintended

changes could be materialized because of gene insertion,

random mutation, somaclonal variation, pleiotropy, posi-

tion effect, or the tissue culture process during the devel-

opment of GE plants (Miki et al., 2009; Ladics et al., 2015;

Schnell et al., 2015). Typically, unintended changes are

addressed by profiling the GE plant using compositional

analysis (Herman and Price, 2013) and phenotypic charac-

terization (Horak et al., 2007).

The advancements in omics-based systems biology

including genomics, transcriptomics, proteomics and

metabolomics profiling have greatly enhanced the possibil-

ities to analyze unintended changes in plants and these

techniques have been shown to be powerful approaches

for identifying changes in GE plants, as has been demon-

strated for example for Arabidopsis, rice, maize, soybean,

barley and pigeon pea (Kuiper et al., 2001; Ouakfaoui and

Miki, 2005; Ricroch et al., 2011; Gong and Wang, 2013; Her-

man and Price, 2013; Wang et al., 2018b; Tan et al., 2019).

However, in most study cases comparative analyses were

restricted to one GE line and its closest non-GE counter-

part. These results commonly revealed certain differences

in the transcriptomes, proteomes and metabolomes of the

tested plants (Ricroch et al., 2011; Gong and Wang, 2013;

Wang et al., 2018b). However, such results can hardly tell

whether such differences are specific to plant GE breeding

other than conventional breeding and whether they repre-

sent safety problems and their value for risk assessment is

thus questionable (Raybould and Macdonald, 2018). So far,

little effort has been made to compare the potential unin-

tended effects brought by GE and by conventional plant

breeding approaches (Batista et al., 2008; Gong et al., 2012;

Wang et al., 2018b). Recently, a tiered evaluation strategy

for analyzing unintended changes in crops using -omics

technologies was proposed by experts from the National

Academics of Science, Engineering and Medicine, which

highly recommend that unintended changes in a new GE

variety should be evaluated by comparison with a set of

conventionally bred cultivars, but not just with their paren-

tal isolines (NASEM, 2016).

Rice (Oryza sativa) is an important staple food for more

than half of the population in China (Li et al., 2020). Rice

production is constrained by a complex of insect pests,

among which lepidopterans such as the rice striped stem

borer (Chilo suppressalis), yellow stem borer (Scirpophaga

incertulas) and rice leaf roller (Cnaphalocrocis medinalis)

can cause substantial yield losses (Li et al., 2020). To con-

trol these pests in an efficient and environmentally friendly

way, dozens of IRGE rice lines expressing Bt proteins, have

been developed in China, and multiple lines exhibited high

efficacy in target pest control (Chen et al., 2006, 2011; Liu

et al., 2016; Li et al., 2020). When assessing the risks of Bt

rice, most studies were target-oriented and focused on the

intended effects, while little attention was paid to the unin-

tended effects (Xue et al., 2012; Li et al., 2017; Fu et al.,

2019).

In the current study, we compared the biological varia-

tion at mRNA and metabolite levels among four GE rice

lines and nine conventionally bred rice cultivars that have

a close genetic relation with the GE rice lines (Figure 1).

We performed two of the omics-based systems biology

approaches including transcriptomics using RNA-sequenc-

ing (RNA-seq) and metabolomics using high-performance

liquid chromatography mass spectrometry (HPLC-MS), and

investigated these datasets. Based on these results, the

potential unintended effects caused by two different plant

breeding methods were analyzed comparably.

RESULTS

Evaluating the rice lines transcriptome

We decided to analyze leaf material, as leaves are impor-

tant plant organs due to their role in many important bio-

logical functions such as photosynthesis, respiration and

transpiration. In total, 39 RNA-seq libraries were con-

structed, resulting in approximately 22–51 million clean

reads per library; the guanine-cytosine content accounted

for 52%–57% of these reads (Table S1). Using the rice

IRGSP-1.0 as a reference genome, 90%–96% of the clean

reads were mapped, with the unique mapping rates rang-

ing from 88% to 94%. Gene structure analyses showed that

most of the mapped reads (91%–94%) were distributed in

exons (Table S1). These results suggested that the tran-

scriptome datasets, generated from 13 rice lines, is suffi-

cient for further analyses of comparison within and

between the different lines.

Analyzing gene expression

The RNA-seq dataset was normalized to fragments per

kilobase of transcript per million mapped read values to

quantify the levels of gene expression, including 44 425

genes (Table S2). A principal components analysis (PCA)

was performed on all 39 transcriptomic datasets to obtain

a global view of the gene expression across the 13 rice

lines. As shown in Figure 2(a), the first two principal com-

ponents (PCs) explain 36.5% (PC1), and 21.6% (PC2) of the
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total variance, respectively. PC1 revealed a clear separation

between Geng/Japonica (GJ) rice lines (Xiushui 11, XS11;

Chungjiang 03 jing, CJ03; Jiahua 1, JH1; Tai202, T202;

Kemingdao1, KMD1; Kemingdao 2, KMD2) and Xian/Indica

(XI) rice lines (Minghui63, MH63; Shanyou 63, SY63;

Xieyou 63, XIY63; Xinxiangyou 63, XXY63; Jinyou 63,

JY63; Huahui no. 1, HH1; T1C-19). However, for both rice

subspecies (GJ and XI), the first two PCs could not sepa-

rate the GE lines or conventionally bred rice lines from

their parental lines, and GE lines from the conventionally

Figure 1. Genetic relations among the studied rice lines and grouping comparison design for the analyses.

(a) Genetic relations among the studied rice lines.

(b) Experimental design for pairwise comparisons for gene expression and metabolite accumulations between different rice lines. Group 1, comparisons

between Bt rice lines and their non-Bt parental rice plants; group 2, comparisons between conventional cross-breeding rice lines and their parents; group 3,

comparisons between conventional cross-breeding rice lines with the same parents; group 4, comparisons between Bt rice lines; group 5, comparisons between

conventional cross-breeding rice lines; group 6, comparisons between Bt rice lines and conventional cross-breeding non-Bt rice lines. HH1: Huahui No.1, MH63:

Minghui 63, KMD1: Kemingdao 1, KMD2: Kemingdao 2, XS11: Xiushui11, XY63: Xieyou 63, JY63: Jinyou 63, XXY63: Xinxiangyou 63, SY63: Shanyou 63, CJ03:

Chunjiang 03 jing, JH1: Jiahua 1, T202: Tai 202. Rice lines with red, blue and black colour represent the conventional cross-breeding lines, GE lines and the par-

ents of conventional cross-breeding lines or GE lines, respectively. Bt, Bacillus thuringiensis; GE, genetic engineering.

Figure 2. Overall description of transcriptome data.

(a) Principal components (PCs) analyses of gene expression levels in leaves of 13 rice lines. Score plot of the first two PCs with the explained variance. (b) Hier-

archical clustering of 13 rice lines using the total detected gene expression data. In the heatmap, each rice line is visualized in a single column and each gene is

represented by a single row. Gene expressions are shown in different colors, where red indicates high abundance and low relative expression is shown in blue

(color key scale right of the heatmap). (c) Pairwise comparisons of differentially expressed genes (DEGs) between different rice lines. (d–f) Venn diagrams depict-

ing the unique and shared DEGs among Xian/Indica subspecies (d), among Geng/Japonica subspecies (e), and between lines obtained by conventional breeding

or genetic engineering (GE) breeding (f). RPKM, reads per kilobase of transcript, per million mapped reads.

© 2020 The Authors.
The Plant Journal published by Society for Experimental Biology and John Wiley & Sons Ltd,

The Plant Journal, (2020), 103, 2236–2249

2238 Qingsong Liu et al.



© 2020 The Authors.
The Plant Journal published by Society for Experimental Biology and John Wiley & Sons Ltd,
The Plant Journal, (2020), 103, 2236–2249

Unintended effect of genetically engineered plants 2239



bred lines. Consistently, rice lines belonging to the GJ or

XI subspecies were clustered in the same class in a hierar-

chical way, respectively (Figure 2b).

Subsequently, differentially expressed genes (DEGs) of

the 13 rice lines based on the different grouping compar-

isons described in Figure 1 were screened, showing dis-

tinct differences in gene expression among the lines. In

total, 394–10 980 DEGs ranging from 1.29% to 33.60% were

detected in the total genes among the 78 group compar-

isons (Figure 2c, Figure S1 and Table S3). Pairwise com-

parisons showed that the percentage of DEGs on the total

detected genes (%) ranged from 2.63 to 14.57 between a Bt

line and its non-Bt parental line, from 2.81 to 9.31 between

a conventional breeding line and its parental line, from

1.29 to 14.49 between each of the conventionally bred lines

with the same parental line, from 4.39 to 31.73 between Bt

rice lines, and from 18.53 to 33.60 between all non-GE rice

lines. Specifically, the number of DEGs between T1C-19

and MH63 were 824, of which, 590 were upregulated, and

234 were downregulated. More DEGs were downregulated

than upregulated in the comparison between HH1 and

MH63, while more genes were upregulated than downreg-

ulated in the group comparisons of KMD1/XS11 and

KMD2/XS11. Similarly, a higher proportion of upregulated

DEGs were also found in conventional cross-breeding rice

lines compared with their parents except for the compar-

ison between JH1 and XS11, of which 356 genes were

upregulated and 492 genes were downregulated. The num-

ber of DEGs between GE lines and non-GE parental rice

lines were, in most cases, less than those between GE rice

lines and conventionally cross-breeding rice lines (Fig-

ure S1a). Overall, the number of DEGs between Bt rice

lines and their parents were within the normal range of

gene expression changes among non-GE rice lines

(Figure 2c).

The distribution of DEGs was calculated for each com-

parison and presented in Venn diagrams (Figure 2d–f). The
DEGs in the grouped comparison between conventional

breeding rice lines and their parent were pooled together

as one group because these lines were all developed by

conventional cross-breeding and have been commercial-

ized in China for many years. As shown in Figure 2(d–f),
the distribution of DEGs was genotype-specific. Although a

large number of DEGs was detected in pairwise compar-

isons, when compared with their common parents, there

were still a number of genes (75 for XI rice lines and 664

for GJ rice lines) expressed that were consistently different

among lines developed by conventional cross-breeding

and GE breeding (Figure 2d,e). We also compared the dis-

tribution of DEGs between rice lines developed by conven-

tional cross-breeding and GE breeding regardless of their

genetic background, and found that the two breeding

methods shared 3142 DEGs (Figure 2f). These results sug-

gest that both conventional cross-breeding and GE

breeding methods could change the expression of non-tar-

get genes.

Functional enrichment analysis of DEGs

To gain more insights into the function of DEGs among dif-

ferent comparisons, we conducted Gene Ontology (GO)

and Kyoto Encyclopedia of Genes and Genomes (KEGG)

pathway enrichment analyses of the DEGs in a total of 44

pairwise group comparisons. Interestingly, no significantly

enriched biological process GO terms was found in 15 pair-

wise group comparisons (Table S4). In the remaining 29

comparisons, different biological process terms were

enriched in specific comparisons, with DNA integration as

the most popular GO terms (Table S4). Similarly, KEGG

enrichment analyses indicated that no significantly

enriched pathway term was found in 26 pairwise group

comparisons (Table 1). In the remaining 18 comparisons,

the DEGs are involved in different pathways, with ribo-

some as the most popular pathway term (Table 1). Specifi-

cally, in group 1, there were no significant enriched

pathways of the DEGs in the comparisons of T1C-19/MH63,

HH1/MH63 and KMD2/XS11. Photosynthesis was the only

significant enriched pathway of DEGs between KMD1 and

XS11 (Table 1). In group 2, the DEGs mainly involved in

diterpenoid biosynthesis, phenylalanine metabolism,

phenylpropanoid biosynthesis and mitogen-activated pro-

tein kinase signaling pathway-plant. In group 3, there were

no significantly enriched KEGG terms of DEGs in most

comparisons, with plant–pathogen interaction and pheny-

lalanine metabolism, phenylpropanoid biosynthesis and

phenylalanine metabolism, and plant–pathogen interaction

are significantly enriched in the comparisons of XIY63/

XXY63, T202/JH1 and CJ03/JH1, respectively. In groups 4

and 5, there were no significantly enriched KEGG terms of

DEGs in most comparisons.

We also performed KEGG pathway enrichment analyses

of the unique and shared DEGs of comparisons showed in

Figure 2(d–f). Unique DEGs in KMD2/XS11 are significantly

enriched in phenylalanine, tyrosine and tryptophan biosyn-

thesis, shared DEGs in GJ rice lines are significantly

enriched in beta-alanine metabolism, and unique DEGs in

cross-breeding are significantly enriched in plant hormone

signal transduction (Table S5). Not surprisingly, these

pathways are involved in plant basic metabolic processes,

and none of the pathways mentioned are involved in detri-

mental pathways. There were no significant enriched path-

ways of the unique DEGs in the other subgroups

(Table S5).

Metabolomic differences in leaves among rice lines

In the present study, we profiled the metabolic changes in

leaves of all 13 rice lines. In total, 821 metabolites were

detected, with a range from 812 to 819 in XIlines, and from

805 to 809 in GJ lines (Table S6). The 821 metabolites were

© 2020 The Authors.
The Plant Journal published by Society for Experimental Biology and John Wiley & Sons Ltd,

The Plant Journal, (2020), 103, 2236–2249

2240 Qingsong Liu et al.



Table 1 Kyoto Encyclopedia of Gene and Genomes (KEGG) pathway enrichment analyses of differentially expressed genes (DEGs) of pair-
wise comparisons between different rice lines

Group Comparisons KEGG ID Description Adjusted P value Number of DEGs

Group 1 T1C-19/MH63 –
HH1/MH63 –
KMD1/XS11 osa00195 Photosynthesis 1.37E-03 7
KMD2/XS11 –

Group 2 XXY63/MH63 osa00904 Diterpenoid biosynthesis 1.16E-02 4
XIY63/MH63 osa00904 Diterpenoid biosynthesis 1.24E-03 7

osa00360 Phenylalanine metabolism 5.10E-03 7
osa00940 Phenylpropanoid biosynthesis 3.40E-02 11
osa00053 Ascorbate and aldarate metabolism 3.40E-02 5
osa04626 Plant–pathogen interaction 3.40E-02 10

SY63/MH63 osa04075 Plant hormone signal transduction 5.95E-03 16
osa04016 MAPK signaling pathway- plant 1.32E-02 10
osa00904 Diterpenoid biosynthesis 3.03E-02 5

JY63/MH63 osa00904 Diterpenoid biosynthesis 8.33E-04 6
osa04016 MAPK signaling pathway - plant 1.36E-02 8

JH1/XS11 osa00360 Phenylalanine metabolism 2.95E-03 5
osa00940 Phenylpropanoid biosynthesis 1.14E-02 7

T202/XS11 osa03010 Ribosome 5.19E-03 22
osa04075 Plant hormone signal transduction 2.19E-02 16

Group 3 CJ03/XS11 –
SY63/JY63 –
SY63/XIY63 –
SY63/XXY63 –
JY63/XIY63 –
JY63/XXY63 –
XIY63/XXY63 osa04626 Plant–pathogen interaction 1.02E-03 8

osa00360 Phenylalanine metabolism 1.41E-02 4
T202/CJ03 –
T202/JH1 osa00940 Phenylpropanoid biosynthesis 3.55E-03 15

osa00360 Phenylalanine metabolism 3.55E-03 8
CJ03/JH1 osa04626 Plant–pathogen interaction 1.49E-02 11

Group 4 T1C-19/HH1 –
T1C-19/KMD1 osa03010 Ribosome 5.50E-09 73
T1C-19/KMD2 osa03010 Ribosome 1.36E-04 59
HH1/KMD1 –
HH1/KMD2 –
KMD1/KMD2 –

Group 5 SY63/T202 –
SY63/JH1 –
SY63/CJ03 –
SY63/XS11 –
JY63/T202 –
JY63/JH1 osa03010 Ribosome 8.26E-04 47
JY63/CJ03 –
JY63/XS11 osa03010 Ribosome 5.10E-08 58
XIY63/T202 –
XIY63/JH1 osa03010 Ribosome 3.56E-19 99
XIY63/CJ03 –
XIY63/XS11 osa03010 Ribosome 5.07E-16 98
MH63/T202 –
MH63/JH1 osa03010 Ribosome 3.25E-05 59
MH63/CJ03 –
MH63/XS11 osa03010 Ribosome 1.06E-08 69
XXY63/T202 –
XXY63/JH1 osa03010 Ribosome 1.67E-05 62
XXY63/CJ03 –
XXY63/XS11 osa03010 Ribosome 1.00E-07 69

–, No significantly enriched pathways; MAPK, mitogen-activated protein kinase.
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grouped into 32 classes, with the majority belonging to the

classes of flavone, organic acids and flavone C-glycosides

(Figure S2 and Table S6). In addition, few metabolites from

the classes of proanthocyanidins, pyridine derivatives, ter-

penoids and nicotinic acid derivatives were detected (Fig-

ure S2 and Table S6).

To investigate the total composition of the metabolo-

mics difference in leaves of the different rice lines, a PCA

plot for the accumulation of metabolites was conducted.

The PCA score scatter plots for all samples are shown in

Figure 3(a), where the abscissa and the ordinate represent

the scores of PC1 and PC2, respectively. The first two PCs

explain 36.6% and 10.1% of the total variance, respectively.

The PC1 showed a clear separation between rice lines with

different genetic backgrounds. For both rice subspecies (XI

and GJ), the first two PCs could not separate the GE lines

or conventionally bred lines from their parental lines, and

GE lines from conventionally bred lines (Figure 3a). Con-

sistently, clustering analysis of the 821 metabolites from

the 13 rice lines showed that the XI and GJ subspecies

were clustered into distinct groups (Figure 3b). Specifi-

cally, Bt rice lines clustered more closely with their com-

mon parental lines than the conventional cross-breeding

lines in both XI and GJ genetic background.

For qualitative analysis of the metabolites, we pooled

the metabolites detected in the leaves of XI or GJ rice lines

that were developed by conventional cross-breeding meth-

ods (Figure 4a,b). The Venn diagram shows that XI rice

lines developed by conventional breeding or GE shared

810 metabolites (Figure 4a). Pairwise comparisons

revealed that there were two new metabolites, (+)-piperitol
(hydroxycinnamoyl derivatives) and 1,4-dihydro-1-methyl-

4-oxo-3-pyridinecarboxamide (pyridine derivatives)

detected in the GE rice lines T1C-19 and HH1 relative to

their parental line MH63 (Figure 4a and Table S7). How-

ever, the two compounds were not specific to GE rice lines

and were detected in the conventionally bred lines XXY63,

XIY63, SY63 and JY63 (Figure 4a and Table S7). Similarly,

there were 801 common metabolites detected in GJ rice

lines that were developed either by conventional breeding

or GE (Figure 4b). Likewise, pairwise comparisons showed

that the few new compounds, that is, 2-methoxybenzoic

acid, epigallate catechin gallate, icariin, cyanidin, procyani-

din B2 and pinocembrin in GE rice lines (KMD1 and KMD2)

were also detected in conventionally bred lines (JH1, T202

and XS11) (Figure 4b and Table S7). As expected, pairwise

comparisons indicated that rice lines derived from XI and

GJ subspecies, respectively, have more diversity in their

metabolite compositions (Table S7).

To identify the differentially accumulated metabolites

(DAMs) in leaves among different rice lines, we further

compared the metabolite levels in the 13 lines. In total, 55–
262 DAMs were identified representing a range from 7.26%

to 46.87% in the total detected metabolites in each of the

44 comparisons (Figure 3c and Table S8). Pairwise com-

parisons showed that the percentage of DAMs from the

total detected metabolites ranged from 7.26% to 15.15% in

the comparisons between GE rice and their non-GE par-

ents, from 12.77% to 24.39% in the comparisons between

conventional breeding rice lines and their parents, from

10.08% to 26.91% in the comparisons among conventional

breeding rice lines with the same parents, from 8.68% to

42.29% in the comparisons among Bt rice lines, and from

30.58% to 46.87% in the comparisons among natural geno-

typic rice lines (Table S8). In most cases, a higher propor-

tion of downregulated DAMs compared with upregulated

DAMs was recorded (Figure 3c). In addition, the number of

DAMs between GE lines and non-GE parental rice lines

were, in all cases, less than those between GE rice lines

and conventionally cross-breeding rice lines (Figure S2b).

Venn diagrams were also used for comparing the distri-

bution of DAMs among the different rice lines (Figure 3d–f).
As done for the transcriptome analyses, we pooled the

DAMs of conventional cross-breeding lines with the same

parents. The results showed that a large number of unique

DAMs were detected in XI conventional cross-breeding lines

compared with that in rice lines developed by GE (Fig-

ure 3d). A similar scenario was also found in GJ rice lines in

which 185 unique DAMs were detected in conventional

cross-breeding lines, and in total, five and 21 unique DAMs

were found in the comparisons of KMD1 and KMD2 with

XS11, respectively (Figure 3e). Although conventional

cross-breeding and GE breeding shared 197 DAMs, there

were still 206 unique DAMs that were identified in the for-

mer, which is over fivefold more than that in GE breeding

(39) (Figure 3f).

KEGG pathway enrichment analysis showed no path-

ways except for the flavonoid biosynthesis and the flavone

and flavonol biosynthesis were significantly enriched in

the DAMs of group comparisons (Table S9). Between GE

and their non-GE counterparts, the DAMs were signifi-

cantly associated with only flavonoid biosynthesis, and

Figure 3. Overall description of metabolome data.

(a) Principal components (PCs) analyses of metabolite accumulation levels in leaves of 13 rice lines. Score plot of the first two PCs with the explained variance.

(b) Hierarchical clustering of 13 rice lines using metabolite accumulation data. In the heatmap, each rice line is visualized in a single column and each metabolite

is represented by a single row. Metabolite accumulation are shown in different colors, where red indicates high abundance and low relative expression is shown

in blue (color key scale right of the heat map). metabolites and samples are clustered using Euclidean distance measure and Ward clustering algorithm using

Euclidean distance measure and Ward clustering algorithm. (c) Pairwise comparisons of differentially accumulated metabolites between different rice lines. (d–f)
Venn diagrams depicting the unique and shared differentially accumulated metabolites among Xian/Indica subspecies (d), among Geng/Japonica subspecies

(e), and between lines obtained by conventional breeding or genetic engineering (GE) breeding (f).
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both the flavonoid biosynthesis pathway and the flavone

and flavonol biosynthesis were found to be enriched in

DAMs between conventionally bred lines and their parental

lines (Table S9).

DISCUSSION

Transcriptomics, proteomics and metabolomics have

been widely used in assessing the effects of GE in crop

breeding at the mRNA, protein and metabolite levels

(NASEM, 2016). However, in most of these studies, analy-

ses were restricted to comparing one GE line and its non-

GE counterpart, and the results typically revealed some

degree of variation. As the exact functions of the majority

of genes, proteins and metabolites in a plant cell are not

clear, such results can hardly indicate the biological rele-

vance of the detected changes, and cannot reflect

whether the observed differences were caused by the GE

or fall into the potential variation range caused by con-

ventional breeding (Ricroch et al., 2011; Gong and Wang,

2013; Herman and Price, 2013; NASEM, 2016; Raybould

and Macdonald, 2018). We thus attempted to test in rice

whether GE breeding will result in novel or greater unin-

tended effects in crops relative to conventional cross-

breeding using, in total, four GE and nine conventional

rice lines. We believe that rice is a good model plant for

those investigations, as it is an important food crop and

has been widely used in the past for plant biology stud-

ies, including omics analyses.

Previous studies have suggested that environmental

stresses brought more biological variation than transgene-

sis and genetic background in plants (Ouakfaoui and Miki,

2005; Batista et al., 2008; Montero et al., 2011; Asiago et al.,

2012; Batista et al., 2017; Wang et al., 2018b; Tan et al.,

2019). In the present study, the seeds of all 13 rice lines

were prepared in the same way and were cultivated and

managed under the same conditions in a greenhouse to

minimize the effects of varying environmental conditions.

In addition, the middle part of the top second fully

expanded leaf of tillering plants from all rice lines were

sampled on the same day to reduce the potential effects

caused by plant developmental stages. Thus, the differ-

ences in rice leaf transcriptome and metabolome profiles

should largely reflect the genotype differences of the

tested rice lines. Furthermore, to increase the comparabil-

ity, the conventional and GE rice varieties used in this

study have the same parental line either MH63 or XS11 to

ensure that they had a similar genetic background (Fig-

ure 1).

Both PCA and hierarchical cluster analyses of the raw

datasets showed a distinct separation between samples

with GJ and those with XI genetic background at both tran-

scriptome and metabolome levels, irrespective of the

breeding method used to develop the rice lines (GE or con-

ventional cross-breeding). This result is consistent with

previous studies that the GJ and XI subspecies have a

clear distinction in gene expression, protein characteriza-

tion, metabolite accumulation and even in root microbiota

composition (Jung et al., 2013; Hu et al., 2014; Wang et al.,

2018a; Zhang et al., 2019). In plants, natural variation in the

transcriptome and metabolome is very common (Catch-

pole et al., 2005; Batista and Oliveira, 2010; Baniasadi et al.,

2014; Wang et al., 2018a,b). Studies with wheat and barley

showed a clear discrimination between different conven-

tionally bred varieties but no discrimination between GE

and non-GE counterparts at transcriptomic or metabolomic

levels (Ioset et al., 2007; Kogel et al., 2010). Similar results

were also found in Embrapa 5.1 common bean with a

higher similarity between a GE variety and its non-GE

Figure 4. Composition analyses of metabolites detected in 13 rice lines.

Venn diagrams depicting the unique and shared metabolites among Xian/Indica (a) and Geng/Japonica (b) rice subspecies.
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near-isogenic line than between two common bean vari-

eties in both leaf and grain proteomic profiles (Balsamo

et al., 2015; Valentim-Neto et al., 2016). The current finding

together with previous results suggest that the intrinsic dif-

ferences in genetic background bring much greater varia-

tion in plant transcriptome and metabolome than by the

introduction of foreign genes by genetic manipulation or

cross-breeding methods.

As expected, pairwise comparisons did reveal some dif-

ferences between the GE and parental non-GE rice lines in

respect to gene expression and metabolite accumulation

as reported previously for GE maize and soybean (Cheng

et al., 2008; Coll et al., 2008; Hao et al., 2017; Wang et al.,

2018b). However, the number of DEGs observed when

comparing GE and non-GE rice lines were comparable with

those present when comparing conventionally bred rice

lines and their parental lines (Figures 2 and 3). An excep-

tion was the comparison between HH1 and MH63 where a

higher variation in gene expression was detected than

between conventionally bred rice lines and their parental

lines. However, this increase in variation was not sup-

ported by DAMs, i.e., the number of DMAs between HH1

and MH63 was much lower than that in most of the com-

parisons between conventionally bred rice lines and their

parental lines. In addition, compared with the common

parental line XS11, KMD2 had nearly threefold DEGs and

twofold DAMs than KMD1, although the two GE lines have

a matched genotype, express the same gene and were cre-

ated with the same gene transformation process

(Table S10). These results thus suggest that genetic

changes commonly occur during the plant breeding pro-

cess whether done by GE or conventional crossing, and

that the extent of those changes seems not always relevant

to the extent of metabolomic change in the rice plant.

Therefore, we suggest that the transcriptomics results

should be integrated with results from other omics

approaches such as metabolomics and proteomics to

show more comprehensively the possible unintended

effects caused by the plant breeding process.

The Venn diagrams of genotype-specific DEGs and

DAMs showed that both GE and the conventional breeding

processes can result in a large number of DEGs and DAMs

in plants. Although there were large overlapping sets of

DEGs and DAMs caused by both plant breeding processes,

we did find some DEGs and DAMs specifically caused by

GE that were outside of the range of variation in conven-

tional breeding rice lines (Figures 2f and 3f). It implies that

the GE process may bring different stresses on the host

genome relative to conventional cross-breeding, namely

two plant breeding processes may lead to the variations in

gene and metabolite at different levels. However, to con-

clude this, a larger set of conventionally bred rice varieties

would have to be analyzed. Interestingly, we detected

more DAMs in plants caused by conventional breeding

than the genetic breeding process. This may imply that

conventional cross-breeding required multiple repeated

crosses between two or more breeding lines, thus causing

more changes on both genotypic and phenotypic levels

(Coll et al., 2009).

Our GO enrichment analyses indicated that the DEGs

in different comparisons were involved in “DNA integra-

tion.” It can be speculated that the differences in gene

expression brought by either GE or conventional breed-

ing, or due to natural variation are all associated with

changes in DNA sequence. There were many DEGs and

DAMs detected not only between GE rice lines and their

non-GE counterparts, but also between conventionally

bred rice lines and their parental lines (Figures 2f and 3f).

However, the DEGs detected between the GE rice lines

and their non-GE counterparts were significantly enriched

only in photosynthesis, but the DEGs between conven-

tionally bred rice lines and their parental lines were sig-

nificantly enriched within multiple pathways. Likewise,

the DAMs were only found to be enriched in the flavo-

noid biosynthesis pathway between the GE rice lines and

their non-GE counterparts, but the DAMs between con-

ventionally bred rice lines and their parental lines were

enriched in both the flavonoid biosynthesis pathway and

the flavone and flavonol biosynthesis pathway. These

results may suggest that GE does not bring unique

effects on plant pathways compared with conventional

cross-breeding. All four GE rice lines used in the current

study expressed foreign Bt cry genes conferring resis-

tance to insects. The expressed crystal proteins are not

native to plants and exert no known metabolic activity in

rice plants (Wang et al., 2018b; Fu et al., 2019). While if

the inserted genes in GE plants are involved in plant

metabolic pathways, the results may be different (Wang

et al., 2018b, 2019). For example, there is a case in GE

plants that are tolerant to the herbicide glyphosate, as

the tolerance is conferred by introducing a glyphosate-in-

sensitive version of the target enzyme 5-enolpyruvoyl-

shikimate-3-phosphate synthase, which is a key enzyme

in the shikimate pathway.

The substantial equivalence concept is an important

part in the safety assessment of GE crops (Ricroch et al.,

2011; Asiago et al., 2012). Our metabolomics analysis did

detect some compounds, including (+)-piperitol,
2-methoxybenzoic acid, epigallate catechin gallate, icariin,

cyanidin, procyanidin B2 and pinocembrin in GE rice tis-

sues that had not been detected in the non-GE parental

plants. However, all of these compounds were also found

in several of the conventionally bred rice lines. As the

conventionally bred rice lines have been widely planted

and have a long history of safe use, these compounds

will not bring detrimental effects on human health and

the environment. Our results further strengthen the fact

that assessment of unintended effects of GE plants
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cannot simply rely on the comparison between GE plants

and their parental lines but should include a set of con-

ventionally bred cultivars that represent the range of

genetic and phenotypic diversity in the crop (NASEM,

2016). The integrated application of multi-omics

approaches can more comprehensively reflect changes in

the plants and their biological relevance.

In conclusion, we successfully employed RNA-seq and

HPLC-MS technology to investigate the changes in gene

expression and metabolite accumulation in 13 rice lines

developed by conventional cross-breeding or GE. Our

results demonstrate that the emerging -omics approaches

can provide a valid way for identifying unintended effects

of GE varieties. The current findings suggest that both

breeding methods can result in potential changes at tran-

scriptomic and metabolic levels, and it appears that GE

does not cause unintended effects that go beyond conven-

tional cross-breeding. Although we did detect DEGs and

DAMs specifically caused by GE that were outside of the

range of variation in conventional breeding rice lines, this

could be due to the limited number of conventionally bred

rice lines involved in the study and it can be expected that

the natural variation in DEGs and DAMs is actually much

larger. Therefore, a comprehensive range of variation at

transcriptome, metabolome and proteome levels in com-

mercially conventionally bred cultivars of a crop species

would have to be established before those analyses are

deployed for identifying the unintended effects in GE vari-

eties.

EXPERIMENTAL PROCEDURES

Plant materials

In total, 13 rice lines (Oryza sativa) including four lines developed
by GE expressing Bt genes and nine lines obtained by conven-
tional cross-breeding were used in this study (Figure 1 and
Table S10). The Bt rice lines include T1C-19, which expresses a
synthesized cry1C gene driven by the maize ubiquitin promoter;
the Bt rice line HH1 expresses a fused cry1Ab/Ac gene driven by
the rice actin1 promoter. Both T1C-19 and HH1 share the same
non-transformed near isoline MH63, which is an elite XI restorer
line for cytoplasmic male sterility in China (Wu et al., 2011). The
other two Bt rice lines are KMD1 and KMD2, and their correspond-
ing non-transformed near isoline XS11. XS11 is a GJ rice line
widely cultivated in China. KMD1 and KMD2 are independent
homozygous events containing the same synthetic cry1Ab gene
under the control of the maize ubiquitin promoter. All the Bt rice
lines were developed by Agrobacterium tumefaciens infection.
Laboratory and field experiments indicated that all four Bt rice
lines are highly resistant to target lepidopteran insects (Liu et al.,
2016). Among the nine non-Bt rice lines used in this study, four
are XI lines (XY63, JY63, XXY63 and SY63) obtained by crossing
MH63 with different rice varieties, and three are GJ lines (CJ03,
JH1 and T202) obtained by crossing XS11 with other rice varieties
(Figure 1). The seven cross-pollination rice lines are all approved
by provincial or national registration committees for crop varieties
in China. Among these lines, SY63 was widely planted with the

highest total area of 62.88 million hectares from 1984 to 2009 (Wu
et al., 2011).

Plant growth condition and tissue sampling

Rice seeds were dehusked, surface-sterilized using 75% ethanol
for 5 min and washed with sterilized water. The seeds were then
soaked in 4% sodium hypochlorite solution for 30 min and
washed again with sterilized water. Subsequently the surface-ster-
ilized rice seeds were germinated on half-strength Murashige and
Skoog medium in a climate chamber at conditions of 28 � 1°C, a
16-h light/8-h dark photoperiod and 75% � 5% relative humidity.
A week later, seedlings were transplanted into individual plastic
pots (8 cm 9 10 cm, diameter 9 height) containing a mixture of
peat and vermiculite in a 3:1 ratio (Meihekou Factory, Meihekou,
China). All potted plants were placed in a cement pool that was
maintained in a glasshouse at the Langfang Experimental Station
of the Institute of Plant Protection, Chinese Academy of Agricul-
tural Sciences (CAAS). The growth conditions were set as
28 � 2°C, 65% � 10% relative humidity and a 16-h light/ 8-h dark
photoperiod. Nitrogenous fertilizer Sakefu (N [20%], P2O5 [20%],
K2O [20%]) and other microelements (Sino-Arab Chemical Fertil-
izer Co., Ltd, Qinhuangdao, China) was applied once a week. Five
weeks later, during the rice plants tillering stage, leaf samples
were collected for the analyses. From each plant, a leaf section
(approximately 2 cm) was sampled from the middle part of sec-
ond leaf blade from top. Samples from five plants were pooled
together as one biological replicate, and three replicates were col-
lected for each rice line. The leaf samples were immediately frozen
in liquid nitrogen and stored at �80°C for further extraction and
analyses.

RNA extraction, library preparation and RNA-sequencing

Total RNA was isolated using the TRIzol reagent (Invitrogen, Carls-
bad, CA, USA) and treated with RNase-free DNase I (NEB, Ipswich,
MA, USA) to remove any genomic DNA. In total, 3 lg of total RNA
per sample was used for the preparation of RNA-seq library.
Sequencing libraries were prepared using a NEBNext� UltraTM

RNA Library Prep Kit for Illumina� (NEB) and were sequenced on
the Illumina Hiseq 4000 platform (Illumina, San Diego, CA, USA)
according to the manufacturer’s instructions by Nonogene (Bei-
jing, China).

For transcriptome data, raw Illumina data of fastq format were
first processed using in-house perl scripts. After removing reads
containing adaptors, reads containing poly-N and low-quality
reads from raw data, we obtained the clean data. The Q20, Q30,
guanine-cytosine content and sequence duplication level of the
clean data were calculated. The clean reads were aligned to the
reference genome IRGSP-1.0 (https://rapdb.dna.affrc.go.jp) using
HISAT2 tools (version 2.09) (Kim et al., 2015). FEATURE COUNTS

(v1.5.0-p3) (Liao et al., 2014) was used to count the read numbers
mapped to each gene. Gene expression levels were estimated
using fragments per kilobase of transcript per million mapped
reads based on the length of the gene and reads count mapped to
this gene. Differentially expressed genes analysis was performed
using the DESEQ2 R package (Love et al., 2014). The resulting P
values were adjusted using the Benjamini and Hochberg’s
approach for the control of the false-discovery rate. Genes with
fold-change ≥2 or ≤0.5 and an adjusted P < 0.05 were considered
as DEGs. GO and KEGG pathway enrichment analysis were per-
formed using the CLUSTERPROFILER R package with an false-discovery
rate adjusted P < 0.05 (hypergeometric test) as a cutoff (Yu et al.,
2012).
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Metabolite profiling

Metabolite extraction process. Freeze-dried leaf samples of
the 13 rice lines were grinded using a mixer mill (MM 400; Retsch,
Haan, Germany) with a zirconia bead for 1.5 min at 30 Hz. For
each sample, 100 mg of leaf power was weighted and mixed with
1 ml of 70 % aqueous methanol for extraction overnight at 4°C.
Following centrifugation at 10 000 g for 10 min the extracts were
absorbed (CNWBOND Carbon-GCB SPE Cartridge, 250 mg, 3 ml;
ANPEL, Shanghai, China) and filtrated with a membrane (SCAA-
104, 0.22 lm pore size; ANPEL, Shanghai, China), and subse-
quently stored in a glass vial before analysis.

HPLC and ESI-Q TRAP-MS/MS running conditions. Metabo-
lite identification and quantification were performed using an LC-
electrospray ionization-MS/MS (LC-ESI-MS/MS) system: HPLC,
Shim-pack UFLC SHIMADZU CBM20A system, Kyoto, Japan; MS,
Applied Biosystems 4000 Q TRAP, Foster City, CA, USA) as previ-
ously described (Chen et al., 2013). The HPLC analytical conditions
were set as follows: the chromatographic column was a Waters
ACQUITY UPLC HSS T3 C18 column (1.8 lm, 2.1 mm 9 100 mm).
The solvent system included mobile phase A, 0.04% acetic acid in
water, and mobile phase B, 0.04 % acetic acid in acetonitrile. The
gradient program was set at 95:5 V(A)/V(B) at 0 min, 5:95 V(A)/V
(B) at 11 min, 5:95 V(A)/V(B) at 12 min, 95:5 V(A)/V(B) at 12.1 min,
95:5 V(A)/V(B) at 15 min. The temperature of the column was
40°C, the flow rate was 0.4 ml min�1, and the injection volume
was 5 ll. The effluent was then connected to an ESI-triple quadru-
pole-linear ion trap (Q TRAP)-MS.

Linear ion trap and triple quadrupole (QQQ) scans were
acquired on a Q TRAP-MS, API 4500 Q TRAP LC/MS/MS System,
equipped with an ESI Turbo Ion-Spray interface, operating in a
positive ion mode and controlled by the Analyst 1.6 software (AB
Sciex, Darmstadt, Germany). The ESI source operation was set
with the following parameters: ion source, turbo spray; source
temperature, 550°C; ion spray voltage, 5.5 kV; ion source gas I,
gas II, and curtain gas were set at 55, 60 and 25 psi, respectively;
the collisionally activated dissociation gas was high. Instrument
tuning and mass calibration were performed with 10 and 100 lM
polypropylene glycol solutions in QQQ and linear ion trap modes,
respectively. The metabolites were identified according to the sec-
ondary spectrum information. QQQ scans were acquired as multi-
ple reaction monitoring mode experiments with the collision gas
(nitrogen) set to 5 psi.

Acquiring metabolic data. For metabolome data, metabolite
identification was performed according to MWDB (metware data-
base; MetWare, Wuhan, China) and publicly available metabolite
databases including MassBank (http://www.massbank.jp/), KNAP-
SAcK (http://kanaya.naist.jp/KNApSAcK/), HMDB (http://www.
hmdb.ca/), MoTo DB (http://www.ab.wur.nl/moto/) and METLIN
(http://metlin.scripps.edu/index.php). The quantification of
metabolites was carried out using a scheduled multiple reaction
monitoring method (Chen et al., 2013).

Data analysis

Raw data associated with gene expression and metabolites accu-
mulation were median-normalized, log-transformed and auto-
scaled using METABOANALYST 4.0 (Chong et al., 2018). Hierarchical
clustering heat map was created using METABOANALYST 4.0 with
Euclidean distance measure and Ward clustering algorithm. The
normalized data were fed to SIMCA 14.1 software (Umetrics, Umea,

Sweden) for PCA. Orthogonal projections to latent structures dis-
criminant analysis was conducted for identifying DAMs between
any two rice lines using SIMCA 14.1 software. The variable impor-
tance in the projection values ≥1.0 generated in orthogonal projec-
tions to latent structures discriminant analysis processing was
first used as a criterion for the selection of DAMs. The fold-
changes ≥2 or ≤0.5 were defined as DAMs. Fisher’s exact test was
performed to identify the significant KEGG pathways related to
the DAMs with an adjusted P < 0.05.
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