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As the world confronts the health challenges of an ageing population,
there has been dramatically increased interest in the science of ageing. This
research has overwhelmingly focused on age-related disease, particularly in
industrialized human populations and short-lived laboratory animal
models. However, it has become clear that humans and long-lived primates
age differently than many typical model organisms, and that many of the
diseases causing death and disability in the developed world are greatly
exacerbated by modern lifestyles. As such, research on how the human
ageing process evolved is vital to understanding the origins of prolonged
human lifespan and factors increasing vulnerability to degenerative disease.
In this issue, we highlight emerging comparative research on primates, high-
lighting the physical, physiological, behavioural and cognitive processes of
ageing. This work comprises data and theory on non-human primates, as
well as under-represented data on humans living in small-scale societies,
which help elucidate how environment shapes senescence. Component
papers address (i) the critical processes that comprise senescence in long-
lived primates; (ii) the social, ecological or individual characteristics that
predict variation in the pace of ageing; and (iii) the complicated relationship
between ageing trajectories and disease outcomes. Collectively, this work pro-
vides essential comparative, evolutionary data on ageing and demonstrates its
unique potential to inform our understanding of the human ageing process.

This article is part of the theme issue ‘Evolution of the primate ageing
process’.

1. Introduction

Humans are remarkable among mammals for our extreme longevity, and in the
past century, lifespans have increased dramatically across the globe [1,2]. In the
year 2018, for the first time in history, the world’s population of people over
65 years of age exceeded that of children under the age of 5 [3]. This so-called
silver tsunami presents a significant global health challenge, leading to prioritiza-
tion of ageing as one of the most urgent areas of biomedical research. However,
contrary to popular belief, humans were living to old ages long before the
spread of western medicine and even before the onset of agriculture. Similarly,
in contemporary small-scale foraging communities without access to westernized
medicine, infant mortality is high, but the modal age of adult death reaches into
the late 70s [4,5]. The way that humans age today has been shaped by a long evol-
utionary history, meaning that the narrow focus of ageing research on humans in
modern, industrialized environments constrains our ability to understand the fac-
tors that shape health and lifespan. Basic research on the evolution of ageing,
including generation of high-quality data from diverse human populations [6]
and closely related, long-lived species [2,7-9], is, therefore, an essential
complement to the emerging explosion of clinical research on ageing.
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This theme issue addresses this neglected line of inquiry by
examining the comparative biology of ageing across primates,
driven by two major questions. First, what processes would prob-
ably have affected health and constrained lifespan in the
evolutionary past? Second, what factors contribute to variation
in ageing processes within and across species? Our authors
address emerging paradigms in the clinical ageing literature
(such as dementia, immunosenescence and social isolation) and
perform explicit quantitative and theoretical comparisons of
their findings with prior reports. We highlight scholars who
study non-human primates, as well as those who study
humans outside of the typical industrialized clinical study setting.
This issue comes at a pivotal time for research in primatology and
human ecology when the combination of new methods and
exhaustive longitudinal data collection has converged to enable
robust analyses of ageing. Contributed papers address the impor-
tant ways that environment influences senescence; highlight new
primate models for features of the human ageing process that are
not appropriately captured by existing models; and provide pro-
ductive discourse on how the ageing process may have been
shaped throughout our evolutionary history. In pursuing these
goals, the contributed papers not only offer novel comparative
datasets on primate ageing, but also provide insights on the com-
plex relationship between ageing and health that have
translational potential for shaping clinical interventions.

2. An evolutionary approach to ageing

For decades, research on ageing has been dominated by two
interrelated perspectives. The first addresses the immediacy
of treating or curing specific degenerative diseases that
plague the elderly, including cardiovascular, metabolic and
neurodegenerative diseases. The second aims to prevent age-
related diseases and slow the rate of ageing, with the goal of
extending lifespan or increasing the years of healthy living,
the ‘healthspan’ [10]. Much of this literature characterizes
ageing as a disease that can theoretically be cured, or at least
delayed [11-16]. However, a number of prominent researchers
have argued for a change in perspective to distinguish the pro-
cess of ageing from the diseases that are affected by age [17-19].
This evolutionarily guided perspective acknowledges that for
most species, ageing is a natural and inevitable feature of life.
While evolutionary theorists have long argued that ageing
evolved primarily because natural selection was unable to pre-
vent it [20,21], there is increasing recognition that ageing and
its mechanisms are in fact subject to natural selection, most nota-
bly through resource allocation decisions made earlier in life [22—
25]. Additionally, factors that promote degenerative ageing, such
as glucocorticoid activity, inflammation and production of reac-
tive oxygen species, also serve functions that are essential for
survival, creating selective trade-offs [26-28]. Critically, conflating
ageing with disease is problematic because even the most
common pathologies of old age only occur in a fraction of indi-
viduals, and changes that occur during ageing are not
intrinsically pathological. While advanced age is the defining
risk factor for degenerative disease, this risk is modified heavily
by genes and environment, suggesting that the pathways to suc-
cessful or pathological ageing can begin early in life. As such,
there is a need to better understand the basic biological pathways
of senescence and their natural scope of variation, an approach
that may yield clues to long-term disease prevention.
Evolutionary scholars view ageing, like other biological
phenomena, through a long lens, as the outcome of selective

forces shaping our species and its ancestors over millions of
years. The essential paradigm underlying the emerging field
of evolutionary medicine is that the mechanisms of human
ageing have been shaped under dramatically different environ-
ments than those in which most humans currently live
[6,29,30]. Indeed, the rapid rate of international development
means that many elderly people alive today developed under
very different nutritional, epidemiological and social con-
ditions than those in which they currently live [31,32]. These
evolutionary and developmental ‘mismatches” are thought to
contribute to the prevalence of many degenerative diseases.

One important evolutionarily informed approach is to
examine the health of people living in different environments,
particularly in small-scale subsistence populations that are
overlooked by the clinical literature. These include foragers,
whose hunting and gathering mode of subsistence most closely
resembles the lifeway practised throughout most of human
existence, as well as pastoralists and those that farm at small
scales for family consumption. Populations that have limited
access to market goods or westernized medicine, practice natu-
ral fertility, and live embedded within strong kin networks are
especially informative as they experience resource limitations,
high rates of physical activity, prevalent infectious disease
and social contexts that best approximate the selective environ-
ments that are likely to have shaped the human organism.
For example, owing to energetic constraints and long periods
of lactation, pre-industrial populations produce relatively low
levels of the steroid hormones oestradiol and testosterone
[33,34]. High lifetime exposure to these hormones has been
linked to the elevated risk of some reproductive cancers
[35,36]. Similarly, as the human immune system evolved in a
high-pathogen environment, early and frequent exposure to
infections, such as gastrointestinal parasites, may promote
healthy metabolism and immune regulation. Recent studies
of Tsimane horticulturalists, who exhibit high levels of inflam-
mation compared to industrialized populations, suggest that
infection with parasites may be protective against musculoske-
letal and cognitive decline, and perhaps even atherosclerosis
and Alzheimer’s disease [37-39]. Rather than increasing
‘wear and tear’, the high workload in subsistence societies
appears to confer some protection against a variety of degen-
erative diseases, including osteoarthritis [40], cardiovascular
disease [41,42] and frailty [43].

Another important facet of the evolutionary approach is to
evaluate human ageing biology in the context of our close non-
human primate relatives, which share many pertinent biologi-
cal features with humans through common ancestry [44].
Primates are not only valuable as ‘model’ species, substituting
for humans in experimental research, but as essential com-
parative referents that can deepen our understanding of the
evolutionary forces that have shaped human ageing. Thus,
our issue highlights work that situates humans in this broader
comparative context, an approach that is vital not only because
humans are primates, but because understanding the ageing
process requires disentangling true species-level differences
from those that may vary according to environment.

3. Challenges and benefits of comparative
ageing research on non-human primates

While animals have long been used as laboratory models for
the study of ageing, model species have almost always been
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selected for convenience, because they have short generation
times and can be subjected to invasive manipulations that
are not feasible in humans. Yet, ageing exhibits tremendous
diversity across species [45,46], and conventional animal
models have significant limitations in their applicability to
humans [47]. There is a particular paucity of high-quality
data on other long-lived species, including non-human
primates. We emphasize three principal arguments for
investing in research on primate ageing.

First, primate research is necessary. Genomic studies indicate
that the mechanisms which are the focus of research in con-
ventional model organisms, like worms, flies and rodents,
have not been major targets of selection in humans and
are unlikely to explain interspecific variation in longevity
among primates [48]. The combination of a long life and
extensive parental investment has shaped primate life course
strategies [49,50], potentially affecting not only how quickly
we age but also how we age. Primates are indispensable for
examining aspects of cognitive, neurobiological and social
ageing that are simply not captured in existing animal
models. Older adults show shifts in sensitivity to social
information, social reasoning abilities and complex forms of
value-based decision-making that can impact social compe-
tence, financial stability and other aspects of well-being
during ageing [51,52], and there is increasing recognition that
strong social support promotes successful ageing [53,54].
Second, non-human primates are appropriate comparative
models. For example, despite considerable diversity in lifespan,
primates exhibit broad similarities in the patterning of mortality
that distinguish them from other species [55,56]. Primates share
physiological similarities with humans that make them highly
relevant models for reproductive ageing, metabolic diseases,
musculoskeletal ageing, immune function, cardiovascular dis-
ease and cognitive decline [57-64]. Finally, given the overall
similarities, the variation among primates is specifically infor-
mative. When closely related species exhibit differences in
ageing, large or subtle, this presents a unique opportunity to
identify key pathways of selection, including environmental
influences and genetic mechanisms.

For these reasons, there has been recent recognition of the
unique applicability of primates for translational research,
most notably for studies of caloric restriction and brain
ageing [57-62,65]. However, the bulk of primate research to
date has focused on a handful of species that are abundant,
easy to maintain in laboratory settings and have tractable
generation times: mouse lemurs [66,67], common marmosets
[68] and rhesus macaques [65]. Work on ageing in primate
populations outside of laboratory contexts, by contrast, has
been remarkably rare. Indeed, there was a long-held assump-
tion in gerontology that most animals did not live long
enough in the wild to experience the physiological effects of
ageing [20,69]. However, longitudinal data from a diverse
range of animal taxa now make it clear that senescence is
widespread in nature [70-72]. Moreover, the effects of captive
environments on physiology are substantial, and coupled with
a reduction in genetic diversity, can have complex, and some-
times unpredictable, influences on the ageing process [73].
Studies in the wild, therefore, complement captive studies by
examining ageing biology under conditions closer to that in
which it evolved, and can provide new insights into how
ageing is influenced by environmental context.

Data from diverse primate populations are, therefore,
essential, but also present several challenges for ageing

research. First, many primate species, including our closest [ 3 |

living relatives, are endangered, raising ethical considerations
about their use. Notably, in 2015, the National Institutes of
Health and the United States Fish and Wildlife Service released
landmark policy changes that have seriously restricted labora-
tory research on chimpanzees. However, minimally invasive
measures using urine, faeces, blood spots and observational
data have developed rapidly over the last 20 years, transform-
ing the ability to monitor health in wild primates, as well as in
humans in non-clinical settings [74-79]. Papers in this issue
highlight impressive datasets derived from non-invasive
specimen collections, post-mortem skeletal analyses and
opportunistic sampling during routine health screenings.
Second, the relatively long lifespan of primates poses inherent
feasibility challenges for obtaining adequate samples. Sample
size is additionally constrained by the small numbers in most
captive colonies or habituated wild groups, making it difficult
to avoid confounds such as mortality election. Yet, these
studies have the ability to collect continuous, longitudinal
data that are not feasible with large, human cohorts. Finally,
it can be difficult to implement experimental treatments and
controls in the field, and primates generally cannot be manipu-
lated in the same manner as other species. However, this
drawback is balanced by a key strength: the ability to obtain
detailed, objective data on individual experience, such as on
diet or social interactions. Given the strong associations
between social environmental variables, like social integration
and social status, for healthy ageing in humans [80], research
on primate social groups offers one of the few tangible systems
to examine potential mechanisms for such effects [81,82].

The work presented in the current volume aims to overcome
the challenges associated with studying diverse primate
populations, contributing new methodological advances to
monitor humans and animals, harnessing rich long-term
datasets on long-lived species and evaluating the application
of theoretical ideas to these understudied populations. Here,
we highlight major themes cross-cutting this work.

While clinical science has developed standard diagnostics of
ageing across many domains, these measures can be difficult
to translate to naturalistic settings or to different species,
hindering direct comparisons. Contributions to this volume
demonstrate productive approaches to this problem.

One such approach stems from the recent recognition
by gerontology of ‘emergent’ ageing processes, such as frailty,
physiological dysregulation and allostatic load. This approach
recognizes that the functional effects of ageing are the result
of a complex network of underlying mechanisms that can
unfold differently across individuals [83]. As such, examining
variation across a range of measures yields a more robust
correlation with age and proves more effective in predicting
disease and mortality than isolated diagnostic tests [84,85].
Importantly, component measures need not be identical, nor
identically measured, across studies, allowing for comparisons
across diverse datasets and even across species. Two recent
studies, for example, found similar emergent ageing processes
in multivariate biomarker datasets of humans and non-human
primates that contained overlapping, but not completely



compatible, information [86,87]. Comparative research can be
designed by testing for features of previously identified emer-
gent processes (top-down), or by using variation in the data to
organically identify axes of age-related change (bottom-up).

Several papers in this volume directly apply emergent
process approaches: one examines physiological dysregula-
tion in Amazonian horticulturalists using a large biomarker
dataset ([88]), while two others compare age-related
changes in gene expression and epigenetic measures of
gene-regulation between humans and non-human primates
[64,89]. Two other papers translate clinical approaches to
frailty to field conditions, examining ecologically relevant
measures of physical performance in wild chimpanzees [90]
and African foragers and pastoralists [91]. Other papers test
for immunosenescence, which is difficult to measure directly
in wild primates, but is detectable through its functional out-
comes: age-related increases in parasitic [92] and viral
infections [93]. Others have taken the opposite approach of
dissecting complex phenomena like cognitive [94,95]), neuro-
biological [96] and skeletal ageing [97] to examine whether
they result from common mechanisms across species.

(b) Shared and divergent ageing trajectories

The contributions in this volume highlight extensive simi-
larities in the ageing processes between humans and other
primates across a variety of domains. For example, several
contributions demonstrate shared patterns of immunosenes-
cence, both in its specific regulatory mechanisms [64] and
its effects on infectious disease burden in the wild [92,93]).
While the process of immunosenescence in human ageing
is well recognized, the role of infectious disease in driving
late-age mortality has diminished in industrialized nations
relative to the role of degenerative diseases. However, the
increased vulnerability to infection with age would have
been an important constraint on lifespan even in the very
recent past, and it is vital to consider the way that pathogen
stress itself would have shaped the evolution of the ageing
process [7,39].

Critically, however, several contributed papers conclude
that broad similarities in ageing phenomena do not necessarily
yield the same functional outcomes. For example, while it
might be predicted that physically demanding lifestyles
would accelerate musculoskeletal ageing and exacerbate its
consequences, contributed studies of wild chimpanzees [90]
and human subsistence populations [91] suggest the opposite.
These studies support the conclusion that physical per-
formance and body condition are widespread features of
ageing, but they also suggest less impairment than has been
observed in industrialized human samples. Similarly, Ruff
et al. [97] report that while the bones of mountain gorillas
exhibit several human-like signatures of ageing, they contrast
with humans in that bone strength is preserved late into
life. Guevara and colleagues report that the brains of chimpan-
zees recapitulate characteristics of ageing human brains,
like neuronal loss in the hippocampus, but do not exhibit
the human-specific pathologies linked to dementia and
Alzheimer’s disease [96].

Collectively, studies in this volume support the hypo-
thesis that the evolution of the extended human lifespan
was accompanied by slowing of ageing processes rather
than by fundamental changes to these processes. For
example, contributions to this volume demonstrate close

similarities in age-related DNA methylation between rhesus [ 4 |

macaques, chimpanzees and humans, though accelerated
and scaled to the expected lifespan of the shorter-lived
species [64,89]. Similarly, Kraft et al. [88] demonstrate that
even in challenging environments, physiological dys-
regulation in humans proceeds at a slower pace compared
with non-human primates. These studies demonstrate
a remarkable conservation of the broad regulatory phenom-
ena that govern senescence across primates and across
ecological contexts.

() Environment and lifestyle

Several contributions highlight the merits of comparative
work for addressing how variation in lifestyles and environ-
mental context shape ageing. Studies contrasting humans in
industrialized and subsistence cultures demonstrate that
some aspects of human ageing are more variable than
others. For example, Sayre et al.’s [91] comparisons of fora-
gers, pastoralists and industrialized populations suggest
some universal features of ageing physical performance but
also identify important variation that may be shaped by the
different nature and age structure of workloads in the differ-
ent settings. On the other hand, Kraft et al.’s [88] examination
of physiological dysregulation in a small-scale horticulturalist
population finds only modest differences compared with
industrialized samples despite major ecological and genetic
differences between these populations. The contrast between
captive and wild non-human primate populations also simu-
lates at least some of the changes that have characterized
modernization in human societies. As a demonstration of
this paradigm, Cole et al. [98] report that chimpanzees with
species-appropriate diets and ranging opportunities exhibit
lower blood lipid levels compared to chimpanzees living a
sedentary lifestyle with processed diets in captivity. Though
chimpanzees are less vulnerable to atherosclerosis than
humans [99], these findings suggest that lifestyle risk factors
may operate through a shared pathway.

(d) Sex differences in ageing

Sex is a crucial modulator of the ageing process across species
and features in several of the volume’s contributions.
Primates generally exhibit sexually dimorphic mortality,
with males living significantly shorter lives than their
female counterparts [56]. Yet higher mortality in human
men is juxtaposed against higher rates of many degenerative
diseases in women [100]. The reasons for this are still unclear,
particularly as global measures of ageing differ little between
the sexes. For example, physiological dysregulation does not
appear to vary systematically between men and women, a
finding confirmed here in a small-scale horticultural popu-
lation [88]. As in human studies, rates of DNA methylation
showed minimal sex differences in chimpanzees and rhesus
macaques [64,89].

Sex differences in reproductive effort are predicted to yield
differences in health and longevity. Compared with humans,
many primates exhibit high levels of aggressive male compe-
tition, generating both direct and indirect impacts on health
via risk of injury, physiological stress and energetic expenditure
[101]. Contributed studies indicate that wild chimpanzee males
are more vulnerable to viral infections and losses of physical
condition with age than are females [90,93] and that wild
male baboons who attain high social status pay the price of a
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reduced lifespan [102]. Conversely, among chimpanzees in
sanctuaries, females exhibited more proatherogenic lipid
profiles than males across the lifespan [98].

For females, the high costs of pregnancy and lactation are
expected to compromise health and accelerate ageing. How-
ever, evidence for health costs to high fertility remains
inconclusive in humans, even in challenging environments
where one might expect the strongest trade-off [103]. Is this
the biological reality or a product of methodological limit-
ations? In this volume, Jasienska [104] advocates for
evolutionarily informed approaches to design more powerful
studies of the health effects of reproduction, including more
realistic assessments of reproductive effort. However, using
detailed measures of reproductive effort, Phillips ef al. [92]
found that wild chimpanzee females experienced only transi-
ent increases in faecal parasites during pregnancy, and high
fertility predicted lower, not higher parasitism with age.
This is surprising because, unlike humans, chimpanzees do
not receive support from others to raise their offspring,
suggesting instead that they may have effective strategies to
resist the trade-offs between reproduction and health.

During ageing, humans show marked changes in aspects of
complex cognition, neurobiology and sociality that are difficult
to study in distantly related taxa. For example, executive func-
tions (including inhibitory control and working memory) and
the neurobiological substrates that support these processes
show key age-related changes both during healthy ageing
and in the context of neurodegenerative disease [105]. Lacreuse
et al. [95] review the increasing evidence that declining execu-
tive function is a common and early sign of cognitive ageing
across many diverse primate species, even though the neuro-
biological basis of these changes varies. For example, Edler
et al. [96] report that the brains of chimpanzees exhibited
regional neuronal losses that could impact cognition, though
these losses were less severe than those associated with demen-
tia in humans. By contrast, Rathke & Fisher [94] report that
age had little effect on measures of executive function in
semi-free-ranging Barbary macaques, though individuals
showed declines in motivation to engage with the cognitive
tasks overall. These changes parallel patterns observed in
humans and emphasize that there are diverse pathways to
declining cognitive performance with age. As motivation
may be highly affected by an individual’s surroundings, this

finding reinforces the need to evaluate cognition in appropriate [ 5 |

social and ecological contexts.

Another line of work highlights the important interactions
between an individual’s social environment and their ageing
trajectory. In fact, recent evidence from non-human primates
indicates that social stress and ageing yield congruent physio-
logical and molecular effects [106,107]. In this issue, Campos
et al. [102] report that baboons of both sexes experienced
increased survival when they had strong social bonds, but as
the mechanisms of social competition varied between the
sexes, so did the effect of social rank on survival. However,
social integration is also affected by ageing. Machanda &
Rosati [108] report that while shifts in social behaviour and
social cognition occur commonly across primates, these
changes vary by species and can manifest differently in
males and females. The human social ageing phenotype
appears to be unusual, though available evidence points to
important similarities in our closest relatives, chimpanzees.

We present this theme issue in 2020, at the onset of the World
Health Organization’s ‘Decade of Healthy Ageing’, one
among many international initiatives targeted at improving
the lives of older people. As ageing research expands its hor-
izons, there is an essential place for evolutionarily informed
research on the ageing process and a growing need for com-
parative data on closely related, long-lived species and on
humans living under diverse environmental conditions.
Already, these data fundamentally challenge the notion that
longer life is equivalent to successful ageing and provide sur-
prising insights into the relationship between ageing and
disease. As we dissect these pathways and examine them in
context, we can provide better answers to which aspects of
ageing are broadly conserved and how lifestyle shapes
health across the life course. In addition to describing novel
empirical findings for the comparative biology of ageing,
the contributed papers provide theoretical guidance and
methodological innovations to shape future work.

This article has no additional data.
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paper.
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