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In the absence of disease, ageing in the human brain is accompanied by
mild cognitive dysfunction, gradual volumetric atrophy, a lack of significant
cell loss, moderate neuroinflammation, and an increase in the amyloid beta
(Aβ) and tau proteins. Conversely, pathologic age-related conditions,
particularly Alzheimer’s disease (AD), result in extensive neocortical and
hippocampal atrophy, neuron death, substantial Aβ plaque and tau-
associated neurofibrillary tangle pathologies, glial activation and severe
cognitive decline. Humans are considered uniquely susceptible to neuro-
degenerative disorders, although recent studies have revealed Aβ and tau
pathology in non-human primate brains. Here, we investigate the effect of
age and AD-like pathology on cell density in a large sample of postmortem
chimpanzee brains (n = 28, ages 12–62 years). Using a stereologic, unbiased
design, we quantified neuron density, glia density and glia:neuron ratio in
the dorsolateral prefrontal cortex, middle temporal gyrus, and CA1 and
CA3 hippocampal subfields. Ageing was associated with decreased CA1
and CA3 neuron densities, while AD pathologies were not correlated with
changes in neuron or glia densities. Differing from cerebral ageing and AD
in humans, these data indicate that chimpanzees exhibit regional neuron
loss with ageing but appear protected from the severe cell death found in AD.

This article is part of the theme issue ‘Evolution of the primate ageing
process’.
1. Introduction
Ashuman longevity increases, distinguishing theneurological basis forage-related
cognitive decline is imperative. Common cognitive deficits in elderly people
include difficulties with complex tasks, word recall, episodic memory and proces-
sing speed [1]. Based on magnetic resonance imaging (MRI) studies, these
cognitive alterations coincide with decreased brain weight, increased white
matter hyperintensity, enlarged lateral ventricles and mild regional volumetric
atrophy [2]. Accompanying these gross changes are modest modifications in neur-
ons, dendritic spines, synapses and neurotransmitters along with increased
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glial activation, reduced cerebral blood flow and a weakening
of the blood-brain barrier [3–5]. Ageing also contributes to an
individual’s risk for developing Alzheimer’s disease (AD), the
most prevalent form of dementia. AD is a progressive, irrevers-
ible brain disorder that results in extensive neocortical and
hippocampal neuronal loss and atrophy, amyloid beta (Aβ)
protein-containing plaques and vascular deposition, tau-
associated neurofibrillary tangles (NFT), neuroinflammation
and severe cognitive impairment [6,7].

Distinguishing the earliest stages of AD from healthy ageing
remains an area of great interest and a difficult diagnostic pro-
blem, although certain metrics, such as regional neuron loss
and glial activation, have been established [1]. Age-related
decline in neuron numbers is modest in the dentate gyrus and
subiculum, while the CA1-CA3, entorhinal cortex, as well as
the neocortex are preserved [8–12]. In striking contrast, AD
brains exhibit profound neuronal death in the prefrontal
and temporal cortex, entorhinal cortex, CA1 of the hippo-
campus, dentate gyrus and subiculum [8,9,13–17]. Another
discriminating factor between ageing and AD is the severity of
neuroinflammation, which is assessed, in part, by changes in
glial density, activation and morphology [18]. Total glial
density does not change in the human neocortex during the
normal course of ageing or AD [19–21]. However, glial
subtypes, such as microglia and astrocytes, are altered in both
conditions [22,23]. As the brain’s primary immune cell,microglia
activate and proliferate with age in the neocortex, including the
hippocampus and entorhinal cortex, of healthy humans [23,24].
AD brains display greatermicroglial activation and proliferation
concomitant with Aβ plaques, particularly in the hippocampus
[25–27]. Astrocytes provide metabolic and structural support
to neurons, regulate neurogenesis, and modulate synaptic
activity and neurotransmitter homeostasis [28]. Astrogliosis, as
indicated by the upregulation of glial fibrillary acidic protein
(GFAP), hypertrophy of the soma and cellular processes, and
loss of domain organization, has been associated with normal
ageing, and to a larger extent in AD [28–32].

Humans are considered uniquely susceptible to neurode-
generative disease, such as AD, but several recent studies
have revealed AD-like pathology in the brains of non-human
primates [33–37]. Aged lemurs, prosimians, monkeys and
great apes exhibit diffuse and neuritic amyloid plaques as
well as vascular amyloid, although cognitive changes based
on plaque burden were not observed in aged macaques
[34,35,38–46]. Furthermore, the presence of hyperphosphory-
lated tau has been reported in lemurs, squirrel and rhesus
monkeys, baboons, and gorillas adjacent to Aβ deposition,
and African green monkeys and aged chimpanzees exhibited
NFT [34,35,46–49]. Closest in phylogeny to humans, non-
human primates also exhibit senescence-related changes
[33,50,51]. Mouse lemurs, marmosets, rhesus monkeys and
apes show mild cognitive variations with age in spatial
memory and executive function [52–57]. Some MRI studies in
ageing mouse lemurs and rhesus macaques show progressive
volumetric atrophy in the prefrontal cortex (PFC) and
decreased brain weight in chimpanzees [55,58,59]. However,
a more recent, comprehensive MRI analysis found no overt
atrophy of volume in the neocortex and white matter in
chimpanzees [51,59]. Postmortem analyses in primates
have detected mild age-related dendritic atrophy, synapse
loss, white matter damage, gliosis (i.e. activation of astrocytes
and microglia), neurotransmitter alterations, and increases of
Aβ in brain parenchyma and in cerebral vasculature [34,60–63].
Previous studies of ageing in non-human primates
reported a lack of neuron loss in the neocortex, including
CA1, entorhinal cortex and subiculum, with age [64–69].
Additionally, microglial activation has been observed in
the frontal cortex, cingulum bundle and primary visual
cortex, although numbers of activated microglia did not
increase significantly with age in the visual cortex, substantia
nigra and ventral tegmental area of aged rhesus monkeys
[50,70,71]. Heightened expression of major histocompatibility
complex class II (MHC-II) antigen, a marker of activated
microglia, also was identified in the cerebral cortex and white
matter of pig-tailed macaques [72]. Astrocyte activation in the
form of higher GFAP expression was detected in the aged
rhesus monkey hippocampus and PFC, although astrocyte
density did not vary [73].

Formerly, we analysed the brains of 20 aged chimpanzees
for evidence of Aβ and tau lesions as well as microglia and
astrocyte activation [34,74,75]. Aβ was observed in plaques
and, most predominantly, in blood vessels, which correlated
with increased tau. Tau lesions were found in the form of
AT8-immunoreactive (ir) pretangles, NFT and neuritic clusters
(NC) of aggregated dystrophic neurites, and NFT were
observed in apes that exhibited plaques and moderate or
severe cerebral amyloid angiopathy (CAA), a condition in
which amyloid accumulates in the brain’s vasculature. Age
correlated with greater volumes of Aβ plaques and vessels,
but not tau or activated microglia and astrocyte densities.
Like AD, Aβ42 deposition was positively associated with
higher hippocampal microglial activation in chimpanzees,
while astrogliosis occurred in both the hippocampus and
PFC layer I in conjunction with Aβ and tau proteins. Contrary
to AD, activated microglia density was not significantly corre-
lated with tau lesions and astrogliosis was not identified in
other cortical layers in chimpanzees. Despite certain compar-
able age-related and AD-like pathologies identified in non-
human primate brains, only humans exhibit major neuronal
loss and severe cognitive decline as observed in clinical AD.
Thus, building on our prior investigations, we quantified
regional neuron density, glia density, and glia:neuron ratios
in the dorsolateral PFC, middle temporal gyrus (MTG), and
CA1 and CA3 hippocampal subfields of chimpanzees to deter-
mine if ageing or AD pathology correlates with regional
neuron loss or glial activation.
2. Material and methods
(a) Specimens and sample processing
Postmortem brain samples from 12 male (ages 17–62 years) and 16
female (ages 12–58 years) chimpanzees (Pan troglodytes, electronic
supplementary material, table S1) were acquired from Association
of Zoos and Aquariums-accredited zoos and American Associ-
ation for Accreditation of Laboratory Animal Care-accredited
research institutions through the National Chimpanzee Brain
Resource (NIH grant: NS092988). The chimpanzees included in
this study did not participate in formal behavioural or cognitive
testing and were maintained in accordance with each institution’s
animal care and use guidelines. Available health information for
each animal has been included in electronic supplementary
material, table S2. Depending on availability, samples were taken
from the right or left hemispheres. Brains were collected postmor-
tem after death from natural causes (approximately less than or
equal to 20 h PMI), immersion-fixed in 10% buffered formalin
for a minimum of 10 days, and transferred to a 0.1 M buffered
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Figure 1. Photomicrographs of Nissl staining in the chimpanzee brain: (a) classification of neurons (grey arrowhead) and glia (black arrowhead), (b) layer III in the
MTG, (c) stratum pyramidale layer of the CA1 and (d ) a photo montage delineating the CA1 and CA3 hippocampal subfields. Abbreviations: so, stratum oriens;
sp, stratum pyramidale; sr, stratum radiatum. Scale bar = 25 µm (a), 250 µm (b–d ). (Online version in colour.)
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Figure 2. Photomicrographs of Iba1-ir microglia (a), GFAP-ir astrocytes (b), Aβ42-ir plaque (c), leptomeningeal vessel (d ), AT8-ir pretangle (e), NFT ( f ) and tau
neuritic cluster (g) in the chimpanzee PFC (a–d,f ) and hippocampus (e,g). Scale bars = 25 µm (a–c,e–g), 250 µm (d ). (Online version in colour.)
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saline solution containing 0.1% sodium azide at 4°C for storage.
Samples were cryoprotected in a graded series of sucrose solutions
(10, 20 and 30%) and cut frozen into 40 µm-thick sections in a cor-
onal plane using a Leica SM2000R freezing sliding microtome
(Buffalo Grove, IL). Sections then were placed into individual cen-
trifuge tubes containing a cryo-protection solution (30% dH2O,
30% ethylene glycol, 30% glycerol, 10% 0.244 M phosphate-buf-
fered saline (PBS)), numbered sequentially, and stored at −20°C
until histological or immunohistochemical processing. Every
10th section in each region was stained for Nissl substance with
a 0.5% cresyl violet solution to reveal cell somata, define cytoarch-
itectural boundaries, and quantify neuron density (Nv), glia
density (Gv) and glia to neuron (G : N) ratio (figure 1). Previously,
immunohistochemistry was performed for markers of hyperpho-
sphorylated tau (AT8), Aβ42, microglia (Iba1, ionized calcium-
binding adaptor molecule 1), and astrocytes (GFAP, glial fibrillary
acidic protein) in the same regions using the avidin-biotin-peroxi-
dase method and 3,30-diaminobenzidine (DAB) with nickel
enhancement or NovaRed (figure 2) [34].
(b) Regions of interest
We analysed layer III in Brodmann’s areas 9 and 10 of the dorsolat-
eral PFC and Brodmann’s area 21 of the MTG, as well as the
stratum pyramidale in the hippocampal subfields CA1 and
CA3 (figure 1). Sampled areaswere selected based on prior reports
that demonstrated involvement of these regions in both ageing and
ADpathology [76–78]. Humanswith ADdisplay extensive neuron
and synapse loss in layers III and V of the neocortex and stratum
pyramidale in the CA1 field, and neuritic Aβ plaques and NFT
are most prevalent in these cortical layers [5,16,17,79,80]. Chim-
panzees also display Aβ and tau pathologies in the neocortex
and hippocampus [34,40].
(c) Stereologic data acquisition
Quantitative analyses were performed using computer-assisted
stereology with an Olympus BX-51 photomicroscope equipped
with a digital camera and StereoInvestigator software v. 11
(MBF Bioscience, Williston, VT) by two observers blinded to
age, sex and pathology. Initial subsampling techniques were per-
formed for each probe to determine appropriate sampling
parameters [81]. Regional Nv and Gv were obtained using the
optical fractionator probe at 40× (N.A. 0.75) under Köhler illumi-
nation. Counting frames were set at 100 × 100 µm with a grid size
of 250 × 250 µm, a disector height of 7 µm, and a guard zone of
2%. Beginning at a random starting point, three equidistant sec-
tions (every 10th section) per region of interest and animal were
selected for analysis. A marker was placed on the nucleus of
neurons and on glia when encountered within the optical
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Figure 3. Scatter plots of regional neuron density (a), glia density (b) and glia:neuron ratios (c) in the chimpanzee brain. Although variations were found by region
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disector frame, and mounted section thickness was measured at
every fifth sampling site. Neurons were identified by the pres-
ence of a nucleus, nucleolus and axonal hillock, while glia
were distinguished by their lack of nuclei and granules of hetero-
chromatin, giving a speckled appearance. For each region, Nv
and Gv (per mm3) were calculated as the population estimate
divided by sum volume of the examined disectors, and the G :
N ratio was calculated as Gv/Nv [82]. The percentage (%) of
gain or loss between old and young animals was determined
with the following equation: (aged density or ratio/young density
or ratio × 100)− 100. To correct for tissue shrinkage in the z-axis,
the height of the disector was multiplied by the ratio of section
thickness to the actual weighted mean thickness after mounting
and dehydration. No correction was necessary for the x and y
dimensions, because shrinkage in section surface area is minimal
[83]. The mean number of sampling sites per individual was 32
± 6 (mean ± s.d.) for PFC and MTG and 65 ± 7 for the CA1 and
CA3. The mean number of markers per individual for neurons
was 375 ± 97 and for glia was 610 ± 227 in the PFC and MTG. In
the CA1 and CA3, the mean number of markers per individual
for neurons was 397 ± 33 and for glia was 960 ± 72. The average
CE for all regional neuron densities was 0.06 and for glia densities
was 0.05.

(d) Statistical analyses
Datawere previously collected for Aβ42 plaque and vessel volume
(%), AT8-immunoreactive (ir) pretangle, NFT and tau NC den-
sities, Iba1-ir microglia densities, and GFAP-ir astrocyte densities
from aged apes (i.e. greater than or equal to 37 years old; figure 2)
[34,74,75]. Young chimpanzees (i.e. greater than or equal to 35
years) were assessed for AD pathology, which was absent with
the exception of a few AT8-ir pretangles in the PFC of one 12-
year-old female that died from peritonitis, and Iba1-ir microglia
densities and GFAP-ir astrocyte densities [34,74,75]. All pathology
densities and volumes were checked for linearity, and because of
skewness ofmeans close to zero, densities and volumeswere trans-
formedusing the formula: arcsin (sqrt (density/1000)). To evaluate
neuropathologic changes for each individual, a brain age value
from 0 to 60 was computed using a pathology scoring system
adapted from staging guidelines for Aβ and NFT deposition in
AD and CAA [34]. Principal component analysis (PCA) was
performed to reduce the number of pathological variables to
the most relevant factors for brain age in chimpanzees.
Four factors—AT8-ir NC densities, NFT density, and AB plaque
and vessel volumes—explained 57% of the variance, and all vari-
ables had primary loadings between 0.67 and 0.87. Regression
factors (PCA-generated pathology factor) created from this prior
analysis were employed for further regression analyses with
Nv andGv in this study. Datawere tested for a normal distribution
and for outliers using the ROUTmethod (Q = 1), and outliers were
excluded. Linear regression analyses were used to determine
relationships between the dependent variables of regional Nv,
Gv and G : N, and independent variables of chronological age,
PCA-generated pathology factor, Aβ42 plaque and vessel volumes
(%), and pretangle, NFT, and tau NC densities (per mm3). Sex and
brain region variations were examined using two-way (sex) or
mixed model (region) ANOVAs with Bonferroni post hoc
tests. Statistical analyses were conducted using GraphPad Prism
8.3.0 (San Diego, CA), and the level of significance (α) was set
at 0.05.
3. Results
Regional Nv, Gv and G :N were quantified for layer III of the
PFC and MTG as well as the pyramidal layer of the CA1 and
CA3 hippocampal subfields (figure 1). Average densities and
ratios for young (n = 8, 12–35 years), aged (n = 20, 37–62
years), and all chimpanzees in addition to the per cent gain or
loss between old and young animals for each region and vari-
able are shown in electronic supplementary material, table S3.
Using previously collected microglia and astrocyte densities
from tissue in the same animals, alongwith the total glia density
from the current study, the breakdownof glial subtypeswas cal-
culated for each region examined with an average across all
areas of 81%oligodendrocytes, 8%astrocytes and11%microglia
(electronic supplementary material, table S4) [74,75].

(a) Region and sex
Mixed model ANOVA with Bonferroni multiple comparison
tests revealed that PFC and MTG Nv are significantly higher
than CA1 (PFC: t27 = 12.01, MTG: t26 = 13.54, ps≤ 0.01) and
CA3 (PFC: t27 = 4.97, MTG: t26 = 5.97, ps≤ 0.01) but do not
differ from each other (t26= 0.17, p = 0.99; figure 3a). CA3 Nv
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Figure 4. A decrease in CA1 and CA3 neuron densities (Nv, mm3; a,b) was correlated with older age in the chimpanzee brain (ps≤ 0.02). Photomicrographs of Nissl
staining in hippocampal subfields CA1 (c,d ) and CA3 (e,f ) in a young chimpanzee (c,e) and an old (d,f ) chimpanzee brain. Scale bar = 250 µm. (Online version in
colour.)
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was higher than CA1 (t27= 12.44, p≤ 0.01). Glia density was
significantly higher in the PFC and MTG than CA1 (PFC:
t25= 5.77, MTG: t24= 8.69, ps≤ 0.01), but not CA3 (PFC: t25 =
1.43, MTG: t24= 0.11, ps≥ 0.99; figure 3b). PFC Gv did not
vary from MTG (t26 = 2.14, p = 0.25). As with Nv, CA3 Gv
was greater than CA1 (t25= 16.26, p≤ 0.01). Both PFC and
MTG G :N ratios were significantly lower than CA1 (PFC:
t25 = 5.14, MTG: t22 = 5.94, ps≤ 0.01) and CA3 (PFC24: t = 8.18,
MTG: t21 = 9.48, ps≤ 0.01), while CA3 was significantly greater
than CA1 (t24 = 5.76, p≤ 0.01; figure 3c). G : N in the PFC did
not differ from MTG (t24= 1.01, p = 0.99). Two-way ANOVA
revealed no sex differences in Nv (F1,103 = 1.61, p = 0.21),
Gv (F1,99 = 0.24, p = 0.63) or G : N (F1,97 = 0.61, p = 0.44;
figure 3d–f ) for any region examined.

(b) Age
Age was associated with significantly decreased Nv in both
CA1 and CA3 (figure 4, ps≤ 0.02; electronic supplementary
material, table S5). Age-related changes were not observed
in PFC or MTG Nv (electronic supplementary material,
figure S1A-B, ps≥ 0.29). There were no age-related changes
for Gv (electronic supplementary material, figure S1C-F,
ps≥ 0.07), or G : N in any of the regions examined (electronic
supplementary material, figure S1G-J, ps≥ 0.10; electronic
supplementary material, table S5).

(c) Alzheimer’s disease pathology
To determine an overall Aβ and tau score for each chimpanzee,
a PCA-generated pathology factor was calculated as pre-
viously described [34]. Linear regression analyses were used
to investigate the association of regional Nv, Gv or GN with
PCA-generated pathology factors and regional AD pathology
measurements previously collected in the 20 oldest apes (i.e.
greater than or equal to 37 years [34]). Pathologic markers
included Aβ42-ir plaque and vessel volumes (%) and AT8-ir
pretangle, NFT and NC densities (per mm3) collected in the
PFC, MTG, CA1 and CA3. Briefly, plaques were defined as
extracellular accumulations of insoluble Aβ42, while vascular
amyloid was quantified when Aβ42 deposition was present
in the vessel walls. Pretangles were characterized as having
an intact cell soma, the presence of diffuse punctate hyperpho-
sphorylated tau (AT8) immunostaining in the cytoplasm,
well-preserved dendrites and a nucleus. NFT were identified
based on intraneuronal aggregates of hyperphosphorylated
tau, and distorted, shortened or absent dendrites and axons.
Tau NC contained clusters of dystrophic neurites, consisting
of AT8-ir swollen axons and dendrites, or diffuse, punctate
staining.

Regional Nv, Gv and G :N were not correlated with
PCA-based pathology factors or AD pathologies with two
exceptions (electronic supplementary material, table S6, ps≥
0.07). In the MTG only, Aβ42 vessel volume was associated
with decreased Nv (R2 = 0.23, p = 0.05; electronic supplemen-
tary material, figure S2A), even after excluding two outliers
with significantly high levels of amyloid deposition (R2 = 0.28,
p = 0.04; electronic supplementary material, figure S2B,E-F).
However, to correct for multiple comparison testing error, we
performed a Bonferroni correction (p = 0.002), and the corre-
lation of MTG Aβ42 vessel volume and Nv was no longer
significant. Additionally, pretangle density was negatively
correlated with Nv in the CA1 (R2 = 0.19, p = 0.05; electronic
supplementary material, figure S2C), but after removal of two
outliers with high pretangle numbers, the association was
non-significant (R2 = 0.00, p = 0.88; electronic supplementary
material, figure S2D,G-H).
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4. Discussion
Several studies identified senescence-related changes and
AD-like pathology in the brains of non-human primates
[33–35,37,38]. Yet, none established whether Aβ or tau
pathologies were associated with the profound neuron loss
and neuroinflammation observed in the human AD brain.
To address this knowledge gap, we quantified Nv, Gv and
G : N in postmortem tissue obtained from a large cohort of
chimpanzee brains with markers of AD pathology.

Neuron density decreased moderately with age in the CA1
(12%) and CA3 (19%) hippocampal subfields in this sample
of chimpanzees. These data diverge fromprior investigations in
older non-humanprimates andhumans [5,12,65,84]. Previously,
no changes in neuron number with age were found in CA1
and CA3 for chimpanzees and rhesus macaques [65,84].
However, both studies were limited in the number of animals
(chimpanzees = 6; macaques = 8) compared to the current
study of 28 apes. Neuron numbers were reported rather than
densities, and both the polymorphic and pyramidal layers
were measured in macaques. In elderly humans, the majority
of studies of CA1 and CA3 neurons demonstrated preservation
duringphysiological ageing [5,9,10,12,85].Although the human
and chimpanzee hippocampus appears to be differentially
affected by ageing, this region is vulnerable to neuronal death
in both species with age and neurodegeneration.

A non-significant trend of neuron loss (20-24%) was associ-
ated with Aβ42 vascular deposition in the temporal cortex of
chimpanzees. Previously, we found that Aβ42 was threefold
higher in neocortical vessels compared to the hippocampus
[34]. In addition, Aβ plaque and vessel volumes were signifi-
cantly greater in older apes, suggesting that age-related
increases contribute to neuronal toxicity in MTG of aged
chimpanzees. This concept is further supported by the lack of
neuron loss with age in this region. Notably, pretangle densities
were highest in the MTG compared to the hippocampus,
although pretangles did not correlate with neuron loss [34,40].
AD pathologic markers in great apes demonstrate similar
regional staging progression as humans with Aβ deposits
occurring first in the neocortex, whereas NFT initiate in the
medial temporal lobe and brainstem [86,87]. Thus, MTG may
represent an area in which Aβ and tau pathologies converge
in chimpanzees. Moreover, MTG exhibits the largest, albeit
nonsignificant, decrease in Gv (18%) and G :N (34%) with
age and the lowest density of microglia in these apes (electronic
supplementary material, table S3). In AD, microglia play
an important role in the removal of Aβ peptides through
phagocytosis, and physiological senescence in microglia is
accompanied by the release of inflammatory cytokines, which
have detrimental effects on neurons [88]. Consequently, in
chimpanzees, the low number of microglia in MTG may
result in decreased Aβ42 phagocytosis, exacerbated by an age-
associated increase in Aβ42-ir vasculature and high numbers
of pretangles, leading to neuronal death.

Humans with AD differ from chimpanzees in that signifi-
cant neuronal loss occurs in the PFC and CA1 as well as the
temporal cortex [5,14,16,89,90]. The absence of cell death in
the chimpanzee hippocampus could be due to the increase in
severity of NFT pathology in AD relative to milder NFT den-
sities in aged chimpanzees. In AD, NFT correlates strongly
with neuronal loss and cognitive decline [91,92]. Therefore,
we compared CA1 Nv in apes with pretangles (13 581 mm−3)
or NFT (115 959 mm−3) to those without (15 025 mm−3), and
observed a trend of mild decline with tau pathologies. More-
over, a 57-year-old male chimpanzee with the highest CA1
pretangle and NFT densities exhibited the lowest Nv
(6902 mm−3) of all the apes and was an outlier in our original
analysis, which showed a negative correlation of CA1 pre-
tangle density and Nv (electronic supplementary material,
figure S2C). Once this animal was removed, the association
no longer remained (electronic supplementary material,
figure S2D). Furthermore, like humans, Aβ plaque and vascu-
lar levels were higher in the neocortical regions compared to
the hippocampal subfields in these chimpanzees.

Neocortical and hippocampal glia densities were not
associatedwith age or AD pathology in chimpanzees. Our pre-
vious findings support the lack of age and pathology-related
variation in microglia and astrocyte densities in the same
apes and brain regions [74,75]. Human studies also found
that astrocyte numbers did not change with age or AD pathol-
ogy, andmicroglia density did not differ in the temporal cortex
of control and AD brains [19,20,93]. Instead, expression of
GFAP and MHC-II, markers of astrocyte and microglia acti-
vation, increased in AD patients, implicating a phenotypic
change instead of a marked proliferation [93]. Greater micro-
glial activation was also detected in the hippocampus in
elderly non-demented subjects [23]. Non-human primates
demonstrate a similar pattern. Rhesus monkeys exhibited
both senescence-associated expression of MHC-II and acti-
vated microglia concomitant with fibrillar Aβ plaques with
clusters of phosphorylated tau-containing swollen neurites
[72,94,95]. Likewise, Aβ oligomers trigger astrocyte and micro-
glial activation in long-tailed macaques, and microglial
activationwas observed in the brains of aged commonmarmo-
sets in conjunction with Aβ and hyperphosphorylated
tau deposition [46,96]. In chimpanzees, greater volumes of
Aβ42 plaque and vessel deposition were correlated with
higher hippocampal microglial activation, while tau depo-
sition was significantly increased in activated, intermediate
microglia [34]. This evidence suggests that overall glia densities
are not impacted by age or AD pathology in great apes,
although glial activation increases in proximity to Aβ and tau
deposition.

Unexpectedly, the breakdown of glial subtypes in chimpan-
zees (81% oligodendrocytes, 8% astrocytes and 11%microglia)
diverges from estimates in humans (males: 75% oligodendro-
cytes, 20% astrocytes, 5% microglia), who have a higher
percentage of astrocytes and lower percentage of microglia
[20]. Rhesus monkey brains have a distribution of 35% oligo-
dendrocytes, 57% astrocytes and 7% microglial cells in
the cortex [97]. Although potentially a result of different
quantification methods, the species-related variation in glial
makeup may be an important difference in humans and
could play a role in the reduced neuroinflammation observed
in ape brains during ageing, although further analyses
are required.

Glia : neuron ratios were not associated with age or
pathology in chimpanzees. Average G : N were higher in the
hippocampus (2.36) compared to the neocortex (1.57). These
results are in accordance with previous studies in other non-
human primates and humans. A neocortical G : N of 1.70
was reported in rhesus monkeys and 1.98 in chimpanzees,
while human cortical grey matter ranges from 0.6 to 4.0 with
an average of 1.79 [72,98,99]. In addition, a G : N of 1.37 was
found in the neocortex of AD patients and controls, suggesting
the ratio does not change with disease [21].
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Comparing differences in the brains of humans and great
apes can enhance our understanding of the selective vulner-
ability of humans to neurodegenerative diseases, such as AD
(table 1). In the current study, we found that chimpanzees
experience limited decreases in Nv in association with physio-
logic and pathologic ageing, although not to the same severity
asAD.A caveat of this investigation, though, is the lack of ante-
mortem cognitive testing, which is necessary to determine
whether neuronal loss is associated with cognitive decline in
aged chimpanzees. Moreover, the contribution of life-history
factors, such as social environment, diet, body metabolism
and physical activity, that may affect neurological variation
were not examined in these animals. These data highlight
and further support the role for non-human primates as
models of ageing and neurodegenerative diseases due to
their long lifespans, genomic similarities, and complex
physiology and cognition.
.
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