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E C O L O G Y

Spatial and temporal variations in global soil respiration 
and their relationships with climate and land cover
Ni Huang1, Li Wang1*, Xiao-Peng Song2, T. Andrew Black3, Rachhpal S. Jassal3, Ranga B. Myneni4, 
Chaoyang Wu5, Lei Wang1, Wanjuan Song1, Dabin Ji1, Shanshan Yu1, Zheng Niu1,6

Soil respiration (Rs) represents the largest flux of CO2 from terrestrial ecosystems to the atmosphere, but its spatial 
and temporal changes as well as the driving forces are not well understood. We derived a product of annual global 
Rs from 2000 to 2014 at 1 km by 1 km spatial resolution using remote sensing data and biome-specific statistical 
models. Different from the existing view that climate change dominated changes in Rs, we showed that land-cover 
change played a more important role in regulating Rs changes in temperate and boreal regions during 2000–
2014. Significant changes in Rs occurred more frequently in areas with significant changes in short vegetation 
cover (i.e., all vegetation shorter than 5 m in height) than in areas with significant climate change. These results 
contribute to our understanding of global Rs patterns and highlight the importance of land-cover change in driv-
ing global and regional Rs changes.

INTRODUCTION
Large uncertainties in the global carbon budget are associated with 
the terrestrial carbon cycle, and reducing these uncertainties requires 
an improved capacity to estimate carbon fluxes between the atmo-
sphere and terrestrial ecosystems (1). Over two-thirds of terrestrial 
carbon is stored belowground, and a significant amount of the at-
mospheric CO2 assimilated by plants is respired by roots and microbes 
in soils (2, 3). Soil respiration (Rs), consisting of root (autotrophic) 
respiration (Ra) and microbial (heterotrophic) respiration (Rh), is 
therefore a key process in the terrestrial carbon cycle. However, Rs 
is difficult to estimate at the global scale because of the limited under-
standing of the complex interactions of physical, chemical, and bio-
logical processes and the resulting high spatiotemporal dynamics (4).

Compared to the large number of studies on plant productivity in 
terrestrial carbon cycling, there are few studies on global Rs dynam-
ics (4, 5). Global Rs can be estimated using top-down or bottom-up 
approaches. Top-down approaches typically estimate Rs as the resid-
ual of the carbon balance, and thus, the indirect estimates can natu-
rally capture average soil carbon fluxes over large areas, although the 
results inevitably suffer from errors and uncertainties from any of 
the source datasets (6). By contrast, bottom-up methods, including 
process-based models and empirical statistical models, use direct ob-
servational data (6, 7). Process-based models rely on knowledge of 
the interactions among different physical and ecological processes, 
but many models rarely simulate Rs explicitly and instead generate 
only an explicit output of Rh (8). Global Rh may provide some infor-
mation on Rs, but the use of different model structures and parame-
ters has resulted in large discrepancies among them (3, 9). Compared 
to process-based models, statistical models are simpler and can pro-
vide data-oriented estimates of Rs using various biotic or abiotic fac-

tors as input, such as temperature, moisture, plant productivity, and 
soil properties (2, 3, 9–17). Previous studies using statistical models 
have produced mean annual global Rs estimates from 78 to 108 Pg C 
year−1, and the error associated with each estimation was high (table 
S1). One study (7) noted that the lack of large-scale, observation-driven 
Rs estimates was a major problem in constraining regional-scale to 
global-scale C fluxes.

Given that multiple regional-scale studies (18, 19) have shown that 
remote sensing data can be used to estimate Rs with high accuracy, we 
expect that it is also possible to estimate Rs beyond the regional scale. 
The openly available remote sensing data of high spatial resolution 
provide large-scale observations, and remote sensing is anticipated to 
play an increasingly important role in carbon cycle research in the 
future (20). For instance, current remote sensing products provide a 
range of key ecosystem variables that accurately reflect the spatiotem-
poral variations in surface temperature, moisture, and plant produc-
tivity of terrestrial ecosystems (21–23). Adachi et al. (14) provided 
insights into the estimation of global Rs by combining empirical mod-
els derived from field studies with remote sensing data. However, Ad-
achi et al. (14) used one empirical model from a site-specific study for 
all ecosystem types, which is unlikely to be representative and may 
lead to large uncertainty in global Rs estimation.

Rs change can be affected by many factors, and climate factors 
(e.g., air temperature and precipitation) have been commonly in-
vestigated because of their direct or indirect effects on Rs metabo-
lism (9–15). Land-cover change can also greatly affect Rs by changing 
vegetation structure, plant species composition, local microclimate, 
and soil properties (24, 25). For instance, global greening and the 
associated vegetation structural change could affect Rs by altering 
biogeophysical processes (26, 27). However, few studies have com-
prehensively considered both climate and land-cover change effects 
on the spatial and temporal variations in global Rs. As soil nutrient 
availability ultimately depends on photosynthate supply (28), we as-
sume that the estimation of global Rs can be achieved by including 
three factors: temperature, moisture, and plant productivity.

With the number of measurements of Rs rapidly increasing world-
wide, future modeling efforts that are focused on global Rs estimation 
should take advantage of remote sensing data and data mining tech-
niques to link observations at different scales. In this study, we have 
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developed an annual global Rs dataset at 1 km by 1 km spatial resolu-
tion for the time period from 2000 to 2014. The product was gener-
ated by combining globally distributed in situ Rs measurements, satellite 
remote sensing data, and biome-specific statistical models, including 
parametric models and nonparametric machine learning models. We 
analyzed spatial and temporal variations in global Rs. We then in-
vestigated how the changing trends in Rs were related to changes in 
climate (temperature, precipitation, and drought) and land cover.

RESULTS
Deriving annual global Rs product from 2000 to 2014
On the basis of a 10-fold cross-validation method, we evaluated the 
accuracy of the four statistical models [i.e., multiple nonlinear re-
gression (MNLR), random forest regression (RFR), support vector 
regression (SVR), and artificial neural network (ANN) models] by 
comparing RMSE (root mean square error) and R2 (coefficient of 
determination) (table S2) using available measured Rs datasets as a 
reference. We determined the biome-scale model for the estimation 
of annual Rs of each biome by selecting the model with the highest 
cross-validation accuracy (table S3). Although the selected models 
were not the same across the 10 biomes, they were all machine learn-
ing algorithm models. The selected models explained 62 to 84% of 
the interannual and intersite variabilities in annual Rs with an RMSE 
ranging from 107 to 413 g C m−2 year−1 (table S3). On the basis of 
the selected biome-scale models (tables S3 and S4), we produced the 
annual global Rs dataset at the global scale from 2000 to 2014.

Spatial and temporal patterns of global Rs
The regions with high Rs are located in the tropics, such as the Amazon 
Basin, Central Africa, and Southeast Asia. Low Rs values are widely 
distributed in the Northern Hemisphere high-latitude regions, western 
United States, Canada, Central Asia, northern Mongolia, northeast 
China, Argentina, and Australia (Fig. 1). Boreal, temperate, and tropi-
cal regions contributed 15, 24, and 61%, respectively, to the total mean 
annual global Rs. Our estimated mean annual global Rs from 2000 to 
2014 is 72.6 Pg C year−1 [95% confidence interval (CI) = 69.8-75.4 

Pg C year−1], which was lower than the estimated global Rs for re-
cent years (table S1). The estimated annual global Rs showed fluctu-
ations over time (fig. S2), with the lowest value (70.6 Pg C year−1) 
occurring in 2000 and the highest value (74.5 Pg C year−1) occur-
ring in 2010.

Over the 15 years of the study period, the Rs trends varied at dif-
ferent spatial scales (Fig. 2A). Rs showed a significantly increasing 
trend globally (0.13 ± 0.02 Pg C year−1, P < 0.05), in the boreal region 
(0.05 ± 0.01 Pg C year−1, P < 0.05), and in the tropical region (0.11 ± 
0.02 Pg C year−1, P < 0.05) and a nonsignificantly decreasing trend in 
the temperate region (−0.02 ± 0.01 Pg C year−1, P = 0.42). The tropics 
accounted for approximately 85% of the total increase in the global 
Rs. The largest Rs net change occurred in the tropical region (1.54 Pg 
C, 95% CI = 1.30-1.78 Pg C; +3.66% change relative to the global Rs 
in 2000), followed by those in the boreal region (0.65 Pg C, 95% CI = 
0.49-0.81 Pg C; +6.80%) and temperate region (−0.27 Pg C, 95% CI = 
−0.43-−0.11 Pg C; −1.53%).

At the global scale, 50% of our study area experienced an increas-
ing trend in Rs, and the regions with a significant increasing trend 
(8.5%) were spatially aggregated and mainly located at the high lati-
tudes (e.g., northern Canada, northern Russia, and northern Europe), 
northern Mongolia, Loess Plateau and northeastern Tibetan Plateau 
of China, India, Amazon Basin, and Congo Basin (Fig. 2, B and C). 
The annual Rs significantly decreased in less than 5% of the study 
regions; these regions were mainly scattered in southeastern Russia, 
midlatitude temperate regions (i.e., United States, Kazakhstan, and 
northeast China), southern Africa, and Argentina (Fig. 2B). At the 
regional scale, the area with the highest proportion of increasing Rs 
(60.7%, 11.1% with a significant increase) was the boreal region, and 
the area with the highest proportion of decreasing Rs (39.9%, 5.1% 
with a significant decrease) was the temperate region (Fig. 2C).

The relationships between Rs and its driving factors at 
global and regional scales
Global Rs showed a significant positive partial correlation with an-
nual mean air temperature (TEM) from 2000 to 2014 (R = 0.67, 
P < 0.05; Fig. 3). A significant positive partial correlation between Rs 

Fig. 1. Global distribution of mean annual Rs between 2000 and 2014. (A) Global map of mean annual Rs at 1 km by 1 km spatial resolution derived using satellite data. 
(B) Latitudinal distribution of mean annual Rs (blue line) and total annual Rs (orange line). All land grids along a latitudinal row in the global map were averaged to derive 
mean Rs and summed to derive total Rs.
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and TEM was also found in the tropical region over the study peri-
od (R = 0.83, P < 0.05; Fig. 3). However, for boreal and temperate 
regions, land-cover factors, especially the short vegetation (SV) cover, 
showed consistently significant positive partial correlation with Rs 
during 2000–2014 (Fig. 3). Through the statistical analyses of the 
per-pixel significant change trends in Rs and the six driving factors 
over the globe and three regions (Fig. 2B and figs. S4 and S5), we 
found that the highest proportion of the areas where Rs changed sig-
nificantly was located in areas with significant change in TEM at the 
global scale and in the tropical region (Fig. 4). However, in temper-
ate and boreal regions, the significantly changed Rs was more com-
monly located in areas with significant changes in SV cover than in 
areas with significant climate change (Fig. 4). Separating both effects 
(Fig. 5), climate change accounted for the majority of the observed 
Rs change at the global scale (56%) and in tropical regions (66%), 
but land-cover change contributed the most to the Rs change in tem-
perate (58%) and boreal regions (55%).

DISCUSSION
Comparison to previous studies on global Rs
Differences in estimated mean annual global Rs observed between 
recent studies and the present work (table S1) can be explained 
largely by differences in the spatial extent of study areas. Our study 
does not consider Rs from the permanent bare ground (BG) land- 
cover types (LCTs) because there are very few measurements of the 
annual Rs from bare lands. On the basis of the Moderate Resolution 
Imaging Spectroradiometer (MODIS) LCT data, global BG lands 
have a mean area of 20.6 × 106 km2 between 2000 and 2014. If the 
annual Rs of BG lands were 421.3 ± 167.9 g C m−2 year−1 (2), then 
mean annual Rs of global BG lands would range from 5.2 to 12.1 Pg 
C year−1. This result explains, to some extent, the underestimation 
of our global annual Rs and demonstrated that the estimated annual 
global Rs is likely in line with previous estimates.

The increasing global Rs over the period 2000–2014 was consistent 
with an increasing trend in global Rh in the periods 1998–2012 (29) 

Fig. 2. Trends in annual Rs from 2000 to 2014. (A) Overall trends in annual Rs. To calculate the overall trend at the global scale, global average Rs for each year was first 
derived. Then, a two-sided Mann-Kendall test and a Theil-Sen median trend analysis were performed. Trends at the regional scales were derived following the same 
method as the global trend. Gray bars in the upward direction indicate an increasing trend, whereas the hollow bar in the downward direction indicates a decreasing 
trend, with two asterisks denoting significant trends (P < 0.05). Error bars represent the 95% CIs estimated via a 1000-bootstrap analysis. (B) Spatially explicit trends in 
annual Rs at 1 km by 1 km spatial resolution. Similar to overall trends in (A), per-pixel trend was characterized using a two-sided Mann-Kendall test and a Theil-Sen median 
trend analysis. Significant increasing and decreasing trends correspond to positive and negative Theil-Sen estimators, respectively, with significant Mann-Kendall test 
(P < 0.05). Slightly increasing and decreasing trends correspond to positive and negative Theil-Sen estimators, respectively, with nonsignificant Mann-Kendall test results 
(P > 0.05). The residual pixels belong to a stable class. (C) Normalized frequency distribution of trends derived using the map presented in (B). The color scheme of the 
histogram bars matches that of the map legend.
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and 2000–2015 (30). Tropical regions contributing the largest pro-
portion to global Rs change is consistent with earlier studies (9, 11). 
Rs in the temperate region showed a nonsignificant decreasing trend 
between 2000 and 2014 (Fig. 2A), which was different from the 
temperature-associated significant increases in temperate Rs found 
by previous studies (9, 11). The differences in the time period con-
sidered for these estimates (table S1) could partially explain this 
result. The relatively greater Rs increase in the boreal region may be 
explained by the larger magnitude of temperature increase in this 
region (fig. S3A) because the cold regions exhibited a higher Rs tem-
perature sensitivity and larger carbon stock than those of warm re-
gions (31–33).

Global Rs in relation to climate and land-cover changes
On a global scale, Rs correlated significantly with TEM (Fig. 3). This 
result was consistent with the findings of previous studies (9, 11), 
which exhibited an increasing temporal trend for the annual global 
Rs, primarily driven by air temperature anomalies. Temperature also 
played an important role in explaining the interannual variation in 
Rs in the tropical region (Fig. 3). The positive response of Rs to tem-
perature in the tropical region supported the findings of Fernández- 
Martínez et al. (33) that increasing temperature reduced the carbon 
sink capacity of the tropical region because of a greater stimulation 
of ecosystem respiration than photosynthesis at higher temperatures 
(34). However, vegetation change in SV showed stronger link with 
Rs than climate change in both boreal and temperate regions (Fig. 3). 
Furthermore, the globally dominant, coupled land-cover changes are 
the changes in tree canopy (TC) cover colocated with changes in 
SV and changes in SV colocated with BG (fig. S4) (35). The close link 
between TC and SV cover (table S5) explained why the partial cor-
relation coefficient between Rs and SV cover had a similar magnitude 
as that between Rs and TC cover at the regional scale, especially in the 
temperate region (Fig. 3).

Overall, although climate change dominated global Rs change, it 
did not have consistent influences on the change in Rs for the period 
of 2000–2014 at the regional scale (Fig. 5). Land-cover change, espe-
cially changes in SV cover, exerted more effects on Rs in both boreal 

and temperate regions than in tropical regions (Figs. 3 and 4). How-
ever, at the pixel scale, the specific Rs drivers are diverse and inter-
active (36), as discussed in detail below.
Distinct effects of climate change on Rs change
In most tropical regions, including the Amazon Basin, Congo Basin, 
India, Myanmar, and large areas of Australia, the widespread increase 
in Rs might be attributed to increased temperature (Fig. 2B and fig. 
S5A), which was further verified by the positive partial correlation 
between annual Rs and TEM at the pixel scales (Fig. 6A). However, 
increased Rs in central and eastern China (Fig. 2B) may be due to 
increased temperature and precipitation (fig. S5, A and B). A slightly 
increased annual mean standardized precipitation-evapotranspiration 
(ET) index (SPEI) (fig. S3C) may explain the spatial hot spots of in-
creased Rs in the western United States where limiting soil moisture 
has been constraining Rs (37).

Some previous studies (11, 15) have shown that warmer air tem-
peratures are associated with lower Rs values in the boreal region. 
However, our results found that annual Rs showed a strong positive 
partial correlation with TEM throughout most of the northern high 
latitudes (over 55°N) and the Tibetan Plateau (Fig. 6A). A pixel-based 
partial correlation analysis revealed that 65.6% of the boreal region 
showed a positive partial correlation between annual Rs and TEM, 
and 17.8% was statistically significant at the 95% confidence level 
(P < 0.05; Fig. 6A). This result supports earlier findings that air tem-
perature is one of the dominant factors constraining Rs in high-latitude 
and high-altitude carbon cycling (3, 33).
Complex regional interactive effects of climate and land-cover 
changes on Rs
Hot spots of increasing Rs, found spatially coincident with increases 
in SV cover, SPEI, and annual precipitation (PRE) and decreases in 
BG cover, were observed in northern Canada, northern Mongolia, 
Loess Plateau of China, India, and eastern Australia (Fig. 2B and 
figs. S4, B and C, and S5, B and C). The widespread distribution of 
positive partial correlation between Rs and each of the four variables 
(i.e., SV cover, SPEI, PRE, and BG cover) also supported this find-
ing (Fig. 6, B to F, respectively). This suggests that an increase in SV 
cover from BG cover coupled with increased moisture jointly drive 
the increase in Rs through increasing carbon inputs to the soil (28).

Most of the increasing Rs also showed a significant positive par-
tial correlation with interannual variations in SPEI, TC, and SV 

Fig. 3. Relationships between spatially averaged annual Rs and six driving fac-
tors from 2000 to 2014. The plot shows partial correlation coefficient between 
spatially averaged annual Rs and each of the six driving factors at global and re-
gional scales. The six driving factors are annual mean air temperature (TEM), annual 
precipitation (PRE), annual mean standardized precipitation-evapotranspiration (ET) 
index (SPEI), tree canopy (TC) cover, short vegetation (SV) cover, and bare ground (BG) 
cover. All variables (i.e., 15-year spatially averaged annual Rs, TEM, PRE, SPEI, TC cover, 
SV cover, and BG cover at the global and regional scales) were detrended before 
conducting partial correlation analysis. Two asterisks indicate that the partial 
correlation is significant at the 0.05 level (two-tailed).

Fig. 4. Proportion of colocated annual Rs change and each of the six driving 
factors at global and regional scales from 2000 to 2014. The plot represents the 
percentage of the areas with both significant climate (or land-cover) change and 
significant annual Rs change to the areas with significant annual Rs change. Climate 
factors include TEM, PRE, and SPEI. Land-cover factors include TC cover, SV cover, 
and BG cover. This plot indicates that the significantly changed Rs in temperate 
and boreal regions was more commonly located in areas with significant changes 
in SV cover than in areas with significant climate change.
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cover in the boreal region, such as central Russia and northwest 
Canada (Fig. 6, C to E, respectively). These two areas experienced a 
widespread increase in SPEI and TC cover and decrease in SV cover 
(figs. S4, A and B, and S5C), which were probably related to woody 
expansion (27) and permafrost thawing (38) induced by climate 

warming. This result indicates the important effect of moisture on 
Rs (16) and that transformation of SV into woody vegetation may 
increase Rs in the boreal region (15). However, central Quebec, 
Canada also experienced widespread SV loss and TC gain, but Rs in 
this area showed a decreasing trend (Fig. 2B and fig. S4, A and B), 
possibly due to the effect of drought stress (39). The alteration of 
forests and woodlands by deforestation into cultivation is pervasive 
across tropical regions (40), which could increase soil temperature 
and thus increase Rs (41).

Decreasing Rs have been observed to be widely distributed in water- 
limited areas (42, 43), including the central United States, western 
Europe, northeast China, Kazakhstan, Argentina, east Brazil, east 
Africa, south Africa, and western Australia (Fig. 2B). These drought-
prone areas spatially matched the areas with decreasing trends in SV 
cover (fig. S4B), with most of these areas corresponding to the areas 
with decreasing trends in PRE and SPEI (fig. S5, B and C) and some 
of these areas (i.e., Kazakhstan, Argentina, east Brazil, east Africa, 
and south Africa) corresponding to widespread increases in BG 
cover (fig. S4C). The widely distributed positive partial correlations 
between Rs and SV (or PRE or SPEI; Fig. 6, B, C, and E) in these 
areas indicated that SV loss and decreased water availability jointly 
determined the decrease in Rs in these water-limited regions. This 
phenomenon was particularly pronounced in the temperate region 

Fig. 5. Contributions of climate change and land-cover change to changes in annual Rs 
from 2000 to 2014. The plot indicates that climate change dominates global Rs change, 
but it does not have consistent influence on Rs change at the regional scale.

Fig. 6. Spatial patterns of partial correlation coefficient between annual Rs and its six driving factors from 2000 to 2014. Partial correlation coefficient (R) between 
detrended annual Rs and detrended driving factors are shown in (A) Rs and TEM, (B) Rs and PRE, (C) Rs and SPEI, (D) Rs and TC cover, (E) Rs and SV cover, and (F) Rs and BG 
cover. R = ±0.64, R = ±0.51, R = ±0.44, R = ±0.35, and R = ±0.19 correspond to the 0.01, 0.05, 0.1, 0.2, and 0.5 significance levels, respectively. To reduce the effects from the data 
acquisition error in the land-cover data, only the per-pixel percent cover of TC, SV, and BG greater than 25% (61) was used to conduct the partial correlation analysis.
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(Fig.  6,  B,  C,  and  E), which could help explain the decreased Rs 
trend in this region (Fig. 2A). The mechanism behind these changes 
may be attributed to the response of Rs to drought. Drought can 
lead to a significant decline in vegetation productivity by reducing 
water availability for plant growth (44), inhibiting soil Rh and ex-
tracellular enzymes diffusion (45), and thus inducing a substantial 
reduction in Rs (16).

Limitations and future work
This analysis has a number of limitations. First, a lack of represen-
tativeness of in situ observations of annual Rs is the largest source of 
uncertainty in the global Rs estimation using bottom-up methods 
(7). Our study is based on an integrated global dataset of Rs, which 
had more records from temperate regions but a distinct lack of field 
data from boreal and tropical regions (fig. S1). Without proper cor-
rection of the effects of spatial sampling, the heterogeneous distri-
bution of the measurements may bias global Rs estimates toward the 
rates of the most sampled biomes. Thus, our method carries uncer-
tainties, particularly in the globally undersampled regions. Future 
efforts to improve our method for Rs estimation would likely benefit 
most from reduced uncertainty in sampling error. In this study, we 
established the optimal statistical model for each biome by a combi-
nation of remote sensing data and in situ data and then used remote 
sensing data to estimate global Rs. This approach can efficiently 
reduce spatial sampling error because use of space-based remote 
sensing techniques can reduce sampling bias in boreal and tropical 
regions by providing dense sampling in space and time to char-
acterize the heterogeneity of specific ecosystem properties and 
parameters [e.g., (46)].

Second, these selected biome-specific models explained 62 to 84% 
of the spatiotemporal variability in the global Rs (table S3), highlight-
ing the limitations of the input datasets and the resulting empirical 
models in accurately predicting global Rs spatiotemporal patterns. 
Despite the uncertainties in the remote sensing datasets used for 
global Rs estimation (table S3), our approach has the potential to 
provide better estimates of global Rs with improvements to remote 
sensing–based estimates of the input variables [e.g., gross primary 
production, land surface temperature (LST), and vegetation index 
(VI)] (20). To better understand spatial and temporal variability of 
global Rs, more information about the uncertainty in the remote 
sensing inputs (table S3) and driving datasets (i.e., climate and 
land-cover data) is needed.

Furthermore, multiple uncertainties remain in modeling global 
Rs. These uncertainties may be due to the omission of potentially 
important factors, such as transition periods from a land cover to 
another (24, 25), nitrogen deposition (47), increasing atmospheric 
CO2 (48), soil organic carbon (49), and ecological disturbances (50). 
Last, data at subannual time scales (e.g., monthly and daily data) are 
important for upscaling global Rs (17). Estimation of global Rs at a 
temporal resolution finer than the current annual time scale may 
derive different conclusions and deserves further exploration.

CONCLUSIONS
Identifying the factors that affect the contribution of the soil surface 
CO2 efflux to the atmosphere will help increase confidence in future 
projections of the terrestrial carbon cycle in response to global climate 
change. Until recently, the analysis on driving forces of Rs change 
was largely limited to climate factors (9, 10, 15), and the role of land- 

cover change was rarely investigated. In this study, global annual Rs 
estimates were obtained from satellite data–driven statistical mod-
els that were well constrained by 1292 site years of in situ measure-
ments of Rs at a per-biome scale. Consistent with previous studies, 
we found an increasing trend in global Rs due to climate change 
(9, 11, 15), and our results supported earlier findings that increased 
temperatures were negatively associated with the terrestrial C sink 
(33). However, unlike earlier analyses, our study, using statistical mod-
els and 1 km by 1 km remote sensing data, showed that land-cover 
change played a major role in driving changes in annual Rs in bore-
al and temperate regions. This result further confirmed that consid-
ering only climate change could not adequately explain the spatial 
and temporal variations in Rs, especially in temperate and boreal re-
gions. We caution that there are uncertainties in the estimations of 
global Rs, such as sampling error, uncertainties in remotely sensed 
input data, ignoring potentially important factors, and the lack of 
subannual data. Further efforts should be made toward reducing these 
uncertainties.

MATERIALS AND METHODS
The data, statistical prediction models, and analytical approaches 
used in this study are described here in sufficient detail to under-
stand the analysis. Additional methodological details needed to re-
produce the results are presented in the Supplementary Materials.

Data
Integration of field-based Rs databases
Three available Rs databases covering global and regional scales (51–53) 
were collected to generate a centralized field database. These exist-
ing datasets were derived on the basis of comprehensive literature 
surveys of field (not laboratory) Rs measurements. To guarantee 
data quality for our analysis and to eliminate the mismatch between 
field-measured Rs and satellite remote sensing data, we applied the 
following selective criteria to the available records to create the in-
tegrated field database: (i) The database strictly focused on annual 
(i.e., year-round) Rs measurements, rather than seasonal (e.g., during 
the growing season) measurements. (ii) Only studies using an infra-
red gas analyzer or gas chromatograph were selected, and annual Rs 
values collected from nonagricultural biomes were limited to those 
without experimental manipulation. (iii) Some low-quality data re-
cords were removed, such as those from studies where the annual Rs 
value was extrapolated from low-frequency measurements or ob-
tained from other sources (not original measurements). (iv) When 
more than one set of year-round Rs measurements were made at 
one site and for 1 year, those data were averaged to estimate the mean 
annual Rs for that site and year. As a general rule, averaging was 
avoided among different vegetation types. For instance, when the 
records included data from more than one location at the same site 
(i.e., site with different vegetation cover types), each location corre-
sponding to a vegetation type was incorporated separately into our 
database. In addition to the annual Rs estimates, other site variables, 
such as latitude, longitude, study year, TEM, PRE, and vegeta-
tion type, were also included in the integrated database. The final 
database used in this study contained 1292 annual Rs observations 
collected from 701 sites from 2000 to 2014. These sites were dis-
tributed from 43°12′S to 78°10.20′N and from 155°56.40′W to 
175°46.20′E, covering most of the global biomes and climate zones 
(fig. S1).
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Remote sensing data products
We collected the global LST, gross primary productivity (GPP), VI, 
ET, and LCT products from the available MODIS data. Among these 
products, the 1-km MOD11A2 LST product (https://lpdaac.usgs.gov/
products/mod11a2v006/), 500-m MOD17A2H GPP product (https://
lpdaac.usgs.gov/products/mod17a2hv006/), 500-m MOD13A1 VI 
product (https://lpdaac.usgs.gov/products/mod13a1v006/), and 
500-m MOD16A2 ET product (https://lpdaac.usgs.gov/products/
mod16a2v006/) provided 8-day average values for every year between 
2000 and 2014. The MCD12Q1 LCT product with a 500-m spatial 
resolution (https://lpdaac.usgs.gov/products/mcd12q1v006/) provided 
annual values for 2001 to 2014. We collected root-zone soil moisture 
(RZSM) products from the assimilation of the NASA Advanced Micro-
wave Scanning Radiometer (AMSR-E) data and a two-layer Palmer 
water balance model (23), with global coverage from June 2002 to 
December 2010 at a spatial resolution of 25 km and a temporal reso-
lution of 1 day. We included the Tropical Rainfall Measuring Mission 
(TRMM) 3B43 gridded global precipitation product with a monthly 
temporal resolution and 0.25° by 0.25° spatial resolution for 2000 to 
2014 (54).

The LCT data in 2000 were missing in the LCT product, and for 
this, we substituted LCT data for 2001. The spatial resolution of the 
remote sensing data products is diverse, ranging from 500 m to 25 km. 
For site-scale analyses, we selected the pixels centered on each site 
from the remote sensing data products by a nearest-neighbor algo-
rithm to match the geographic coordinates (latitude and longitude) of 
the Rs observation sites. Low-quality data were removed using the 
available quality flags in each data product. For the spatial analysis at 
the global scale, we created a 1 km by 1 km spatial resolution dataset 
from the original remote sensing data products based on nearest- 
neighbor resampling. All satellite remote sensing data products with 
1-day, 8-day, and monthly temporal resolutions were averaged to 
obtain the corresponding values at annual, spring, and summer time 
scales.
Climate and land-cover change data
We extracted gridded monthly air temperature and precipitation 
time series data at a resolution of 0.5° by 0.5° from the website of the 
Center for Climate Research, University of Delaware (http://climate.
geog.udel.edu/~climate/html_pages/download.html#ghcn_T_P_
clim2). We also used global standardized precipitation-ET index data 
(http://SPEI.csic.es/database.html) as a measure of drought intensity 
(spatial resolution, 0.5° by 0.5°). Three climatic variables—TEM, PRE, 
and SPEI—were calculated for each year and each pixel from 2000 to 
2014 over the globe to analyze the response of Rs to climate change. 
In addition, we used an annual global land-cover product by Song et al. 
(35) to analyze the response of Rs to land-cover change. This land-cover 
product provided proportional estimates of TC cover, SV cover, and 
BG cover at a 0.05° by 0.05° spatial resolution over the globe for each 
year during 2000–2014. Trees are defined as all vegetation taller than 
5 m in height. SV refers to all vegetation other than trees, including 
shrubs, herbaceous vegetation, and mosses, while BG represents the 
proportion of the land surface not covered by vegetation.

Available predictive variables for annual Rs estimation
Our model development assumes that temperature, moisture, and 
plant productivity are the predominant drivers of the spatiotempo-
ral variation in global Rs. Remotely sensed LST has shown great po-
tential in estimating Rs at the site and regional scales (19). In this 
study, temperature variables include MOD11A2 LST measurements 

during the daytime (LST_day) and nighttime (LST_night). Mois-
ture availability, as it relates to temperature, may be better addressed 
using data representing actual ET or the ratio of actual to potential 
ET (ET_PET) (16) and can be accounted for via the difference be-
tween LST_day and LST_night (18). Thus, four parameters are used 
as a surrogate for soil moisture status, including the remotely sensed 
precipitation from TRMM 3B43 (RS_pre), difference between LST_
day and LST_night (LST_diff), ET and ET_PET from MOD16A2, 
and RZSM, which were extracted from our collected remote sensing 
data products. GPP and VI can be used as quantitative indicators of 
plant productivity to estimate Rs (19). Thus, this study used the 
MOD17A2H GPP, enhanced VI (EVI), and normalized difference 
VI (NDVI) from MOD13A1 as measures of plant productivity.

Because annual Rs is affected by various biotic and abiotic factors 
at annual and seasonal time scales (55), this study used predictive 
variables from remotely sensed temperature, moisture, and plant 
productivity variables at annual, spring, and summer time scales for 
the estimation of global Rs. In this study, spring and summer corre-
spond to March to May and June to August, respectively. In addi-
tion, the remotely sensed temperature variables used in this study 
include LST_day_annual, LST_day_spring, LST_day_summer, LST_
night_annual, LST_night_spring, and LST_night_summer. The mois-
ture variables include RS_pre_annual, RS_pre_spring, RS_pre_
summer, LST_diff_annual, LST_diff_spring, LST_diff_summer, 
ET_annual, ET_spring, ET_summer, ET_PET_annual, ET_PET_
spring, ET_PET_summer, RZSM_annual, RZSM_spring, and RZSM_
summer. The plant productivity variables include GPP_annual, GPP_
spring, GPP_summer, EVI_annual, EVI_spring, EVI_summer, 
NDVI_annual, NDVI_spring, and NDVI_summer.

Rs rates vary among major biomes because of the interactions be-
tween climate and vegetation at the global scale (14, 15). Therefore, 
it is necessary to establish the models at the biome scale for accurate-
ly estimating global Rs. Furthermore, the large dataset available from 
field measurements and satellite remote sensing technology at spe-
cific biomes enable the development of biome-specific models, 
which could be applied to provide global coverage. Thus, compre-
hensively considering the similarities in climate and vegetation types 
and the minimum number of data points needed for constructing a 
statistical model, we divided the globe into 10 biomes: temperate ev-
ergreen needleleaf forest, temperate evergreen broadleaf forest, tem-
perate deciduous needleleaf forest, temperate deciduous broadleaf 
forest, temperate mixed forest, boreal vegetation region, tropical for-
est, grasslands, croplands, and shrublands. To achieve this analysis, 
we used global climatic data from the European Soil Data Centre 
(https://esdac.jrc.ec.europa.eu/) defined on the basis of the climatic 
classification of the Intergovernmental Panel on Climate Change 
(2006). The vegetation type data used are MCD12Q1 LCT data from 
2000 to 2014.

Nonlinear regression models
The well-known Q10 model (Eq. 1) has been frequently used to de-
scribe the relationship between annual Rs (g C m−2 year−1) and tem-
perature. The simple exponential temperature model has been widely 
applied to the modeling of the temperature sensitivity of Rs at the 
global scale (10, 12). However, a common criticism of the Q10 mod-
el is the fixed temperature sensitivity (Q10 value, the factor by which 
the respiration rate increases for a temperature increase of 10°C), 
which violates the fact that the Q10 value decreases with an increase 
in temperature. In this study, we used a more flexible second-order 

https://lpdaac.usgs.gov/products/mod11a2v006/
https://lpdaac.usgs.gov/products/mod11a2v006/
https://lpdaac.usgs.gov/products/mod17a2hv006/
https://lpdaac.usgs.gov/products/mod17a2hv006/
https://lpdaac.usgs.gov/products/mod13a1v006/
https://lpdaac.usgs.gov/products/mod16a2v006/
https://lpdaac.usgs.gov/products/mod16a2v006/
https://lpdaac.usgs.gov/products/mcd12q1v006/
http://climate.geog.udel.edu/~climate/html_pages/download.html#ghcn_T_P_clim2
http://climate.geog.udel.edu/~climate/html_pages/download.html#ghcn_T_P_clim2
http://climate.geog.udel.edu/~climate/html_pages/download.html#ghcn_T_P_clim2
http://SPEI.csic.es/database.html
https://esdac.jrc.ec.europa.eu/
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polynomial temperature model (Eq. 2), which has been reported to 
behave better than the simple exponential temperature model in 
modeling global Rs (9)

   R  s   =  θ  1   ×  e    θ  2×  T   (1)

   R  s   =    1   ×  e   (   2  ×T+   3  × T   2 )   (2)

A quadratic model (Eq. 3) was used to quantify the dependence 
of annual Rs on moisture availability, which considered a reduction 
in microbial decomposition at very low or very high soil moisture 
content (16)

   R  s   =    1   ×  e   (   2  ×T+   3  × T   2 )  ×  e   (   4  ×M+   5  × M   2 )   (3)

A linear model (Eq. 4) was used to describe the dependency of 
the annual Rs on plant productivity (7)

   R  s   =    1   ×  e   (   2  ×T+   3  × T   2 )  ×  e   (   4  ×M+   5  × M   2 )  +    6   × P +    7    (4)

where Rs is the annual soil respiration (g C m−2 year−1), T is a 
temperature-related variable, and M is a variable referring to moisture 
availability. P is a quantitative indicator of plant productivity. 1,…, 
n are model parameters and differ among models. The parameters 
in nonlinear regression models are estimated by nonlinearly mini-
mizing the sum of the squared residuals.

Predictive variables selected for estimating annual Rs
First, the abovementioned three types of variables (i.e., those related 
to temperature, moisture, and plant productivity) from remote sens-
ing data products were used to implement nonlinear regressions (i.e., 
Eqs. 2 to 4). There could be a high correlation among the variables 
within the same type. As the spatiotemporal coverage and data qual-
ity of these global remote sensing data products were different, the 
available observation data for the fitting models (i.e., Eqs. 2 to 4) were 
different when one model from Eqs. 2 to 4 was driven by different 
input variables. To select the optimal variables for Rs estimations in 
Eqs. 2 to 4 for each biome, a performance metric () for model eval-
uation (Eq. 5) was used

   = 0.25 ×    RMSE  min   ─ RMSE   + 0.25 ×    R   2  ─ 
 R max  2  

   + 0.5 ×   n ─  n  max      (5)

where n is the number of observation data. RMSEmin is the mini-
mum RMSE from one model driven by different input variables 
(i.e., temperature, moisture, or plant productivity variables) for one 
biome, and   R max  2    and nmax are the corresponding maximum R2 and 
n, respectively.  is a measure of the model’s explanatory power (i.e., 
   RMSE  min   _ RMSE    and    R   2  _ 

 R max  2  
  ) and data representation (   n _  n  max    ) for one parameterized 

model for one biome. The weighting factor for data representation 
(i.e., 0.5) is greater than that for the model’s explanatory power (i.e., 
0.25) because we have more confidence in the performance of a 
model with large n and such a model will tend to have a better spa-
tiotemporal representation.

For each model, with Eqs. 2 to 4, each variable within the same 
type (temperature, moisture, or plant productivity) was used as one 
predictor, and the variable with the maximum  was selected for 

each biome. When the optimal temperature variable in Eq. 2 was 
determined, it was used in Eq. 3. The same data processing was used 
for Eq. 3 to select the optimal moisture variable. Then, the selected 
temperature and moisture variables were used in an MNLR model 
(Eq. 4), and the optimal plant productivity variable was determined 
for each biome. By gradually adding the optimal inputs from Eqs. 2 
to 4, to what extent additional predictor variables would improve 
the model performance at the biome scale, and the importance of 
remotely sensed variables, could be determined. To ensure compari-
sons with the machine learning algorithm models, the same predictive 
variables (the optimal temperature, moisture, and plant productivity) 
were maintained for the analysis of the machine learning methods.

Applying machine learning algorithm models
Random forest regression
RFR is an ensemble machine learning algorithm that predicts a re-
sponse from a set of predictors by creating multiple decision trees 
and aggregating their results (56). Each tree is constructed by a ran-
domly selected subset of training data. The remaining training data, 
which are called out-of-bag data, are used to estimate the prediction 
error and variable importance.
Support vector regression
SVR, a regression version of support vector machine algorithms, with 
an improved generalization ability, uses unique and globally optimal 
architecture and can be rapidly trained (57). SVR projects the input 
space data into a feature space with a much larger dimension, en-
abling linearly nonseparable data to become separable in the feature 
space. It identifies optimum hyperplanes by using kernel functions 
and arrives at an optimum solution by iteratively adjusting the hyper-
planes on the basis of their associated errors.
Artificial neural network
An ANN is a parallel-distributed information processing system that 
simulates the actions of neurons in the human brain and is able to 
learn from examples (58). In an ANN, information flows in a unidi-
rectional forward mode from an input layer to an output layer via 
hidden layer(s). Network connection weights are adjusted if the sep-
aration of inputs incurs an error during training, and convergence 
proceeds until the reduction in error between iterations reaches a 
decay threshold.

Parameter optimizations of the three machine learning 
algorithm models
The RFR, SVR, and ANN parameters within a certain range (i.e., 
different numbers or types) were adjusted and tested to ensure that 
their performance was optimal. For the RFR model, the parameter 
set included the number of trees (NumTrees), a predictor-splitting 
algorithm, and the number of predictors to select at random for each 
split (NumPredictorsToSample). For SVR, the parameter set included 
half of the width of the epsilon-insensitive band (Epsilon), the flag to 
standardize the predictor data (Standardize), an optimization rou-
tine (Solver), a kernel scale parameter (KernelScale), and a kernel 
function (KernelFunction). For ANN, the parameter set included 
training algorithms (trainFcn), the number of hidden layer (N), and 
hidden layer size (hiddenSizes). An internationally recognized uni-
form method for parameter optimization for these machine learning 
algorithm models has not been established. In this study, a trial- and-
error process was used to select the optimal parameters by grid 
search method, which results in the best performance model with 
the highest R2 and lowest RMSE.
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Global Rs estimation
A 10-fold cross-validation (59) was used to evaluate the performance 
of the four statistical models for annual Rs estimation of each biome. 
One measured Rs dataset for each biome type was randomly parti-
tioned into 10 equal-sized subsets. During each model fitting, one of 
the partitions was reserved for validation, while the other nine were 
used for training. This modeling process was repeated 10 times, and 
the performance metrics including R2 and RMSE were averaged to 
describe the final performance. For each biome, the model with the 
highest R2 and lowest RMSE was selected as the optimal model for 
annual Rs estimation. To confirm the uncertainties associated with 
the structure and parameters of the selected models, a Monte Carlo 
approach was used to propagate the model errors to the global esti-
mates. A normal distribution with a 10% coefficient of variance was 
assumed for each quantitative parameter (13). Random sampling 
from all candidate values was used to analyze the uncertainty of qual-
itative parameters. For each trial (N = 500), new parameters were 
chosen from the uncertainty for each parameter, and a group of new 
models for the 10 biomes were generated to compute the annual 
global Rs for each year from 2000 to 2014. The means and 95% CIs of 
all the estimates of the annual global Rs were calculated to represent 
the model uncertainties. Notably, our “global” study area included 
only the regions with vegetation according to the definitions of the 
remotely sensed LCT products. Bare lands, water bodies, urban lands, 
and built-up lands were not included in our study area.

Trend and attribution analysis
The temporal variation in Rs from 2000 to 2014 was characterized 
by combining the results of a Mann-Kendall test and a Theil-Sen 
median trend analysis. The trend uncertainty was estimated by a 
1000-bootstrap analysis. If the Mann Kendall test result was statisti-
cally significant (P < 0.05), then we applied the Theil-Sen estimator 
to derive the slope (annual change) of trend and provide the estimate 
of Rs net change between 2000 and 2014 (i.e., slope times 14 years). 
The direct response of Rs to climate and land-cover changes was ex-
amined using the partial correlation analysis between Rs and poten-
tial driving factors [i.e., climate (TEM, PRE, and SPEI) and land-cover 
(TC, SV, and BG cover) factors]. The partial correlation coefficient 
represents the correlation of each pair of variables after statistically 
controlling for all the other variables. Before conducting the partial 
correlation analysis, we first detrended all time series data, including 
Rs, the climate variables and the land-cover fractions, to avoid auto-
correlation and to make the time series stationary. To achieve this, 
the linear trend derived from the least-squares method was removed 
for both Rs and its driving factors. All these analyses were performed 
at the global, regional, and pixel scales. To compare with previous 
studies on global and regional Rs estimates, we defined three regions 
based on annual air temperature following the method of Bond- 
Lamberty and Thomson (11): tropical [annual air temperature (T) > 
17°C], temperate (2°C ≤ T ≤ 17°C), and boreal (T < 2°C).

The independent effects of climate and land-cover changes on 
the spatial and temporal variations in Rs were difficult to separate 
because these variables covaried at different scales (60). For instance, 
climate change is known to control Rs because of its close link with 
environmental factors (3, 10, 12), such as soil temperature, soil mois-
ture, and substrate quality, while land-cover change (e.g., grassland 
to woodland) can be expected to change some or all of these environ-
mental determinants of Rs (24, 25). To analyze the contributions of 
climate and land-cover changes to the observed global Rs change, 

land-cover changes between 2000 and 2014 were first derived using 
Mann-Kendall test and Theil-Sen median trend analysis, following 
the method of Song et al. (35). To approximately quantify the im-
pact of climate change and land-cover change, we assumed that 
changes in Rs colocated with significant land-cover change (two-sided 
Mann-Kendall test, P < 0.05) were attributable to land-cover change, 
whereas Rs changes that occurred without land-cover change were 
attributable to climate change. Rs net change at different spatial scale 
was calculated by summing the per-pixel absolute Rs net change at 
the corresponding spatial scale. For example, Rs net change for one 
land-cover change type was calculated by summing the per-pixel 
absolute Rs net change over this land-cover change type. Last, the 
overall impact of land-cover change was defined as the proportion 
of the Rs net change in all significant land-cover change types. The 
overall climate change impact was defined as the residual of the 
land-cover change impact. All these analyses were conducted at 
global and regional scales.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
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