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Abstract

The testing of pathological biomarkers of Alzheimer’s disease (AD), such as amyloid beta and tau, is time-consuming, expensive, and
invasive. Here, we used 3xTg-AD mice to identify and validate putative novel blood transcriptome biomarkers of AD that can
potentially be identified in the blood of patients. mRNA was extracted from the blood and hippocampus of 3xTg-AD and control
mice at different ages and used for microarray analysis. Network and functional analyses revealed that the differentially expressed
genes between AD and control mice modulated the immune and neuroinflammation systems. Five novel gene transcripts (Cdkn2a,
Apobec3, Magi2, Parp3, and Cass4) showed significant increases with age, and their expression in the blood was collated with that in
the hippocampus only in AD mice. We further assessed previously identified candidate biomarker genes. The expression of 7rem/ and
Trem2 in both the blood and brain was significantly increased with age. Decreased Tomm40 and increased Pinki mRNA levels were
observed in the mouse blood. The changes in the expression of Snca and Apoe mRNA in the mouse blood and brain were similar to
those found in human AD blood. Our results demonstrated that the immune and neuroinflammatory system is involved in the

pathophysiologies of aging and AD and that the blood transcriptome might be useful as a biomarker of AD.
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Introduction

Currently, the diagnosis of Alzheimer’s disease (AD) is main-
ly based on the assessment of clinical symptoms and cognitive
tests. Several tools are used for the diagnosis of AD, and these
include the identification of biomarkers from brain scans and
lumbar puncture procedures. The levels of amyloid beta and
tau proteins in the cerebrospinal fluid and those detected by
positron emission tomography are highly accurate markers for
the detection of AD pathology in the brain. However, the
assessment of these biomarkers is invasive and time- and
cost-consuming [1]. Thus, researchers are aiming to develop
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simple blood tests that can accurately diagnose the disease and
potentially predict its prodromal stage prior to the appearance
of clinical symptoms [2].

In addition to the presence of amyloid plaques in the brain
parenchyma and intraneuronal neurofibrillary tangles, emerging
evidence suggests the existence of additional AD pathophysio-
logical pathways, such as innate immune responses, neuroin-
flammation, and vascular and cell membrane dysregulation
[3-5]. Our previous studies suggest that the detection of tran-
scriptome biomarkers related to cell stress and inflammation in
the peripheral blood has significant potential as a minimally in-
vasive and inexpensive diagnostic tool for the diagnosis and early
detection of developing AD [6—15]. Although DNA methylation
and RNA expression changes in blood might have utility as
biomarkers of cognitive dysfunction and brain aging [16, 17],
the major limitation of blood biomarkers of AD is the lack of a
direct correlation with biomarkers in brain tissues. Thus, we used
AD model mice to identify genes that exhibit similar changes in
the blood and hippocampus. If these genes are implicated in the
pathophysiology of AD, they might be good candidate blood
transcriptome biomarkers of AD.

In the present study, we simultaneously collected brain and
blood samples from 3xTg-AD mice to identify novel blood
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transcriptome biomarkers of AD and to validate our previous
biomarkers.

Materials and Methods
Animal Models

Male 3xTg-AD mice (n=28 each at 12 and 52 weeks of age
(w.0.a.)) and age-matched male B6129SF2 WT mice (n=38
each at 12 and 52 w.o.a.) were bred at Ehime University from
parents originally purchased from Jackson Laboratory (3xTg-
AD, MMRRC #34830; B6129SF1/J, JAX #101043). For val-
idation analysis, additional male 3xTg-AD mice and age-
matched male B6129SF2 WT mice (n =8 each at 36 w.o.a.)
were also bred under the same conditions. All the mice were
housed in a specific pathogen-free facility with climate-
controlled conditions consisting of room temperature (22 +
2 °C), 50% humidity. and a 12-h light/12-h dark cycle. The
mice were provided with water and a standard diet (Oriental
Yeast Co., Ltd.) at libitum. At 12, 36, or 52 w.o.a., the mice
were anesthetized and killed by decapitation, and 12, 36, and
52 weeks were selected as representative young, middle, and
old ages based on previous studies that examined the course of
pathological and behavioral changes in 3xTg AD mice [18,
19]. The hippocampi were removed and immediately stored,
and blood was collected using RNeasy Protect Animal Blood
Tubes (QIAGEN, #73224) and stored at — 80 °C until RNA
processing. The sample size (n=8 each) was the minimum
number necessary and allowed by the ethical committee. Most
of the AD and control mice did not die before reaching 52
w.o.a. The animal experiments were approved by the Animal
Experiment Committee of Ehime University (#28-25) and
were performed in accordance with the Guidelines for
Animal Experiments at Ehime University.

Microarray Analysis

Total RNA was extracted from frozen hippocampi using the
RNeasy Mini Kit (QIAGEN, #74104) and from blood using
the RNeasy Protect Animal Blood Kit (QIAGEN, #73224) ac-
cording to the manufacturer’s instructions. The RNA concen-
trations were determined using a NanoDrop1000 instrument
(Thermo Fisher Scientific), and its quality was assessed by
determining the RNA integrity number using an Agilent 2100
Bioanalyzer (Agilent). All the samples used for microarray
analysis met the following conditions: A260/A280>1.8,
A260/A230>2.0, and RNA integrity number >7.0. Using
50 ng of RNA, amplified and biotinylated sense-strand DNA
targets were generated using the Low Input Quick Amp
Labeling Kit (Agilent). The hybridization, washing, and scan-
ning steps were conducted using the Gene Expression
Hybridization Kit (Agilent), Gene Expression Wash Pack
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(Agilent, #5188-5327), and Agilent Microarray Scanner
(G2505C) with SurePrint G3 Mouse 8x60K version 2.0. The
75th percentile shift normalization and baseline transformation
(baseline to median of all the samples (all the blood samples or
all the hippocampal samples)) were performed using Agilent
GeneSpring GX version 14.9. To determine the independent
and combined effects of the AD mouse model and aging, com-
parisons among groups (AD12 Hip (AD mouse hippocampus
at 12 w.0.a.), AD52 Hip (AD mouse hippocampus at 52 w.0.a),
C12 Hip (control mouse hippocampus at 12 w.o.a), and C52
Hip (control mouse hippocampus at 52 w.o.a.)) or AD12 bld
)(AD mouse blood at 12 w.0.a), AD52 bld (AD mouse blood at
52 w.o0.a.), C12 bld (control mouse blood at 12 w.o.a), and C52
bld (control mouse blood at 52 w.o.a)) were performed with
two-way analysis of variance (ANOVA) followed by Tukey’s
honestly significant difference (HSD) test (two-way ANOVA:
P <0.1, fold change > 1.5 or <— 1.5, Tukey’s HSD: P < 0.05).
The network and functional analyses were performed using
IPA (QIAGEN) (https://www.qiagenbioinformatics.com/
products/ingenuity-pathway-analysis) [20]. All microarray
data were deposited in the GEO database (accession number
GSE144459).

PCR

For the validation of microarray data, the expression levels of
various mRNAs were measured by quantitative reverse
transcription-PCR (qPCR) using the StepOnePlus Real-Time
PCR System (Applied Biosystems). The TagMan probes used
in this study were Mm00494449 m1 for mouse Cdkn2a and
Mm99999915 gl for mouse Gapdh (Applied Biosystems).
RT-PCR was conducted using the TagMan gene expression
master mix with a final volume of 10 puL. The expression
levels were measured in duplicate using the AACt method.
We included the same sample in all the plates as a calibrator to
adjust for differences among the plates.

Validation Analyses Using Public Functional Genomics
Data

To validate biomarkers in postmortem human brain and other
models of Alzheimer disease (APP_PS1 model mouse), we
used the expression data of Gene Expression Omnibus data-
base (GSE48350) [21] and (GSE111737) [22], respectively.
From human hippocampal data (GSE48350), young male
controls (N=9, mean age 30.6 = 11.0), old male controls
(N=10, 85.8+£6.8), and male patients with Alzheimer’s dis-
ease (N =9, 84.1 +6.9) were examined, which correspond to
“C12 Hip vs. C52 Hip,” “C12 Hip vs. AD52 Hip,” and “C52
Hip vs. AD52 Hip” in our data. From APP_PS1 mouse hip-
pocampal data (GSE111737), wild-type male mice (n =06,
8 months old) and APP_PS1 male mice (n=7, 8 months
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old) were examined, which correspond to “C52 Hip vs. AD52
Hip” in our data.

Results

Differential Gene Expression Between Male 3xTg-AD
Mice and Age-Matched Male B6129SF2 WT Mice

The analysis of gene expression revealed positive correlations
among the same tissues from the mice belonging to the same
group, such as between the AD12 and AD52 hip samples,
whereas negative correlations were found among the same
tissues from mice belonging to different groups, such as be-
tween the AD and C hip samples. No correlations were con-
sistently observed among different tissues, such as between
the AD blood samples and the AD hip samples
(Supplementary Figure 1).

We selected differentially expressed genes (DEGs) in AD
mice that met the following criteria: fold change (>1.5 or <
—1.5) and significance level (Tukey’s HSD: P <0.05). This
analysis showed that 128 and 251 were significantly increased
and significantly decreased, respectively, only in the AD
mouse blood. In contrast, 196 and genes were significantly
increased and significantly decreased, respectively, only in
the AD mouse hippocampus (Supplementary Table 1).

Network and Functional Analyses

To determine the functions of DEGs, network and functional
analyses were conducted using IPA (Tables 1 and 2). The
network analyses of the top canonical pathways showed that
DEGs that were only found in the AD mouse blood were
involved in “3-phosphoinositide degradation,” “primary im-
munodeficiency signaling,” and “D-myo-inositol-5-phos-
phate metabolism.” The top upstream regulators included
IL3, IL21 (inhibited), IL15RA, IFNA2 (inhibited), and
TLNI1. In the causal network, MAP3K13, TLR3, and
androgen-AR were predicted to be inhibited, whereas KAT7
was predicted to be activated. The analysis of the top diseases
and biological functions revealed that “cancer,” “cellular de-
velopment,” and “hematological system development and
function” showed the most substantial enrichment.

In contrast, the canonical pathway analysis revealed that
the DEGs that were only found in the AD mouse hippocam-
pus were involved in “dendritic cell maturation,” “altered T
cell and B cell signaling in rheumatoid arthritis,” and “com-
munication between innate and adaptive immune cells.” The
top upstream regulators included L2ZHGDH, lipopolysaccha-
ride (activated), TBX5, FOSL1, and CR1L. In the causal net-
work, L2ZHGDH, icilin, LY96 (activated), D-allose
(inhibited), and CR1L showed the most substantial enrich-
ment. The analysis of the top diseases and biological functions

EEINT3

showed that “endocrine system disorders,” “cell-to-cell sig-
naling and interaction,” and “hematological system develop-
ment and function” exhibited the most substantial enrichment.

Blood Transcriptome Biomarkers of AD

To identify novel blood transcriptome biomarkers of AD, we
identified genes that showed significant changes with age and
that exhibited correlations between the blood and hippocampus
only in AD mice (Table 3). Five genes (Cdkn2a, Apobec3,
Magi2, Parp3, and Cass4) showed significant increases in ex-
pression with increasing age, and their expression in the blood
was correlated with that in the hippocampus only in AD mice.
Our list of previously published blood transcriptome bio-
markers of AD is shown in Table 4 [7—15]. The Trem! mRNA
levels tended to increase with age only in the control mouse
blood. The Treml mRNA level showed significant increases
with age in the control mouse brain and was significantly lower
in the AD mouse brain than in the control mouse brain at 52
w.o0.a. The Trem2 mRNA level tended to increase with age in
the control mouse blood and was lower in the AD mouse blood
than in the control mouse blood at 52 w.o.a. The Trem2 mRNA
level significantly increased with age in the AD mouse brain and
was significantly higher in the AD mouse brain than in the con-
trol mouse brain. The Mef2c mRNA level showed significant
increases with age in the control mouse brain. The Tomm40
mRNA level tended to decrease with age in the blood of both
the AD and control mice. The Tomm40 mRNA level significant-
ly decreased with age in the AD mouse brain and was signifi-
cantly lower in the AD mouse brain than in the control mouse
brain at 52 w.o.a. The Pinkl mRNA level was significantly
higher in the AD mouse blood than in the control mouse blood
at both 12 and 52 w.o.a. The Pinkl mRNA level tended to
increase with age and was usually lower in the AD mouse brain.
The Apoe mRNA level significantly increased with age in the
control mouse blood and was significantly lower in the AD
mouse blood than in the control mouse blood at both 12 and 52
w.0.a. The Apoe mRNA level showed significant increases with
age in the AD mouse brain and was significantly higher in the
AD mouse brain than in the control mouse brain at 52 w.o.a. The
Inpp5d mRNA level was significantly higher in the AD mouse
brain than in the control mouse brain at both 12 and 52 w.o.a. The
Snca mRNA level was significantly higher in the AD mouse
blood than in the control mouse blood at both 12 and 52 w.o.a.

Real-Time PCR Validation of DEGs in Microarray Data

To verify the reliability of the microarray data, we selected
Cdkn2a for qPCR experiments because this gene exhibited the
greatest changes among the five candidate genes and is well
known as an aging- and cellular senescence-associated gene
[23, 24]. This analysis aimed to not only validate the correla-
tions between the microarray and real-time PCR data but also
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Table 1 Network and functional

analyses of differentially Top canonical pathways
expressed genes found only in the Name P value Overlap
AD mouse blood I 3-phosphoinositide degradation 1.12E-03 6.2% 9/146
2 Primary immunodeficiency signaling 3.18E-03 11.4% 4/35
3 D-myo-inositol-5-phosphate metabolism 4.49E-03 5.4% 8/147
4 Superpathway of inositol phosphate compounds 6.11E-03 4.8% 9/188
5 3-Phosphoinositide biosynthesis 6.38E-03 5.1% 8/156
Top upstream regulators
Name P value Predicted activation
1 IL3 3.85E-07
2 1L21 1.38E-05 Inhibited
3 IL15RA 1.69E-05
4 IFNA2 4.21E-05 Inhibited
5 TLN1 5.55E-05
Causal network
Name P value Predicted activation
1 MAP3K13 4.93E-07 Inhibited
2 Interferon beta-1a 5.66E-07
3 TLR7 6.02E-07 Inhibited
4 KAT7 7.48E-07 Activated
5 Androgen-AR 2.10E-06 Inhibited
Top diseases and bio functions
Diseases and disorders
Name P value range Number of molecules
1 Cancer 9.16E-03-5.36E-06 287
2 Hematological disease 8.80E-03-5.36E-06 106
3 Immunological disease 8.80E-03-5.36E-06 131
4 Organismal injury and abnormalities 9.27E-03-5.36E-06 291
5 Inflammatory response 6.92E-03-2.02E-05 46

Molecular and cellular functions

Name

Cellular development

P value range Number of molecules
9.27E-03-5.57E-07 111

Cellular growth and proliferation 9.27E-03-5.57E-07 113

1
2
3 Cell death and survival
4 Cell cycle

5

9.18E-03—4.80E-06 117
9.18E-03—4.80E-06 63

Cell-to-cell signaling and interaction 9.27E-03-2.02E-05 59
Physiological system development and function

Name

P value range Number of molecules

1 Hematological system development and function 9.27E-03—4.13E-08 84

2 Hematopoiesis

3 Tissue development

4 Embryonic development
5

9.27E-03—4.13E-08 54
9.27E-03-5.57E-07 75
9.27E-03-6.04E-06 57

Lymphoid tissue structure and development 9.27E-03-6.04E-06 60

confirm the detection of well-known changes. The Cdkn2a
mRNA level in the blood and hippocampus significantly in-
creased with age only in the AD mice (Fig. 1). The data (n =8
each group) were assessed by one-way ANOVA with
Dunnett’s multiple comparisons test. The significance was
set to P < 0.05. The results further validated the results of the
microarray data.
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Validation of DEGs in the Human Postmortem
Hippocampus and APP_PS1 Mouse Hippocampus

A substantial number of candidate genes in the human post-
mortem hippocampus (Supplementary Figure 2) and
APP_PS1 hippocampus (Supplementary Figure 3) showed
similar changes to our microarray data. In particular, several
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Table 2 Network and functional

analyses of differentially

Top canonical pathways

expressed genes found only in the Name P value Overlap
AD mouse hippocampus 1 Dendritic cell maturation 1.63E-05 6.6% 10/151

2 Altered T cell and B cell signaling in rheumatoid arthritis ~ 4.56E-05 9.0% 7/78

3 Hepatic fibrosis/hepatic stellate cell activation 6.99E-05 5.6% 10/179

4 Apelin liver signaling pathway 2.59E-04 15.4% 4/26

5 Communication between innate and adaptive immune 1.25E-03 7.6% 5/66

cells

Top upstream regulators

Name P value Predicted activation

1 L2HGDH 3.17E-10

2 Lipopolysaccharide 9.44E-08 Activated

3 TBXS 3.08E-07

4 FOSL1 5.73E-07

5 CRIL 9.23E-07

Causal network

Name P value Predicted activation

1 L2HGDH 3.17E-10

2 Icilin 4.74E-07

3 LY9%6 4.79E-07 Activated

4 D-allose 7.21E-07 Inhibited

5 CRIL 9.23E-07

Top diseases and bio functions

Diseases and disorders

Name P value range Number of
molecules

1 Endocrine system disorders 2.97E-03-1.71E-08 77

2 Gastrointestinal disease 3.09E-03-1.71E-08 105

3 Metabolic disease 1.44E-03-1.71E-08 51

4 Organismal injury and abnormalities 3.23E-03-1.71E-08 163

5 Immunological disease 2.97E-03-6.72E-08 72

Molecular and cellular functions

Name P value range Number of
molecules

1 Cell-to-cell signaling and interaction 2.97E-03-3.13E-09 54

2 Cellular movement 3.17E-03-3.13E-09 62

3 Cell death and survival 3.34E-03-8.74E-08 36

4 Cellular development 2.98E-03-2.93E-06 53

5 Cellular growth and proliferation 2.98E-03-2.93E-06 49

Physiological system development and function

Name P value range Number of
molecules

1 Hematological system development and function 3.09E-03-3.13E-09 57

2 Immune cell trafficking 3.09E-03-3.13E-09 42

3 Lymphoid tissue structure and development 2.97E-03-2.93E-06 48

4 Cell-mediated immune response 2.49E-03-1.11E-05 28

5 Connective tissue development and function 2.98E-03—1.66E-05 26

genes (APOBEC3, PARP3, TREM2, TOMM40, APOE, and
INPP5D) changed significantly in the same direction in both

human AD and AD model mice, and the results further vali-
dated the results of the microarray data.
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Fig. 1 Validation of Cdkn2a by qPCR. The Cdkn2a mRNA level in both
the blood and hippocampus showed significant increases with age only in
AD mice. The data (n =8) are shown as the means = SEMs. *, ** and
##% indicate P < 0.05, 0.01, and 0.001, respectively. * vs. the expression
in C12 (control mice at 12 w.o.a.), as determined by one-way ANOVA

Discriminant Analyses

Discriminant analysis of the AD52 bld and C52 bld with the
variables Cdkn2a, Apobec3, Magi2, Parp3, Cass4, Treml,
Trem2, Tomm40, Pinkl, Apoe, Inpp5d, and Snca revealed
that the combination of 3 genes (Apoe, Cass4, Cdkn2a) result-
ed in the best prediction (Wilks lambda=10.170, P<0.001).
The discrimination score (D) was calculated for each sample
as follows:

D =-0.697 x Apoe + 0.635 x Cass4 + 0.518 x Cdkn2a —
0.57749

The analysis showed a sensitivity and specificity of
100.0% and 100.0%, respectively (Supplementary Figure 4
A).

Discriminant analysis of the AD52 Hip and C52 Hip was
also performed with the same gene combination (Wilks lamb-
da=0.190, P <0.001). The discrimination score was calculat-
ed for each sample as follows:

D =0.735 % Apoe —0.113 x Cdkn2a + 0.091 x Cass4—
0.742122

The analysis established a sensitivity and specificity of
100.0% and 100.0%, respectively (Supplementary Figure 4
B).

To validate biomarkers in the blood of patients with
Alzheimer’s disease, we used the expression data from the
Gene Expression Omnibus database (GSE97760). [25]
Discriminant analysis of the AD patients (N=9) and healthy
subjects (N =10) was conducted with the same gene combi-
nation (APOE, CASS4, CDKN2A) (Wilks lambda =0.577,
P =0.036). The discrimination score was calculated for each
sample as follows:

=-0.742 x APOE x0.696 x CDKN2A —0.473 x
CASS4 +860.715

The analysis demonstrated a sensitivity and specific-
ity of 77.8% and 80.0%, respectively (Supplementary
Figure 4 C).
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with Dunnett’s multiple comparisons test. C12, control mice at 12 w.o.a.;
C36, control mice at 36 w.o.a; C52, control mice at 52 w.o0.a.; AD12, AD
mice at 12 w.o.a.; AD36, AD mice at 36 w.0.a.; AD52, AD mice at 52
w.0.a

Discussion

The main purposes of the study were to identify novel blood
transcriptome biomarkers of AD and to validate our previous
biomarkers. Transcriptome biomarkers that exhibit significant
changes in both the blood and hippocampus might have poten-
tial as minimally invasive and inexpensive markers for the di-
agnosis and early detection of developing AD. The lack of
consistent correlations among different tissues indicates the dif-
ficulty in identifying blood biomarkers that exhibit positive
correlations between the blood and hippocampus only in AD
mice (Supplementary Figure 1). Because several genes
(APOBEC3, PARP3, TREM2, TOMM40, APOE, and
INPP5D) changed significantly in the same direction in multi-
ple datasets from both human AD samples and mouse AD
models, these genes may be good candidates for blood bio-
markers for AD (Supplementary Figure 2 and Supplementary
Figure 3). According to discriminant analyses, the combination
of 3 genes (Apoe, Cass4, Cdkn2a) was the most useful to dis-
criminate not only the blood and the hippocampus of AD mice
but also the blood of AD patients (Supplementary Figure 4).
Interestingly, “immunological disease,” “organismal injury
and abnormalities,” “cell-to-cell signaling and interaction,”
“cell death and survival,” “cellular growth and proliferation,”
and “hematological system development and function” were
the most common diseases and biofunctions found in the com-
parison between the blood and hippocampus. Furthermore,
the DEGs that were uniquely found in the AD mouse hippo-
campus were involved in “altered T cell and B cell signaling in
rheumatoid arthritis,” “communication between innate and
adaptive immune cells,” and “immune cell trafficking.”
Consistently, the proinflammatory activity of microglia is re-
lated to behavioral alterations in AD patients and experimental
models of the disease [26]. DEGs that were only found in the
AD mouse blood were involved in “primary immunodeficien-
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structure and development.” These results provide further ev-
idence showing the important roles of the immune system in
both the brain and blood in the pathogenesis of AD [27, 28].
The expression of five gene transcripts (Cdkn2a, Apobec3,
Magi2, Parp3, and Cass4) significantly increased with age,
and their expression in the blood was correlated to that in the
hippocampus only in AD mice (Table 3). CDKN2A is a well-
known molecular player in cellular senescence, cell prolifera-
tion, survival, adhesion, and apoptosis [23, 24]. An increased
level of Cdkn2a is present in both brain and blood cells from
APP/PS1 mice [29]. Interestingly, linkage and association
studies have linked the CDKN2A locus (9p21.3) to late-
onset AD families [30]. Human APOBEC3 plays important
roles in intracellular defense against viral infection and cancer
development by generating DNA mutations [31]. However,
no previous studies have found associations between
APOBEC3 and AD. MAGI2 regulates apoptosis, cytoskeletal
reorganization, and glomerular development and is broadly
expressed in the brain, thyroid, and 16 other tissues, including
blood [32]. MAGI2 is a candidate gene associated with mul-
tiple phenotypes, as demonstrated by Alzheimer’s Disease
Neuroimaging Initiative genetic studies [33]. The protein
encoded by PARP3 belongs to the PARP family, and the
members of this family modify nuclear proteins via poly-
ADP-ribosylation, which is required for DNA repair, the reg-
ulation of apoptosis, and the maintenance of genomic stability
[34]. Although PARP3 is a target in cancer therapy [35], no
previous study has revealed an association with AD. CASS4
is a well-known candidate gene of AD [36] and has recently
been studied in the context of immune system function and the
pathogenesis of developmental and autoimmune disorders,
including Crohn’s disease, cancer, and other diseases [37].
Our previously identified candidate genes also showed sig-
nificant changes in both the blood and brain (Table 4). The
expression of Trem and Trem?2 increased in the control mouse
blood with age. Consistent with our previous studies, which
showed higher TREM1 and TREM2 mRNA levels in the human
AD blood [8-10], the levels of these mRNAs in the control
mouse blood tended to increase with age. These results suggest
that higher TREM1 and TREM2 mRNA levels in human AD
blood might reflect abnormal aging rather than pathophysiolog-
ical changes in AD. However, the identification of significant
changes in the Treml and Trem2 mRNA levels in the mouse
brain indicated their important roles in the development of AD.
Consistent with our previous study [7], decreased Tomm4(0 and
increased Pink! mRNA levels in mouse blood were observed in
the current study. Because both TOMM40 and PINKI play
important roles in mitochondrial function, these results provide
further evidence of mitochondrial dysfunction in AD [38, 39].
The Apoe mRNA level significantly increased with age in only
the control mouse blood and was significantly lower in the AD
mouse blood than in the control mouse blood. Although our
previous study revealed that the APOE mRNA level was not

changed in human AD blood [7], a recent study showed that the
APOE mRNA level is significantly increased in human AD
blood [40]. Consistent with our previous studies [41, 42], the
Snca mRNA levels significantly increased with age in the con-
trol mouse blood and were significantly higher in the AD
mouse blood than in the control mouse blood. These results
indicate that the APOE and SNCA mRNA levels in human
blood might be candidate markers for aging and AD.

This study has several limitations. First, our results should be
validated using liquid biopsies of AD patients obtained from a
certificated biobank. Second, because male 3xTg AD mice ex-
hibit progressive behavioral and pathological changes at 36 and
52 w.o.a. [14, 15], we did not check these changes prior to
tissue collection. However, the investigator who donated the
3xTg AD mice communicated that in contrast to the initial
observations, male transgenic mice might not exhibit the orig-
inally described phenotypic traits. Thus, we should have
checked their symptoms and should also examine whether fe-
male mice also exhibit the same changes. The positive correla-
tions in the expression of all tested genes found among the
subgroups from the same group of mice suggest that the male
3xTg AD mice in this study did not lose their pathological
phenotype (Supplementary Figure 1). Third, although we iden-
tified five genes that showed significant increases in expression
with age and showed correlations in expression between the
blood and hippocampus only in AD mice, we only confirmed
the changes in the expression of one gene (Cdkn2a) due to
sample shortage. The changes in the other four genes should
be confirmed using both AD female mouse samples and human
AD blood samples in future studies. Further analyses of the
microarray data using complex algorithms, such as machine
learning and deep learning, will be conducted in the future.

Conclusion

The results from our comprehensive analysis using brain and
blood samples from transgenic mice provide insights into pu-
tative transcriptomic biomarkers of AD. The results suggest
that the expression of immune-associated genes exhibits
changes in not only the blood but also the hippocampus.
Because five genes (Cdkn2a, Apobec3, Magi2, Parp3, and
Cass4) were detected as novel candidate transcriptomic bio-
markers of AD, these results need to be validated through
further studies using human blood and brain samples. The
changes in the expression of some of our candidate genes,
such as Trem?2, Tomm40, and Snca, in the mouse blood and
brain were similar to those in the human AD blood. The com-
bination of 3 genes (Apoe, Cass4, Cdkn2a) may be the most
useful AD biomarker in the blood. This study provided further
evidence showing that blood transcriptome markers have po-
tential use as biomarkers of AD.
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