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Abstract

This paper proposes a novel profile likelihood method for estimating the covariance parameters in 

exploratory factor analysis of high-dimensional Gaussian datasets with fewer observations than 

number of variables. An implicitly restarted Lanczos algorithm and a limited-memory quasi-

Newton method are implemented to develop a matrix-free framework for likelihood maximization. 

Simulation results show that our method is substantially faster than the expectation-maximization 

solution without sacrificing accuracy. Our method is applied to fit factor models on data from 

suicide attempters, suicide ideators and a control group.
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1 Introduction

Factor analysis (Anderson, 2003) is a multivariate statistical technique that characterizes 

dependence among variables using a small number of latent factors. Suppose that we have a 

sample Y1, Y2, …, Yn from the p-variate Gaussian distribution Np(μ, Σ) with mean vector μ 

and a covariance matrix Σ. We assume that Σ = ΛΛ⊤ + Ψ, where Λ is a p × q matrix of rank q 
that describes the amount of variance shared among the p coordinates and Ψ is a diagonal 

matrix with positive diagonal entries representing the unique variance specific to each 

coordinate. Factor analysis of Gaussian data for p < n was first formalized by Lawley (1940) 

with efficient maximum likelihood (ML) estimation methods proposed by Jöreskog (1967); 

Lawley and Maxwell (1962); Mardia et al. (2006); Anderson (2003) and others. These 

methods however do not apply to datasets with p > n that occur in applications such as the 

processing of microarray data (Sundberg and Feldmann, 2016), sequencing data (Leek and 

Storey, 2007; Leek, 2014; Buettner et al., 2017), analyzing the transcription factor activity 

profiles of gene regulatory networks using massive gene expression datasets (Pournara and 

Wernisch, 2007), portfolio analysis in stock returns (Ng et al., 2014) and others (Trendafilov 
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and Unkel, 2011). Necessary and sufficient conditions for the existence of MLE when p > n 
have been obtained by Robertson and Symons (2007). In such cases, the available computer 

memory may be inadequate to store the sample covariance matrix S or to make multiple 

copies of the dataset needed during the computation.

The expectation-maximization (EM) approach of Rubin and Thayer (1982) can be applied to 

datasets with p > n but is computationally slow. So, here we develop a profile likelihood 

method for high-dimensional Gaussian data. Our method allows us to compute the gradient 

of the profile likelihood function at negligible additional computational cost and to check 

first-order optimality, guaranteeing high accuracy. We develop a fast sophisticated 

computational framework called FAD (Factor Analysis of Data) to compute ML estimates of 

Λ and Ψ . Our framework is implemented in an R (R Core Team, 2019) package called fad.

The remainder of this paper is organized as follows. Section 2 describes the factor model for 

Gaussian data and an ML solution using the EM algorithm, and then proposes the profile 

likelihood and FAD. The performance of FAD relative to EM is evaluated in Section 3. 

Section 4 applies our methodology on a functional magnetic resonance imaging (fMRI) 

dataset related to suicidal behavior (Just et al., 2017). Section 5 concludes with some 

discussion. An online supplement, with sections, tables and figures referenced here with the 

prefix “S”, is available.

2 Methodology

2.1 Background and Preliminaries

Let Y be the n × p data matrix with Yi as its ith row. Then, in the setup of Section 1, the ML 

method profiles out μ using the sample mean vector and then maximizes the log-likelihood,

l(Λ, Ψ) = − n
2 plog(2π) + logdetΣ + TrΣ−1S (1)

where Y = Y⊤1/n, S = (Y − 1Y⊤)
⊤

(Y − 1Y⊤)/n, where 1 is the vector of 1s. The matrix S is 

almost surely singular and has rank n when p > n The factor model (1) is not identifiable 

because the matrices Λ and ΛQ give rise to the same likelihood for any orthogonal matrix Q 

So, additional constraints (see Anderson, 2003; Mardia et al., 2006, for more details) are 

imposed.

2.1.1 EM Algorithms for parameter estimation—The EM algorithm (Rubin and 

Thayer, 1982; McLachlan and Krishnan, 1996) exploits the structure of the factor covariance 

matrix by assuming q-variate standard normal latent factors and writing the factor model as 

Yi = μ + ΛZi + ϵi where ϵi’s are i.i.d Np(0, Ψ) and Zi’s are independent of ϵi’s. The EM 

algorithm is easily developed, with analytical expressions for both the expectation (E-step) 

and maximization (M-step) steps that can be speedily computed (see Section S1.1).

Although EM algorithms are guaranteed to increase the likelihood at each iteration and 

converge to a local maximum, they are well-known for their slow convergence. Further, 

these iterations run in a (pq + p)-dimensional space that can be slow for very large p. 
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Accelerated variants (Liu and Rubin, 2002; Varadhan and Roland, 2008) show superior 

performance in lowdimensional problems but come with additional computational overhead 

that dominates the gain in rate of convergence in high dimensions. EM algorithms also 

compromise on numerical accuracy by not checking for first-order optimality to enhance 

speed. So, we next develop a fast and accurate method for exploratory factor analysis (EFA) 

that is applicable in high dimensions.

2.2 Profile likelihood for parameter estimation

We start with the common and computationally useful identifiability restriction on Λ that 

constrains Γ = Λ⊤Ψ−1Λ to be diagonal with decreasing diagonal entries. This scale-invariant 

constraint is completely determined except for changes in sign in the columns of Λ . Under 

this constraint, Λ can be profiled out for a given Ψ as described in the following

Lemma 1. Suppose that Ψ is a given p.d. diagonal matrix. Suppose that the q largest singular 

values of W = n−1/2 Y − 1Y⊤ Ψ−1/2 are θ1 ≥ θ2 ≥ ⋯ ≥ θq and the corresponding p-

dimensional right-singular vectors are the columns of Vq Then the function Λ l(Λ, Ψ) is 

maximized at Λ = Ψ1/2VqΔ, where Δ is a q × q diagonal matrix with ith diagonal entry as 

max θi − 1, 0 1/2 . The profile log-likelihood equals,

lp(Ψ) = c − n
2 logdetΨ + TrΨ−1S + ∑

i = 1

q
logθi − θi + 1 (2)

where c is a constant that depends only on Y, n, p and q but not on Ψ .

Furthermore, the gradient of lp(Ψ) is given by:

∇lp(Ψ) = − n
2diag(ΛΛ⊤ + Ψ − S) .

Proof. See Section S1.2. □

The profile log-likelihood lp(Ψ) in (2) depends on Y only through the q largest singular 

values of W So, in order to compute lp(Ψ) and ∇lp(Ψ) we need to only compute the q 

largest singular values of W and the right singular vectors. For q << min(n, P), as is usually 

the case, these largest singular values and singular vectors can be computed very fast using 

Lanczos algorithm.

Further constraints on Ψ(e.g. Ψ = σ2Ip, σ2 > 0) can be easily incorporated. Also, ∇lp(Ψ) is 

available in closed form that enables us to check first-order optimality and ensure high 

accuracy.

Finally, lp(Ψ) is expressed in terms of S However, ML estimators are scale-equivariant, so 

we can estimate Λ and Ψ using the correlation matrix and scale back to S. A particular 

advantage of using the sample correlation matrix is that lp(Ψ) needs to be optimized over a 
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fixed bounded rectangle (0,1)p that does not depend on the data and is conceivably 

numerically robust.

2.3 Matrix-free computations

2.3.1 A Lanczos algorithm for calculating partial singular values and vectors
—In order to compute the profile likelihood and its gradient, we need the q largest singular 

values and right singular vectors of W We use the Lanczos algorithm (Baglama and Reichel, 

2005; Dutta and Mondal, 2014) with reorthogonalization and implicit restart. Suppose that 

m = max 2q + 1, 20  and that f1 ∈ ℝn is any random vector with ‖f1‖ = 1 . Let 

g1 = W⊤f1, α1 = ‖g1‖, F1 = f1 and G1 = g1 . For j = 1, …, m let rj = Wgj − αjfj,

reorthogonalize rj = rj − FjFj
⊤rj and set βj = ‖rj‖, and if j < m, update 

fj + 1 = rj/βj, Fj + 1 = Fj, fj + 1 , gj + 1 = W⊤fj + 1 − βjgj, reorthogonalize 

gj + 1 = gj + 1 − GjGj
⊤gj + 1, αj + 1 = ‖gj + 1‖, gj + 1 = gj + 1/αj + 1, and set Gj + 1 = Gj, gj + 1 .

Next, consider the m × m bidiagonal matrix Bm with diagonal entries α1,α2,...,αm with (j, j 

+ 1) entry βj for j = 1, 2, .., m − 1 and all other entries as 0. Now suppose that 

ℎ1 ≥ ℎ2 ≥ ⋯ ≥ ℎm are the singular values of Bm and that uj’s are the vj’s corresponding right 

and left singular vectors, which can be computed via a Sturm sequencing algorithm 

(Wilkinson, 1958). Also, let uj = Fmuj and vj = Gmv (1 ≤ j ≤ m) . Then it can shown that for 

all j, W⊤uj = ℎjvj and Wvj = ℎjuj + vj, mrm, where vj, m is the last entry of vj. Because 

‖rm‖ = βm and h1 is approximately the largest singular value of W, the algorithm stops if 

βm|vj, m| ≤ ℎ1δ holds for j = 1, 2, …, q, where δ is some prespecified tolerance level, and 

ℎ1, ℎ2, …, ℎq and v1, v2, …, vq are accurate approximations of the q largest singular values and 

corresponding right singular vectors of W.

Convergence of the reorthogonalized Lanczos algorithm often suffers from numerical 

instability that slows down convergence. To resolve this instability, Baglama and Reichel 

(2005) proposed restarting the Lanczos algorithm, but instead of starting from scratch, they 

initialized with the first q singular vectors To that end, let 

fm + 1 = rm/βm and reset Fq + 1 = u1, …, uq, fm + 1 . Then for j = 1, 2, …, q, let ρj = βmvj, m, and 

reset rq = W⊤fm + 1 − ∑j = 1
q ρjvj, αq + 1 = ‖rq‖, gq + 1 = rq/αq + 1, and 

Gq + 1 = v1, …, vq, gq + 1 . Define γ = fm + 1
⊤ Wgq + 1 and rq + 1 = Wgq + 1 − γfm + 1 . For 

j = 1, 2, …, m − q − 1, compute βq + j = ‖rq + j‖,

fq + j + 1 = rq + j/βq + j, Fq + j + 1 = Fq + j, fq + j + 1 , gq + j + 1 = (I − Gq + jGq + j
⊤ )W⊤fq + j + 1,

αq + j + 1 = ‖gq + j + 1‖, gq + j + 1 = gq + j + 1/αq + j + 1

and rq + j + 1 = (I − Fq + j + 1Fq + j + 1
⊤ )Wgq + j + 1 . This yields a matrix Bm with entries bj,j = 

hj and bj,q = ρj for j = 1,2,...,q, and bi,i = ρi for q + 1 ≤ i ≤ m and bi,i + 1 = αi for q + 1 ≤ i ≤ m 
− 1, and all other entries 0. The matrix Bm is not bidiagonal but is still small-dimensioned 

matrix whose singular value decomposition can be calculated very fast. Convergence of the 

Lanczos algorithm can be checked as before.
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The only way that W enters this algorithm is through matrix-vector products of the forms 

Wg and W⊤f, both of which can be computed without explicitly storing W Overall, this 

algorithm yields the q largest singular values and vectors in O(qnp) computational cost using 

only O(qp) additional memory, resulting in substantial gains over the traditional methods 

(Jöreskog, 1967; Lawley and Maxwell, 1962). These traditional methods require a full 

eigenvalue decomposition of W⊤W that is of O(p3) computational complexity and requires) 

O(p2) memory storage space. Having described a scalable algorithm for computing 

lp(Ψ) and ∇lp(Ψ), we detail a numerical algorithm for computing the ML estimators.

2.3.2 Numerical optimization of the profile log-likelihood—On the correlation 

scale, ψii′s lie between 0 and 1. Under this box constraint, the factanal function in R and 

factoran function in MATLAB® employ the limited-memory Broyden-Fletcher-Goldfarb-

Shanno quasi-Newton algorithm (Byrd et al., 1995) with box-constraints (L-BFGS-B) to 

obtain the ML estimator of Ψ . However, in high dimensions, the advantages of the L-BFGS-

B algorithm are particularly prominent. Because Newton methods require the search 

direction −H(Ψ)−1∇lp(Ψ), where H(Ψ) is the p × p Hessian matrix of lp(Ψ), they are 

computationally prohibitive in high dimensions in terms of storage and numerical 

complexity. The quasi-Newton BFGS replaces the computation of the exact search direction 

by an iterative approximation using the already computed values of lp(Ψ) and ∇lp(Ψ) . The 

limited-memory implementation, moreover, uses only the last few (typically less than 10) 

values of lp(Ψ) and ∇lp(Ψ) instead of using all the past values. Overall, L-BFGS-B reduces 

the storage cost from O(p2) to O(np) and the computational complexity from O(p3) to O(np). 

Interested readers are referred to Byrd et al. (1995); Zhu et al. (1994) for more details on the 

L-BFGS-B algorithm. The L-BFGS-B algorithm requires both lp and ∇lp to be computed 

at each iteration. Because ∇lp is available as a byproduct while computing lp (see Section 

Sections 2.2 and 2.3.1), we modify the implementation to jointly compute both quantities 

with a single call to the Lanczos algorithm at each L-BFGS-B iteration. In comparison to 

R’s default implementation (factanal) that separately calls lp and ∇lp in its optimization 

routines, this tweak halves the computation time.

3. Performance evaluations

3.1 Experimental setup

The performance of FAD was compared to EM using 100 simulated datasets with true q = 3 

or 5 and (n, p) ∈ (100, 1000), (225, 3375), (400, 8000) . For each setting, we simulated 

ψii i.i.dU(0.2, 0.8) and λij i.i.d.N(0, 1) and set μ = 0. We also evaluated performance with (n, 

p, q) ∈{(160,24547,2),(180,24547,2),(340,24547,4)} to match the settings of our application 

in Section 4: the true Ψ, Λ, μ were set to be the ML estimates from that dataset.

For the EM algorithm, Λ was initialized as the first q principal components (PCs) of the 

scaled data matrix computed via the the Lanczos algorithm while Ψ was started at 

Ip − diag(ΛΛ⊤) . PAD requires only Ψ to be initialized, which was done in the same way as 

the EM. We stopped FAD when the relative increase in lp(Ψ) was below 
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100ϵ0 and ‖∇lp‖∞ < ϵ0 where ϵ0 is the machine tolerance, which in our case was 

approximately 2.2 × 10−16. The EM algorithm was terminated if the relative change in 

l(Λ, Ψ) was less than 10−16 and ‖∇lp‖∞ < ϵ0, or if the number of iterations reached 5000. 

Therefore, FAD and EM had comparable stopping criteria. For each simulated dataset, we fit 

models with K = l,2,···,2q factors and chose the number of factors by the Bayesian 

Information Criterion (BIC): −2lk + pklogn. (Schwarz, 1978), where lk is the maximum log-

likelihood value with k factors. All experiments were done using R (R Core Team, 2019) on 

a workstation with Intel E5–2640 v3 CPU clocked @2.60 GHz and 64GB RAM.

3.2 Results

Because BIC always correctly picked q, we evaluated model fit for each method in terms of 

l(Λ, Ψ), dR = ‖R − R‖F /‖R‖F and dΓ = ‖Γ − Γ‖F /‖Γ‖F  where Γ = Λ⊤Ψ−1Λ and R and R are 

the correlation matrices corresponding to Σ and Σ = ΛΛ⊤ + Ψ .

3.2.1 CPU time—Figure 1 presents the relative speed of FAD to EM. Our compute times 

include the common initialization times. Specifically, for datasets of size (n, p) ∈
{(100,1000),(225,3375),(400,8000)}, FADs was 10 to 70 times faster than EM, with 

maximum speedup at true q. However, EM did not converge within 5000 iterations in any of 

the overfitted models. In contrast, FAD always converged but it took longer than in other 

cases so the speedup is underestimated because of the censoring with EM. Also, the speedup 

is more pronounced (see Section S2.1) in the data-driven simulations where p is much larger.

3.2.2 Parameter estimation and model fit.—Under the best fitted models, FAD and 

EM yield identical values of lp(Λ, Ψ), Ψ, Γ, and ΛΛ⊤ . Thus the relative errors (see Figure S2) 

in estimating these parameters are also identical.

3.3 Additional experiments in high-noise scenarios

We conclude this section by evaluating performance in situations where ostensibly, weak 

factors are hardly distinguished from high noise by SVD methods and where EM may be 

preferable (Owen and Wang, 2015). We applied FAD and EM to the simulation setup of 

Owen and Wang (2015): Here, the uniquenesses were sampled from three inverse Gamma 

distributions with unit means and variances of 0, 1 and 10, and (n, p) ∈{(200,1000),

(100,5000)}. Figure S3 shows that our algorithm was substantially faster while having 

similar accuracy as EM.

4. Suicide ideation study

We applied EFA to data from Just et al. (2017) on an fMRI study conducted while 20 words 

connoting negative affects were shown to 9 suicide attempters, 8 suicide non-attempter 

ideators and 17 non-ideator control subjects. For each subject-word combination, Just et al. 

(2017) provided voxel-wise per cent changes in activation relative to the baseline in 

50×61×23 image volumes. Restricting attention to the 24547 in-brain voxels yields datasets 

for the attempters, ideators and controls of sizes (n, p) ∈{(180,24547),(160,24547),
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(340,24547)}. We assumed each dataset to be a random sample from the multinormal 

distribution. Our interest was in determining if the variation in the per cent relative change in 

activation for each subject type can be explained by a few latent factors and whether there 

are differences in these factors between the three groups of subjects.

For each dataset, we performed EFA with q = 0,1,2,…,10 factors and using both FAD and 

EM. Table 1 demonstrates the computational benefits of using FAD over EM. We also used 

BIC to decide on the optimal q(qo) and obtained 2-factor models for both suicide attempters 

and ideators, and a 4-factor model for the control subjects. Figure 2 provides voxel-wise 

displays of the q0 factor loadings, obtained using the quartimax criterion (Costello and 

Osborne, 2005), for each type of subject. All the factor loadings are non-negligible only in 

voxels around the ventral attention network (VAN) which represents one of two sensory 

orienting systems that reorient attention towards notable stimuli and is closely related to 

involuntary actions (Vossel et al., 2014). However, there are differences between the factor 

loadings in each group and also among them.

For instance, for the suicide attempters, each factor is a contrast between different areas of 

the VAN, but the contrasts themselves differ between the two factors. The first factor for the 

ideators is a weighted mean of the voxels while the second factor is a contrast of the values 

at the VAN voxels. For the controls, the first three factors are different contrasts of the values 

at different voxels while the fourth factor is more or less a mean of the values at these 

voxels. Further, the factor loadings in the control group are more attenuated than for either 

the suicide attempters or ideators. While a detailed analysis of our results is outside the 

purview of this paper, we note that EFA has provided us with distinct factor loadings that 

potentially explains the variation in suicide attempters, non-attempter ideators and controls. 

However, our analysis assumed that the image volumes are independent and Gaussian: 

further approaches relaxing these assumptions may be appropriate.

5. Discussion

In this paper, we propose a new ML-based EFA method called FAD using a sophisticated 

computational framework that achieves both high accuracy in parameter estimation and fast 

convergence via matrix-free algorithms. We implement a Lanczos method for computing 

partial singular values and vectors and a limited-memory quasi-Newton method for ML 

estimation. This implementation alleviates the computational limitations of current state-of-

the-art algorithms and is capable of EFA for datasets with p >> n. In our experiments, FAD 

always converged but EM struggled with overfitted models. Although not demonstrated in 

this paper, FAD is also well-suited for distributed computing systems because it only uses 

the data matrix for computing matrix-vector products. FAD paves the way to develop fast 

methods for mixtures of factor analyzers and factor models for non-Gaussian data in high-

dimensional clustering and classification problems.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Relative speed of FAD to EM on (left) randomly simulated and (right) data-driven cases. 

Lighter ones correspond to true q = 3 and the darker ones correspond to true q = 5.
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Fig. 2. 
Loading values of fitted factors for suicide attempters, ideators and controls.
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Table 1:

CPU times (rounded to the nearest seconds) for FAD and EM applied to the suicide ideation study dataset.

q 1 2 3 4 5 6 7 8 9 10

Attempters FAD 3 3 4 5 5 6 6 7 9 9

EM 146 173 207 198 229 236 228 250 239 254

Ideators FAD 4 4 5 6 6 6 6 9 9 10

EM 118 197 207 200 222 244 241 226 258 258

Controls FAD 5 5 8 7 8 8 9 10 12 13

EM 300 451 456 407 426 461 483 438 566 519
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