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Abstract

Chlamydia trachomatis is an obligate intracellular bacterium that causes the most common 

sexually transmitted bacterial diseases in the world. With a biphasic developmental cycle, the 

bacteria utilize a type III secretion system (T3SS) to invade host cells as infectious elemental 

bodies, which then differentiate into actively dividing reticulate bodies. The regulation of the 

developmental cycle and the T3SS are linked by the bi-functional protein, specific Chlamydia 
chaperone 4 (Scc4). Scc4 is a class I T3SS chaperone forming a heterodimer with specific 

Chlamydia chaperone 1 (Scc1) to chaperone the essential virulence effector, Chlamydia outer 

membrane protein N (CopN). Scc4 also functions as a transcription factor by binding to the RNA 

polymerase holoenzyme between the flap region of the β subunit and region 4 of σ66. In order to 

investigate the mechanism behind Scc4’s dual functions and target its protein-protein interactions 
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as a route for drug development, the structure and dynamics of Scc4 are being pursued. In the 

course of this effort, we assigned 89.2% of the backbone and sidechain 1H, 15N, and 13C 

resonances of full-length Scc4. The assigned chemical shifts were used to predict the secondary 

structure and dynamic properties. The type and order of Scc4’s determined secondary structure are 

consistent with the X-ray crystal structures of other bacterial T3SS chaperones.

Keywords

Chlamydia trachomatis; Scc4; type III secretion system; transcription regulation; RNAP binding 
protein; chaperone

Biological context

Scc41 was identified in Chlamydia trachomatis as a type III secretion system (T3SS) 

chaperone (Spaeth et al. 2009) and a transcription factor that directly binds the β subunit2 

and the primary sigma factor, σ66,3 of the RNA polymerase holoenzyme (Rao et al. 2009). 

As a T3SS chaperone, Scc4 functions as an unusual heterodimer with Scc14 to chaperone 

CopN5 (Shen et al. 2015), an essential virulence factor that interferes with the host’s 

microtubule network (Huang et al. 2008). The chaperone function of Scc4 occurs primarily 

in elemental bodies between the late stage of development and initiation of infection (when 

CopN is secreted into the host cell). The activity of Scc4 as a transcription factor occurs in 

reticulate bodies during the middle stage of development, when σ66-dependent transcription 

of housekeeping genes are active (Gao et al. 2020). The stage-specific activity and multiple 

protein-protein interactions of Scc4 offer several pathways to approach drug development. 

As part of that effort, the high-resolution NMR structure of Scc4 is being pursued, and the 

assignments and secondary structure presented herein are the first results of these efforts.

Sequence analysis and structural homology modeling of Scc4 strongly support its T3SS 

chaperone function, but there is no evidence of homologous transcription factors. Sequence 

homology among the class I T3SS chaperones is low (typically 5 – 15%), but structural 

homologs can be identified with high confidence using remote homology detection with the 

Phyre2 protein fold recognition server (Kelley et al. 2015). The best structural templates for 

Scc4 are all X-ray structures of homodimer, Gram-negative bacterial class I T3SS 

chaperones (Shen et al. 2015).6 The only structure to date of a heterodimer T3SS chaperone 

is from the X-ray crystal structure of the Yersinia pestis complex of the chaperones, SycN 

and YscB, and the effector, YopN (PDB id 1XKP) (Schubot et al. 2005). No NMR structures 

in the Protein Data Bank (Berman et al. 2000) or chemical shift assignments in the 

Biological Magnetic Resonance Data Bank (Ulrich et al. 2008) are available for any class I 

1specific Chlamydia chaperone 4, formerly CT663, UniprotKB O84670.
3σ66 or RpoD, UniprotKB P18333.
4specific Chlamydia chaperone 1 or CT088, UniprotKB O84090.
5low calcium response E or Chlamydia outer membrane protein N (CopN) or CT089, UniprotKB O84091.
6Escherichia coli CesT (PDB id 1K3E chain A, Uniprot P58233), Yersinia pestis SycH (PDB id 1TTW chain A, Uniprot Q7BTX0), 
Salmonella enterica SicP (PDB id 1JYO chain A, Uniprot P0CL16), Pseudomonas syringae Shc (PDB id 4G6T chain A, Uniprot 
Q87UE6), and Salmonella enterica STM2138 (PDB id 3EPU chain B, Uniprot Q8ZNP3).
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T3SS chaperones to date. The absence of sequence or structural homologs of Scc4 to 

transcription factors provides the possibility of a new fold for this function.

Here, we present 89.2% of the backbone and sidechain 1H, 15N, and 13C NMR resonance 

assignments of Scc4, the chemical shift-based secondary structure, and the random coil 

index order parameter predictions. We also discuss the relevance of the unassigned residues, 

which map to a distinct region on Scc4’s structural homology model.

Methods and experiments

Sample preparation

Full length Scc4 (residues 1–133) was expressed and purified according to the methods 

previously reported (Ukwaththage et al. 2019). Briefly, Scc4 and Scc1-His6 were co-

expressed from the vectors, pACYCScc1-His6 and pET28Scc4 (Shen et al. 2015), in E. coli 
BL21-Gold (DE3) cells using minimal medium supplemented with 2 gL−1 15N-ammonium 

chloride and 4 gL−1 13C-glucose. The Scc4:Scc1-His6 complex from the cleared lysate was 

immobilized on Ni2+-charged immobilized metal affinity chromatography resin, and Scc4 

was dissociated from the complex and eluted with 0.5% sarkosyl in 20 mM 

tris(hydroxymethyl)aminomethane hydrochloride, 300 mM NaCl, and 5% glycerol at pH 8.0 

buffer. The sarkosyl was removed from the Scc4 sample by diluting the sample 5-fold with 

running buffer (50 mM sodium phosphate, pH 7.3) and purifying with size exclusion 

chromatography (Bio-Rad P-4 polyacrylamide beads). The Scc4 sample was concentrated 

using a 10 kDa molecular weight cutoff centrifugal filter to 0.5 mM concentration. The 

purity of the Scc4 samples was analyzed by sodium dodecyl sulfate–polyacrylamide gel 

electrophoresis (SDS-PAGE), and the protein concentration was determined using the 

Bradford protein assay following the manufacturer’s protocol.

NMR experiments

The NMR samples consisted of 300 μL of 0.5 mM Scc4 in 50 mM sodium phosphate (pH 

7.3) with 5 μM sodium 3-(trimethylsilyl)-1-propanesulfonate and 10% D2O, for chemical 

shift referencing and locking, respectively, in 5 mm D2O-magnetic susceptibility matched 

tubes. The spectra were collected at the National Magnetic Resonance Facility at Madison 

on Bruker Avance III and Varian VNMRS spectrometers operating at 900, 800, and 600 

MHz (1H) and equipped with cryogenically-cooled probes. The temperature of the sample 

was regulated to 298 K for all experiments. The stability of the protein was tested by 

comparing 2D 1H-15N HSQC spectra before and after each 3D experiment. In order to 

assign the backbone resonances, spectra of Scc4 were acquired using 2D 1H,15N-HSQC, 3D 

CBCA(CO)NH, 3D HNCACB, 3D HNCO, 3D HNCA, and 3D HN(CO)CA experiments. 

Additional 2D and 3D spectra were collected to assign both aliphatic and aromatic sidechain 

chemical shifts. The experiments recorded to assign the aliphatic sidechains are 2D constant-

time 1H,13C-HSQC, 3D C(CO)NH, 3D HBHA(CO)NH, 3D H(CCO)NH, and 3D HC(C)H-

TOCSY. The aromatic sidechains were assigned by recording aromatic 2D constant-time 1H,
13C-HSQC, aromatic Cβ 2D constant-time 13C-HSQC (edited to observe only Cβ groups of 

aromatic residues), 2D (HB)CB(CGCD)HD, 2D (HB)CB(CGCDCE)HE, and aromatic 3D 

HC(C)H-TOCSY spectra (Table 1). All spectra, except for the aliphatic and aromatic 3D 
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HC(C)H-TOCSY spectra, were recorded using non-uniform sampling (NUS) with sampling 

rates ranging between 30 and 40%. In addition, 3D HNCA and HN(CO)CA spectra were 

recorded using band-selective excitation short-transient sequences (BEST-type experiments) 

with a recovery delay of 0.3 s between transients (Lescop et al. 2007). All spectra were 

processed using the NMRPipe software package (Delaglio et al. 1995). 3D spectra recorded 

with NUS were reconstructed using the SMILE algorithm available in NMRPipe (Ying et al. 
2017). The spectral analysis was done using the NMRFAM-SPARKY software package (Lee 

et al. 2015). These are the first Scc4 backbone and sidechain assignments; hence all 

assignments are de novo. The initial peaks were picked using the APES automation plugin 

(Shin et al. 2008) and verified manually. Cα, Cβ, and C peaks were manually identified and 

verified using strip plots from CBCA(CO)NH, HNCACB, HNCA, HNCOCA, and HNCO 

spectra. Sidechain 1H and 13C resonances were identified with the aliphatic and aromatic 

sidechain experiments starting from the assigned backbone resonances and taking advantage 

of the “transfer and simulate assignments” extension in NMRFAM-SPARKY. The secondary 

structure predictions and the residue specific random coil index (RCI-S2) were determined 

using the backbone assignments with TALOS-N (Shen and Bax 2013) and PECAN 

(Eghbalnia et al. 2005) web servers.

Assignment and data deposition

The Scc4 backbone and side chain assignments of 1H, 15N, and 13C resonances were 

deposited in the Biological Magnetic Resonance Data Bank (http://www.bmrb.wisc.edu/) 

with the accession number 28101. The assigned backbone amide (15N-1HN) peaks are 

shown in the 2D 1H,15N HSQC spectrum of Scc4 in Fig. 1. Scc4 consists of 133 amino acids 

including 3 proline residues (P30, P57 and P99). Hence, from 130 residues, the 15N-1HN 

chemical shifts of 116 residues (89.2%) were assigned in the 1H,15N HSQC spectrum. The 
15N-1HN peaks of some residues (namely S33, A43, A51, G54, E55, I56, G85, D87, and 

S88) have lower intensity compared to the majority of the peaks; these residues were 

assigned using the sidechain spectra, including the 3D HC(C)H-TOCSY experiment. In 

addition, some of the residues exhibit multiple peaks in the 1H,15N HSQC spectrum, 

indicating the presence of multiple conformations in slow exchange for these residues 

(Online Resource 1, Supplementary Fig. 1 and 2). The major peaks with higher intensity 

were assigned to determine the structure of the most abundant conformational state. The 

minor peaks, which could be identified, include E3’, K4’, I6’, F9’, N42’, I47’, N73’, E78’, 

L127’ (labeled with an apostrophe to differentiate from the major peak). The cis/trans 

isomerization of 3 proline residues (P30, P57 and P99) was investigated using the 

PROMEGA (Proline Omega angle prediction from sequence and chemical shifts) server 

(Shen and Bax 2010). All three prolines in the major conformation of the protein were found 

to be in the trans configuration. On the other hand, we cannot rule out that the minor 

conformation may include one or more of the prolines in the cis configuration. Unassigned 

residues (14) include I31, R36, M37, F52, L53, D61, I62, L84, L86, D89, and A92-V95. 

Unassigned peaks (12) in the 1H,15N HSQC are shown in Supplementary Fig. 1 (Online 

Resource 1) and were not assigned due to weak or ambiguous Cα and Cβ resonances (Online 

Resource 1, Supplementary Figs. 3 and 4). The assignment completeness of the Cα, Cβ, and 

C resonances was calculated using the completeness counter in NMRFAM-SPARKY: 130 of 
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133 Cα (97.7%), 118 of 122 Cβ (96.7%), and 115 of 133 C (86.5%). The secondary structure 

predictions of Scc4 with TALOS-N and PECAN servers were obtained using the chemical 

shift assignments. According to both predictions shown in Fig. 2a (TALOS-N) and 2b 

(PECAN), with the RSI-S2 values from TALOS-N shown in Fig. 2c, Scc4 contains 3 α-

helices and 5 β-strands. The RCI-S2 values calculated using TALOS-N (Fig. 2c) indicate 

that residues 1–52, 60–71, 83–84, 88–125 are ordered (RCI-S2 > 0.7) and residues 53–59, 

72–82, 85–87, and 126–133 are disordered (RCI-S2 < 0.7).

Mapping the results onto the homology model of Scc4 provides insight into the dynamic 

behavior of Scc4. We hypothesize that this dynamic behavior plays a role in Scc4’s dual 

functions and the mechanism of switching between functions. Unlike most class I T3SS 

chaperones, Scc4 does not function as a homodimer to bind CopN, but rather binds Scc1 to 

form a heterodimer. The Scc4:Scc1 interaction has very high affinity, while Scc4 alone 

forms various aggregation states that depend on the buffer conditions (Shen et al. 2015). In 

Fig. 3a, the unassigned residues are shaded purple and the assigned residues with broad 

peaks in the 1H,15N-HSQC are shaded in dark blue. These residues fall predominantly 

across the beta sheet and include each strand, with most of the residues converging at one 

end of the β3-β5-β4 structure, indicating a dynamic region across the beta sheet. Resonances 

that exhibited minor peaks (residues shaded in pink in Fig. 3a) do not cluster well with the 

exception of the residues in the α1 helix, which could result from the slow exchange of the 

N-terminal helix between two conformations. The proximity of the proline residues (shaded 

in medium blue) makes it unlikely that cis/trans isomerization is involved in this chemical 

exchange. The determined secondary structure from the NMR data (Fig. 2a,b) differ in some 

regions from the predicted secondary structure from Phyre2 (Fig. 3b). The differences are 

indicated in Fig. 3b and include an overall decrease in secondary structure, especially within 

the unassigned β3-β5-β4 region and the α2 helix. The RCI-S2 parameters in this region are 

consistent with low values (RCI-S2 < 0.7) for residues 53–59 (β3), 85–87 (β4), and 72–82 

(α2) as shown in Fig. 3b with double sided arrows. The order of the NMR-determined 

secondary structural elements is consistent with the topology of class I T3SS chaperones 

(Page and Parsot 2002), with the exception of β4, which is determined to be random coil 

(PECAN) with a low beta strand propensity (TALOS-N) and dynamic residues (85–87). For 

the α2 helix, the NMR data predicts that residues 72–82 are random coil (TALOS-N and 

PECAN) and dynamic (RCI-S2 < 0.7) while the Phyre2 model predicts this region to be 

alpha helical. Considering that the Phyre2 model is based on the X-ray crystal structures of 

homodimer class I T3SS chaperones and the homodimer interface is β4-α2, the NMR data 

likely describe the correct state of free Scc4, and the Scc4 Phyre2 model likely resembles the 

structure of Scc4 in complex with Scc1. Further investigation into the structures of Scc4 

alone and in complex with its T3SS and RNAP partners are necessary to confirm these 

speculations.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
The 1H,15N HSQC spectrum of Scc4 with assigned resonances. The dashed lines indicate 

the side chain 1H,15N peaks.
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Fig. 2. 
Secondary structure predictions of Scc4 by (a) TALOS-N and (b) PECAN, and (c) the 

random coil index order parameters (RCI-S2) determined using TALOS-N. (a,b) Green and 

blue bars indicate the propensity/probability of a residue to adopt alpha helical or beta strand 

secondary structures, respectively. (c) The green to red indicates the determined protein 

flexibility from ordered to flexible.
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Fig. 3. 
The Phyre2 structural homology model of Scc4 with the (a) assignment status and (b) 

secondary structure comparison. (a) The assigned residues are shaded in light blue, the 

prolines in medium blue, and the unassigned residues are in purple. Residues that show 

minor peaks in the 1H,15N-HSQC spectrum are shaded in pink, and residues with broad 

resonances are shaded in dark blue. (b) The secondary structure of the Phyre2 homology 

model is shown as a ribbon drawing. Residues shaded in yellow have NMR-determined 

secondary structure in agreement with the homology model. Residues with NMR-

determined secondary structures that are different from the model are shaded in green for 

beta strands, orange for alpha helices, and red for random coil. The arrows indicate residues 

that are dynamic with RCI-S2 values < 0.7. The color schemes are based on palettes for 

color blindness and interpretability in grayscale (Krzywinski 2020).
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Table 1.

Experimental details of 2D and 3D spectra collected for backbone and sidechain assignments.

Experiment No. of scans Spectral window (ppm) Complex points Offset (ppm)

15N -HSQC& 8 16.67 × 26.318 1024 × 128 4.773 × 117.88

CBCA(CO)NH* 32 16.67 × 57.009 × 26.318 1024 × 52 × 42 4.773 × 43.75 × 117.88

HNCACB* 16 15.44 × 63.141 × 32.256 1024 × 66 × 42 4.771 × 43.718 × 117.666

HNCO* 32 16.285 × 13.924 × 29.619 1024 × 48 × 48 4.773 × 175.945 × 117.692

HN(CO)CA* 52 16.67 × 27.841 × 26.318 800 × 64 × 42 4.773 × 55.8 × 117.88

HNCA* 52 16.67 × 27.841 × 26.318 800 × 64 × 42 4.773 × 55.8 × 117.88

1H-13C-HSQC-CT$ 16 20.04 × 72.918 1024 × 256 4.797 × 42.964

C(CO)NH* 64 20.04 × 76.233 × 26.318 1024 × 64 × 32 4.797 × 42.964 × 117.904

HBHA(CO)NH# 32 20.04 × 6.0 × 26.318 1024 × 60 × 40 4.797 × 4.797 × 117.904

H(CCO)NH# 64 20.04 × 8.335 × 26.318 1024 × 64 × 32 4.797 × 4.797 × 117.904

HC(C)H-TOCSY@ 8 20.04 × 8.335 × 72.925 1024 × 64 × 64 4.797 × 4.797 × 42.964

Aromatic 1H, 13CHSQC-CT$ 32 16.669 × 29.167 1024 × 70 4.797 × 125.569

Aromatic Cβ-13CHSQC-CT$ 32 16.669 × 18.561 1024 × 124 4.797 × 35.186

(HB)CB(CGCD)HD$ 512 16.669 × 19.887 1024 × 23 4.797 × 35.186

(HB)CB(CGCDCE)HE$ 512 16.669 × 19.887 1024 × 23 4.797 × 35.186

Aromatic HCCHTOCSY@ 16 20.04 × 3.334 × 29.165 1024 × 64 × 48 4.773 × 4.773 × 125.552

&
(1H × 15N);

*
(1H × 13C × 15N);

$
(1H × 13C);

#
(1H × 1H × 15N);

@
(1H × 1H × 13C)
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