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Abstract

Background: Our previous studies showed that neutrophil infiltration and activation plays an 

important role in the pathogenesis of abdominal aortic aneurysms (AAA). However, there is a lack 

of noninvasive, inflammatory cell-specific molecular imaging methods to provide early diagnosis 

of AAA formation. Formyl peptide receptor 1 (FPR1) is rapidly upregulated on neutrophils during 

inflammation. Therefore, it is hypothesized that use of cFLFLF, a PEGylated peptide ligand that 

binds FPR1 on activated neutrophils, would permit accurate and noninvasive diagnosis of AAA 

via single photon emission computed tomography (SPECT) imaging.

Materials and Methods: Male C57BL/6 (WT) mice were treated with topical elastase (0.4 

U/ml type 1 porcine pancreatic elastase) or heat inactivated elastase (control) and aortic diameter 

was measured by video micrometry. Comparative histology was performed on day 14 to assess 

neutrophil infiltration in aortic tissue. We performed near-infrared fluorescence imaging using c-

FLFLF-Cy7 probe on days 7 and 14 post-elastase treatment and measured fluorescence intensity 

ex vivo in excised aortic tissue. Separate group of animals were injected with 99mTc-c-FLFLF two 

hours prior to SPECT imaging on day 14 using a SPECT/CT/PET trimodal scanner. Co-expression 

of neutrophils with c-FLFLF was also performed on aortic tissue by immunostaining on day 14.

Results: Aortic diameter was significantly increased in the elastase group compared to controls 

on days 7 and 14. Simultaneously, a marked increase in neutrophil infiltration and elastin 

degradation, as well as decrease in smooth muscle integrity, was observed in aortic tissue after 

elastase-treatment compared to controls. Moreover, a significant increase in fluorescence intensity 

of c-FLFLF-Cy7 imaging probe was also observed in elastase-treated mice on day 7 
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(approximately 2-fold increase) and day 14 (approximately 2.5-fold increase) compared to 

respective controls. SPECT imaging demonstrated a multi-fold increase in signal intensity for 
99mTc-cFLFLF radiolabel probe in mice with AAA compared to controls on day 14. 

Immunostaining of aortic tissue with c-FLFLF-Cy5 demonstrated a marked increase in co-

expression with neutrophils in AAA compared to controls.

Conclusions: cFLFLF, a novel FPR1 ligand, enables quantifiable, noninvasive diagnosis and 

progression of AAAs. Clinical application of this inflammatory cell-specific, molecular probe 

using SPECT imaging may permit early diagnosis of AAA formation, enabling targeted 

therapeutic interventions and preventing impending aortic rupture.
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Introduction

Abdominal aortic aneurysm (AAA) is an insidious disease, affecting 7% males older than 

65.1, 2 Development of aneurysms is generally asymptomatic until impending rupture, which 

is associated with a 50% pre-hospital mortality and accounts for approximately 15,000 

deaths annually in the United States.3 The current standard of patient care in these cases is 

surveillance with imaging followed by surgery, via open or endovascular intervention, once 

symptoms such as abdominal pain develop or the aneurysm has grown above 5.5 cm or 5 cm 

for males and females, respectively.4, 5 Currently, there are no known medical therapies or 

pharmaceutical strategies to attenuate AAA formation and prevent impending aortic rupture.

Vascular inflammation and subsequent remodeling has been shown to play a pivotal role in 

the pathogenesis of AAA.6, 7 Previous studies from our group and others have implicated 

polymorphonuclear neutrophils (PMN) infiltration and activation as playing a prominent 

role in AAA formation.8–10 However, the ideal imaging modality to quantify, describe, and 

identify inflammation, including PMN infiltration, within early aortic aneurysms in vivo, 

continues to elude clinical practice which mostly relies on ultrasound-based imaging of 

aneurysm size. Single-photon emission computed tomography (SPECT) imaging has shown 

promise as a noninvasive modality to characterize leukocytes’ role in the inflammatory 

cascade in a myriad of pathologic processes via tagging with an imaging probe called 

cinnamoyl-F-(D)L-F-(D)L-F-K (cFLFLF).11–15 This probe, when linked with polyethylene 

glycol (PEG), gives it a favorable pharmacokinetic profile, and targets formyl peptide 

receptor 1 (FPR1), a G-protein coupled receptor, which is over expressed in activated PMNs.
16, 17 The complex of technetium-99m (99mTc) to this peptide allows visualization of 

inflammatory foci with SPECT imaging is plausible wherein activated neutrophils have 

accumulated under inflammatory conditions.11 The application of 99mTc-cFLFLF using 

SPECT imaging may fill the void of noninvasive imaging techniques required to characterize 

inflammation, provide early diagnosis of AAA, and predict the risk of impending aortic 

rupture.
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Therefore, the objective of this study was to investigate the diagnostic ability of in vivo 
neutrophil labeling with 99mTc-cFLFLF using SPECT imaging in a murine model of AAA. 

We hypothesize that use of c-FLFLF will bind FPR1 receptors on activated PMNs accrued in 

the inflamed aortic tissue and permit accurate, noninvasive diagnosis of AAA via SPECT 

imaging.

Materials and Methods

Elastase treatment model of AAA

C57BL/6 wild-type male mice (8- to 12-weeks old, The Jackson Laboratory, Bar Harbor, 

ME) were anesthetized using isoflurane and underwent midline laparotomy with 

evisceration of abdominal contents to expose the infra-renal abdominal aorta. The infra-renal 

abdominal aorta was dissected away from the surrounding tissues and inferior vena cava and 

either 5 microliters of porcine pancreatic elastase (0.4 U/ml type 1 porcine pancreatic 

elastase, Sigma Aldrich, St. Louis, MO, USA) or heat inactivated elastase (deactivated 

elastase, serving as control) was topically applied to the exposed aorta. Topical elastase 

remained on the aorta for 5 minutes and then excess was removed with a sponge. The 

abdominal viscera were returned to the peritoneal cavity and the abdominal wall was closed 

in layers. Appropriate analgesics were given intraperitoneally for pain relief (0.02 ml 

Buprenorphine). Mouse aortas were procured on either post-operative day 7 or 14, and 

preserved in formalin for tissue analysis. Four groups of animals were compared: mice 

treated with deactivated elastase with aortic procurement at day 7 (Control Day 7) or day 14 

(Control Day 14) and mice treated with elastase with aortic procurement at day 7 (Elastase 

Day 7) or day 14 (Elastase Day 14). Aortic diameter was determined using video 

photomicrometry using Leica Application Suite 4.3 software (Leica Microsystems, Buffalo 

Grove, IL, USA). Aortic dilatation (%) was calculated as follows: [(maximal abdominal 

aortic diameter– internal control abdominal aortic diameter/internal control abdominal aortic 

diameter) X 100%)]. The animal protocol was approved by the University of Virginia 

Institutional Animal Care and Use Committee (protocol #3634) in compliance with the 

Office of Laboratory Animal Welfare.

99mTc-c-FLFLF SPECT imaging probe

We have previously described the synthesis and validation of cFLFLF as a peptide ligand to 

FPR1.11, 14 We have also shown that 99mTc-cFLFLF is a neutrophil specific radioligand for 

SPECT imaging.11, 14 99mTc-cFLFLF was synthesized using PEGylated cFLFLF conjugated 

with hydrazinonicotinamide and complexed with 99mTc for SPECT imaging. The PEGylated 

cFLFLF was also labeled with Cy5-NHS or Cy5-NHS esters (Sigma-Aldrich, St. Louis, 

MO) for in vivo and ex vivo fluorescence imaging, respectively.

SPECT/CT Imaging

SPECT/CT was performed on the Albira Si Trimodal pre-clinical scanner (Bruker) 

comprised of PET, SPECT and CT sub-systems. SPECT/CT modalities are coplanar with 

the SPECT imaging module fitted with two opposing 180-degree gamma cameras. The CT 

module, X-ray emitter and detector are placed orthogonal to SPECT module. Two separate 

groups of mice (elastase treated and heat inactivated elastase controls) were injected with 
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200 μL of 99mTc-c-FLFLF (40–60 MBq) via tail vein injection two hours prior to imaging 

on post-operative days 7 and 14. After two hours of tracer injection, the animals were 

anesthetized using continuous inhaled isoflurane (2–3% in oxygen), the mouse was placed 

supine in a smallest cassette provided by Albira equipped with controlled temperature and 

SPECT imaging was performed using 1.0 mm single pinhole collimator (SPH) with 50 mm 

field of view. The CT module is equipped with variable current and voltage has an axial 

FOV of 65 mm. Upon completion of SPECT, computed tomography (CT) acquisition was 

performed using high voltage setup in standard protocol. Automated reconstruction of 

tomograph was achieved with no attenuation or scatter correction using the ordered subsets 

expectation-maximization (OSEM) routine provided by Albira Software Suite. Image 

(cubic) voxel size ranges from 0.28 mm (25 mm FOV) to 1.0 mm (120 mm FOV). The 

reconstructed SPECT and CT images were processed, fused and analyzed with π.pmode 

software (3.8 version, PMOD Technologies LLC, Zurich, Switzerland). Organ uptake of 
99mTc-cFLFLF was measured using a gamma counter (Perkin Elmer, Waltham, MA) and 

reported as a relative percentage of total radioactivity of harvested aortic tissue and 

normalized to tissue weight, and injected dose to animal body weight.

Near-infrared Fluorescence Imaging

Near-infrared Fluorescence imaging was performed on a separate group of animals by using 

c-FLFLF-Cy7 probe on day 7 and 14 post-elastase treatment 2 hours prior to imaging. Mice 

received a tail-vein injection of 100 μL of c-FLFLF-Cy7 probe (2nM), and then after two 

hours were imaged with IVIS Spectrum Fluorescence Imaging system (excitation 745 

nanometers (nm), emission 820 nm; PerkinElmer, Inc., Waltham, MA) for near infrared 

fluorescence. After imaging, animals were euthanized with subsequent organ and aortic 

procurement. Fluorescence intensity was measured ex vivo using the same Imager. Total 

fluorescence intensity was obtained for each aneurysm by focusing on a region of interest 

incorporating the entire aortic sample.

Histology

Murine AAA specimens were harvested and fixed in 10% formalin. After 24 hours, fixed 

samples were embedded in paraffin, and sections were stained by immunohistochemistry as 

previously reported.18 Aortic sections were also stained with hematoxylin and eosin, and 

Verhoeff-Van Gieson for elastin. For neutrophil immunostaining, the aorta sections (5μm) 

were dehydrated and incubated with 1% hydrogen peroxide followed by boiling in 1X 

unmasking solution (Vector Laboratories, Burlingame, CA) for 15 minutes and blocked with 

10% serum. After antigen retrieval, antibodies were bound and detected using VectaStain 

Elite Kit (Vector Laboratories Inc., Burlingame, California). Antibodies for IHC staining 

were anti-mouse anti-Neutrophil (Ly6B.2) for neutrophils (1:10,000; AbD Serotec, Oxford, 

United Kingdom). Visualization color development was completed using diaminobenzidine 

(Dako Corporation, Carpinteria, California) to produce a brown precipitate. Sections were 

then counterstained with hematoxylin. For smooth muscle α-actin (SM-αA) staining, the 

alkaline phosphatase-conjugated monoclonal anti–SM-αA antibody (Sigma, St Louis, MO) 

was used. Images were acquired using 20X magnification by an Olympus microscope 

equipped with an Olympus digital camera, and ImagePro software. Quantification of 

histological distribution for each group was performed according to the following grading:
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Neutrophil staining: 1 = none to few, 2 = mild, 3 = moderate, 4 = extensive; Smooth muscle 

alpha actin staining: 1 = none to few, 2 = mild, 3 = moderate, 4 = extensive; Elastin staining: 

1= concentric heavy rings of elastin, 2 = mild elastolysis, 3 = moderate elastolysis, 4 = 

extensive elastolysis.

Immunofluorescence staining of aortic tissue

Co-expression of neutrophils (Ly6G-FITC) and c-FLFLF-Cy5 was performed by 

immunostaining of aortic tissue on post-operative day 14, using immunofluorescence 

staining as described previously.19 Briefly, aortic tissue sections were incubated with anti-

mouse Ly6G-FITC antibody (1:100, Biolegend) and c-FLFLF-Cy5 peptide (2nM, 1:100) at 

4° C overnight. Images were obtained with an Olympus IX81 inverted confocal microscope 

(Olympus Corp) with a CCD camera at 200X or 400X magnification. The images were 

processed using slidebook 6 software (3I Digital microscopy imaging, Denver, CO). For 

intensity quantification of fluorescence, images were analyzed by ImageJ software (National 

Institute of Health, Bethesda, MD), measuring the mean intensity of corresponding sections 

of the respective sections.

Statistical Analysis

Values are presented as the mean ± standard error of mean and statistical evaluation was 

performed using GraphPad Prism 6 software (GraphPad, La Jolla, CA). One-way analysis of 

variance (ANOVA) after post-hoc Tukey’s test was used to determine the differences among 

multiple comparative groups. Unpaired t-test with nonparametric Mann-Whitney test was 

also used for pair-wise comparisons of groups. P value less than 0.05 was considered 

statistically significant.

Results

Neutrophil infiltration is an early event during AAA formation

Using the topical elastase-treatment model of AAA, we observed a significant increase in 

aortic diameter on days 7 and 14 in WT mice compared to heat-inactivated elastase controls 

(Fig. 1). Significant increase in aortic diameter was observed in elastase-treated mice on day 

7 compared to respective controls (130.1±9.3% vs. 2.2±0.9%; p<0.0001; Fig. 1B–C). 

Similarly, elastase-treated WT mice had the maximum increase in aortic diameter compared 

to respective controls on day 14 (154±11.9% vs. 4.9±4.2%; p<0.0001). Aortic diameter was 

observed to be the highest on day 14, however it was not significantly different than day 7 

(154±11.9% vs. 130.1±9.3%; p=0.3). Also, elastase-treated mice demonstrate increased 

neutrophil infiltration, distorted aortic morphology as seen by decrease in smooth muscle α-

actin expression as well as decrease in elastic fiber disruption compared to controls on days 

7 and 14 (Fig. 2).

Fluorescence imaging of AAA with Cy7-cFLFLF

We performed near-infrared fluorescence imaging using Cy7-cFLFLF in WT mice on days 7 

and 14 after elastase treatment and respective controls. The cFLFLF fluorescence intensity 

was found to be markedly increased in the elastase-treated groups compared to respective 

controls both on days 7 and 14 (Fig. 3A–B). Ex vivo fluorescence imaging also confirmed 
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and demonstrated increased Cy7-cFLFLF intensity in elastase-treated aortas compared to 

controls on day 14 (Fig. 3C). Upon quantification of ex vivo aortic tissue, a significant 

increase in fluorescence intensity of c-FLFLF was observed in elastase-treated mice 

compared to controls on day 7 (3.9×1003±0.4×102 vs. 1.9 ×1003±0.1×1002 RFU; relative 

fluorescence units; p=0.03) and day 14 (6.3×1003±0.7×102 vs. 2.6×1003±0.2×1002 RFU; 

p=0.0001), respectively (Fig. 3D). A significant increase in c-FLFLF florescence intensity 

was observed in elastase-treated mice on day 14 compared to day 7 (6.3×1003±0.7×102 vs. 

3.9×1003±0.4×102 RFU; p=0.009).

SPECT/CT imaging of AAA with 99mTc-cFLFLF

SPECT/CT imaging with 99mTc-cFLFLF permitted imaging of AAA obtained on day 14. 

Use of SPECT/CT imaging with the FPR1 ligand (99mTc-cFLFLF) demonstrated a marked 

increase in probe uptake at the site of AAA compared to controls (Fig. 4A). Moreover, there 

was a significant increase in 99mTc-cFLFLF radioactivity in excised aortic tissue of elastase-

treated mice compared to controls (Fig. 4B). Importantly, the 99mTc-cFLFLF uptake 

correlated with increase in neutrophil infiltration and aortic diameter phenotype, thereby 

enhancing the importance of this non-invasive imaging technique in diagnosing aortic 

inflammation and vascular remodeling during AAA.

cFLFLF labels neutrophils in AAA tissue

Immunofluorescent staining of aortic sections demonstrated that control mice demonstrated 

few neutrophils and minimal Cy7-cFLFLF expression (Fig. 5A, top). However, in the 

elastase-treated mice there was a marked increase in neutrophil infiltration and more 

importantly, cFLFLF-Cy5 binding was largely limited to infiltrating neutrophils as 

demonstrated by increased co-expression of cFLFLF-Cy5 with anti-Ly6G-FITC (Fig. 5A, 

bottom). Quantification of same normalized areas of imaging showed a significant increase 

in fluorescence intensity of c-FLFLF-Cy5 and Ly6G-FITC (Fig. 5B). This data demonstrates 

that c-FLFLF can bind neutrophils in aortic tissue to signify the presence of inflammation 

during AAA formation.

Discussion

This study demonstrates the feasibility of using a novel FPR1 imaging ligand, cFLFLF, to 

noninvasively identify aortic inflammation in AAAs to help make the diagnosis as well as 

aiding in the progression of AAAs. In a murine model of AAA formation, mice treated with 

topical elastase to induce aneurysm formation had a markedly enhanced 99mTc-cFLFLF 

signal intensity compared to controls on post-operative day 14 using SPECT scans. 

Importantly, results of SPECT/CT scans, a clinically relevant imaging modality, correlated 

with increase in aortic diameter and neutrophil infiltration as well as vascular remodeling 

observed in AAA tissue compared to controls. Additionally, a significant increase in 

fluorescence intensity was observed in elastase-treated mice on days 7 and 14 compared to 

their respective controls using fluorescence imaging. The clinical application of cell-

specific, molecular imaging probes such as cFLFLF may permit early diagnosis of AAA as 

well as track the progression of AAA. This may enable targeted therapeutic interventions to 
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monitor aortic inflammation, vascular remodeling and AAA progression to prevent 

impending aortic rupture.

AAAs are an indolent disease process, often asymptomatic until rupture is imminent.20 

Aortic rupture is generally a catastrophic event with an associated mortality ranging from 

75–90%.21 Surveillance with CT scans or ultrasound allows macroscopic evaluation of 

aortic diameter, which is used as a gauge for when surgical intervention is indicated. 

However, these modalities fail to assess the complicated underlying pathophysiology of 

AAA, including the role of inflammation, and more specifically, leukocytes such as PMNs, 

play in their formation.8, 22 Molecular imaging modalities have come to the forefront as 

noninvasive ways to characterize the complexity of AAA pathophysiology and develop 

potential prognostic indicators and therapeutic interventions. Currently, the gold standard of 

molecular imaging of inflammation is ex vivo, with removal of cells followed by tagging 

and subsequent re-injection of cells, which is fraught with complication.23 Molecular 

imaging modalities in vivo have been attempted using monoclonal antibodies with limited 

success.23 Novel in vivo molecular imaging techniques are currently being investigated, 

including magnetic resonance imaging (MRI), positron emission tomography (PET), and 

SPECT, each with its own strengths and weaknesses.

Ultra small super-paramagnetic iron oxide (USPIO)-enhanced magnetic resonance imaging 

has been utilized to image macrophage infiltration in carotid and aortic atheromas in both 

animal models and in vivo human studies.24–28 Advantages of molecular MRI include high 

soft tissue contrast, high spatial and temporal resolution, and avoidance of ionizing radiation 

and nephropathy associated with contrast administration.29 However, endogenous iron 

present from hemorrhage or intramural thrombus found within the aneurysmal wall hinders 

the utility of this imaging modality for inflammation evaluation.30 PET/CT scanning has 

also initially shown promise with the utilization of 18F-fluorodeoxyglucose (18F-FDG), 

which is correlated with rapid aortic enlargement and rupture.31 18F-FDG is a PET contrast 

agent that binds glucose transporter proteins (GLUT) in a competitive manner with glucose 

in metabolically active cells, including inflammatory cell. We have previously demonstrated 

increased 18F-FDG uptake in micro-PET imaging that was associated with increased 

inflammation in ruptured AAA walls in a rat rupture model, which was also confirmed by 

another study by Courtois et al. 32, 33 18F-FDG metabolism and uptake does relate to 

leukocyte infiltration in blood vessel walls, however it is a non-specific marker for 

inflammation, with uptake proportional to metabolic activity of the cell.34 All metabolically 

active cells absorb 18F-FDG and therefore, due to this lack of specificity in determining cell 

types associated with inflammatory processes, does not appear to be the ideal modality for 

assessing progression of inflammation in AAA.

SPECT imaging has been introduced as an alternative non-invasive method to more 

specifically identify pro-inflammatory PMNs within the aortic wall in vivo. This modality 

uses a blend of radioactive tracers, such as Technetium-99m (99mTc), iodine-123 (123I), and 

Indium-111 (111In) emitting gamma rays, and probes specific for cells to create an image.
35, 36 While SPECT imaging may not provide the same spatiotemporal resolution as MRI or 

PET, it does offer a myriad of other advantages, including being more accessible to bedside 

imaging of patients, less expensive, and using radionucleotides that decay at a slower rate, 
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which permits longer time for study.37, 38 Additionally, SPECT provides a comprehensive 3-

dimensional representative image of aneurysm formation.39

The use of 99mTc-cFLFLF based SPECT imaging to target activated PMNs in AAA has 

important clinical implications. The role of PMNs in AAA formation has been well 

established as we have previously shown that depletion of circulating neutrophils leads to a 

decrease in AAA phenotype compared to untreated group in a murine model.8 Additionally, 

He et al demonstrated that stimulation of formyl peptide receptor (FPR) 1 and FPR2, 

recruited Mac-1-mediated neutrophils and exacerbated AAA growth, whereas antagonism of 

these receptors attenuated AAA development.9 FPR is overexpressed in activated 

neutrophils and its activation induces release of pro-inflammatory mediators and gene 

transcription.16, 17 99mTc-cFLFLF is a radiolabeled FPR1 receptor imaging probe that 

selectively binds to activated PMNs in AAA and allows for noninvasive in vivo imaging of 

inflammation in the aortic wall.15 The use of this novel imaging tracer has demonstrated 

efficacy in other disease processes, such as acute intervertebral disk herniation, among 

others, and holds promise for evaluation of AAA.12 We observed a sequential increase in 

fluorescence intensity of c-FLFLF on day 14 compared to day 7 although there was no 

further enhancement in corresponding neutrophil infiltration. The increase in c-FLFLF 

intensity is likely due to the increased activation of FPR1 on infiltrating neutrophils that 

correspond to persistent aortic inflammation. Further studies using our chronic aortic rupture 

model will help in delineating the c-FLFLF-mediated monitoring of aortic inflammation and 

progression leading to aortic rupture. Consequently, aortic SPECT imaging with 99mTc-

cFLFLF in vivo is a clinically relevant and noninvasive option to track the progression of 

neutrophil infiltration as well as aortic inflammation and growth of AAA that can potentially 

predict aortic rupture.

There are a few limitations of this study. The murine AAA model attempts to replicate a 

chronic disease process that occurs over many years in an acute period, thereby limiting its 

applicability to human disease. However, our previous studies have demonstrated a 

remarkable synergy between immunopathology of human AAA tissue and the experimental 

murine models thereby underlining the importance of the proposed inflammatory signaling 

pathways.18, 40, 41 Further studies in large animals i.e. our recently described swine model of 

AAA as well as murine aortic rupture model will enhance and validate clinical translatability 

of the c-FLFLF-based SPECT imaging for diagnosing and monitoring the progression of 

AAA42–44. Additionally, as mentioned above, SPECT does not provide the same 

spatiotemporal resolution as MRI or PET scans. However, an advantage of cFLFLF probe is 

that it can be coupled with radioisotopes specific for PET, such as Cu-6414, and future 

studies can decipher these additional imaging modalities for diagnosing AAA. Finally, 

although cFLFLF mostly binds activated PMNs, there may be multiple sites of neutrophil 

mediated inflammation in the body simultaneously, such as infection. The radiolabel could 

tag all areas of neutrophil activation, including the aneurysmal wall, thereby making 

differentiation difficult to decipher. However, the spatiotemporal specificity of CT along 

with SPECT or PET scans does markedly enhance the specificity of aneurysmal 

inflammation for detection of AAA.
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Conclusions

Using an established murine model of AAA, SPECT imaging with tagging of activated 

neutrophils using 99mTc-cFLFLF, is a novel noninvasive in vivo imaging modality to 

accurately quantify and characterize inflammation within the aortic wall. This modality 

shows promise in the early diagnosis of AAA and detection of aortic inflammation by 

targeting specific activated immune cells i.e. neutrophils.. Future studies will delineate the 

progression of AAA to aortic rupture to decipher the c-FLFLF-mediated detection and 

monitoring of progressive aortic inflammation as well as targeting other immune cells 

implicated in AAA pathophysiology, such as T cells, M1 and M2 macrophages.
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Figure 1. Study design and phenotypic data.
(A) The schematic of the elastase treatment murine model of AAA. Infrarenal mouse aortas 

were treated with elastase or deactivated elastase (Control). Aortic diameter was measured 

on days 7 or 14, and tissue was harvested for further analysis. SPECT or fluorescence 

imaging was performed on days 7 and 14. (B) Elastase treated mice demonstrated a 

significant increase in aortic diameter compared with deactivated elastase treated mice on 

days 7 and 14, respectively. (C) Representative images of aortic phenotype in all groups. 

Aortic diameter increased in elastase treated groups compared to control groups. *P<0.0001 

vs. Control Day 7; #P<0.0001 vs. Control Day 14; ns, not significant; n=6–15 mice/group.
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Figure 2. Increased neutrophil infiltration in AAA tissue.
Comparative histology performed on days 7 and 14 indicates that elastase-treated WT mice 

have a marked increase in neutrophil (PMN) infiltration, a decrease in smooth muscle cell α-

actin (SM-αA) expression, as well as increase in elastic fiber disruption (Verhoeff-Van 

Gieson staining for elastin) compared to deactivated elastase-treated (control) mice, 

respectively. Quantification of histologic grading indicates a significant increase in 

neutrophil infiltration, decrease in SM-αA expression and increase in elastic fiber disruption 

in elastase-treated aortic tissue on days 7 and 14 compared to controls. Arrows indicate areas 

of immunostaining. *P<0.005 vs. Control Day 7; #P<0.0005 vs. Control Day 14; ns, not 

significant; n=5 mice/group.
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Figure 3. Increased uptake of c-FLFLF in AAA by fluorescence imaging of mice.
Near-infrared fluorescence imaging of c-FLFLF-Cy7 in live (shaved) anesthetized mice 

demonstrating aortic inflammation (elevated fluorescence) at the site of infrarenal AAA 

formation (see arrows) compared to controls on days 7 (A) and 14 (B). (C) Near-infrared 

fluorescence imaging of c-FLFLF-Cy7 in ex vivo aortic tissue demonstrating elevated 

fluorescence compared to controls on day14. (D) Fluorescence intensity (RFU; relative 

fluorescence units) in ex vivo aortic tissue was significantly increased on day 7 as well as on 

day 14 in elastase-treated mice (AAA) compared to respective controls. *P<0.05 vs. 

respective controls; #P<0.05 vs. Elastase Day 7; n=5 mice/group.
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Figure 4. Increased uptake of c-FLFLF in AAA by SPECT/CT imaging of mice.
(A) SPECT/CT imaging using 99mTc-cFLFLF demonstrated an increase in c-FLFLF uptake 

(shown by arrows) in elastase-treated mice (AAA) compared to controls on day 14, 

signifying increased aortic inflammation relative to aneurysms. CT and SPECT scans were 

utilized to image the animal as it moved along the axis of rotation, allowing for combination 

of CT and SPECT images using stored offset parameters. (B) A significant increase in 
99mTc-cFLFLF radioactivity was observed in harvested aortic tissue from elastase-treated 

mice compared to controls. *P<0.05 vs. control; n=4–5 mice/group.
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Figure 5. Co-expression of c-FLFLF with PMNs in AAA tissue.
(A) Immunostaining of murine aortic tissue demonstrates increased c-FLFLF-Cy5 (red) 

expression in elastase-treated WT mice (bottom panel) compared to controls (top panel) on 

day 14. A marked increase in neutrophil (Ly6G-FITC; green) expression is also observed in 

elastase-treated mice compared to control. Moreover, the c-FLFLF expression is co-

localized with neutrophils (Ly6G-FITC) indicating the neutrophil-specificity of the c-FLFLF 

probe. Arrows indicate specific and increased areas of c-FLFLF-Cy5 and Ly6G-FITC 

expression. (B) Quantification of same normalized areas of imaging demonstrates increased 

fluorescence intensity of c-FLFLF-Cy5 and Ly6G-FITC. ns, not significant; *P<0.05 vs. 

respective controls; n=5 mice/group.
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