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Abstract

Immunotherapy has revolutionized cancer treatment, yet most patients do not respond. While 

tumor antigens are needed for effective immunotherapy, a favorable tumor immune 

microenvironment is also critical. In this review, we discuss emerging evidence that tumor cells 

exploit cellular plasticity and dedifferentiation programs to avoid immune surveillance, which in 

turn drives metastatic dissemination and resistance to immunotherapy. A deeper understanding of 

these programs may provide novel opportunities to enhance the efficacy of existing 

immunotherapies.
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Tumor immunotherapy and resistance mechanisms

Studies over the past two decades have uncovered a crucial role for the immune system in 

tumor biology (1). Immune cells interact with and functionally influence tumor cells at every 

stage of tumor development and metastatic dissemination (1–3). Therapeutic interventions 

enhancing immune cell functions – including chimeric antigen receptor (CAR) T cell-based 

treatments and immune checkpoint blockade (ICB) – have revolutionized the clinical care of 

cancer patients with various types of malignancies (1,4–6). Despite these remarkable 

successes, most cancers are refractory to immunotherapy as a result of immune evasion of 

tumor cells (7–11). Moreover, immune evasion is an important step in the colonization of 

disseminated and dormant tumor cells in distant organs (2,3,12). Because tumor immune 

evasion leads to poor clinical outcomes by promoting therapy resistance and metastatic 

outgrowth, a deeper understanding of the underlying molecular and cellular mechanisms is 

needed.
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Tumor cells use various strategies to evade immune surveillance (13,14). These include: (i) 

down-regulation of the antigen presentation machinery (15–18), (ii) silencing the expression 

of tumor associated antigens (19,20), (iii) dysregulation of tumor cell intrinsic interferon 

signaling pathways (21–25), (iv) recruitment of immunosuppressive cells (e.g. regulatory T 

cells and suppressive myeloid cells) to establish an “immune-privileged” microenvironment 

(26–29), (v) upregulation of immune suppressive molecules (e.g. PD-L1) (30–32), and (iv) 

metabolic activity of tumor cells (e.g. production of prostaglandin E2) (33–38). 

Conveniently (for the tumor cells), many of these immune-evading adaptations are driven by 

the very oncogenic signaling pathways that provide tumors with their enhanced growth and 

proliferation properties (e.g. Wnt, mTOR, MYC, and Kras signaling) (13,14,32,39–46). 

This, in turn, begs an obvious question: What biological properties link oncogenic signaling 

with immune regulation? One answer to this question, supported by several recent studies, is 

that such signaling can simultaneously alter cellular differentiation states of tumor cells as 

well as their recognition by the immune system.

Tumor cell plasticity and dedifferentiation drives immune evasion

Cellular plasticity – defined as a dramatic shift in cellular phenotype – is commonly 

observed in various types of malignancies, where it contributes to tumor progression and 

resistance to therapeutic interventions (47–51). One manifestation of plasticity in tumors is 

dedifferentiation, in which tumor cells lose their specialized properties and take on less 

differentiated phenotypes reminiscent of early embryonic development or regenerative 

processes (52). Loss of differentiation is known to be associated with increased tumor cell 

invasiveness and drug resistance (49–51), but there is growing evidence that tumor cell 

dedifferentiation is also coupled to immune surveillance.

Studies in melanoma, for example, have shown that tumor cell dedifferentiation – and 

adoption of a stem- or progenitor-like phenotype – leads to an escape of immune recognition 

by adoptively transferred T cells in both preclinical mouse models and patients (20,53). Two 

factors contribute to this immune-privileged state: (i) a loss of differentiation-associated 

antigens (20,53) and (ii) dedifferentiation-associated transcriptional changes that result in 

the recruitment of immunosuppressive myeloid cells (54). Moreover, a study published 

earlier this year linked dedifferentiation of melanoma cells with resistance to ICB in both 

preclinical mouse models and cancer patients (55). Thus, there is ample data to support a 

connection between tumor cell dedifferentiation and immune evasion in this lethal form of 

skin cancer.

There is also evidence for such a connection in other tumor types. In squamous cell 

carcinoma, for example, dedifferentiated tumor cells acquire stem-like properties and 

express the immune modulating molecule CD80, leading to escape from immune attack 

(56). Similarly, dedifferentiated tumor initiating cells can evade immune surveillance by 

dysregulation of PD-L1 or NKGD2 (57,58). Moreover, single cell analysis has revealed that 

lung cancer cells possess heterogeneous differentiation states that correspond to various 

stages of lung development. These distinct states are associated with different sensitivities to 

immune surveillance and metastatic colonization capacity, a consequence of differential 

expression of natural killer cell and T cell recognition and regulatory molecules (59). 
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Interestingly, one recent study showed that metastasis-initiating colorectal cancer cells 

possess molecular features of regenerative epithelial cells (60). These studies highlight 

potential molecular connections linking tissue regeneration and immune surveillance, given 

that tissue damage, compensatory regeneration, and the associated inflammatory response 

may all promote tumor progression. Such an idea is in line with studies from multiple tumor 

types that epithelial mesenchymal transition or EMT (another form of altered cellular 

differentiation) leads to immune evasion through various molecular mechanisms, including 

increases in immune inhibitory molecules and decreases in the antigen presentation 

machinery (49,61–66). It is also important to note that dedifferentiation of tumor cells may 

cause increased expression of developmental antigens such as cancer testis antigens, which 

may have an opposing effect on immune surveillance (67–69). Together, these studies 

indicate that tumor cell dedifferentiation promotes immune evasion through distinct, but 

related, molecular mechanisms.

Conserved immune evasion mechanisms in normal cells

Why might acquisition of a stem- or progenitor-like state – the phenotypic consequence of 

dedifferentiation – lead to immune evasion? One possibility is that tumor cells are simply 

recapitulating an evolutionarily conserved program that protects stem cells from immune 

attack. It is known that certain quiescent tissue-resident stem cells evade detection and 

killing by the innate and adaptive immune system by downregulating molecules involved in 

antigen presentation (70). Interestingly, one recent study provided evidence that 

disseminated pancreatic tumor cells in the liver can evade T cell mediated immune 

surveillance when they reside in a quiescent state (71). Likewise, other studies have 

highlighted the function of slow cycling and less differentiated cancer stem cells in shaping 

the tumor immune microenvironments (72). Collectively, these findings indicate that 

dedifferentiation-associated changes in cell proliferation may regulate the interaction 

between tumor cells and surrounding immune cells.

Recently, an evolutionarily conserved molecular mechanism for immune invasion was 

described in which epigenetic regulation by the polycomb repressive complex 2 (PRC2) 

robustly repressed the expression of antigen presentation molecules in embryonic stem cells, 

tissue specific progenitor cells, and cancer cells (15). Thus, immune privilege may be a 

feature of cells that normally exist in a dedifferentiated state: tissue resident stem and 

progenitor cells. By extension, cancer cells – responding to oncogenic signals that promote 

dedifferentiation – may simply be exploiting such evolutionarily conserved mechanisms to 

evade immune surveillance.

Important questions to be answered

This concept of differentiation-associated tumor immune regulation raises several 

unanswered questions: (i) How does tumor cell plasticity and dedifferentiation 
mechanistically lead to immune evasion? While several possible mechanisms have been 

described, additional molecular links between tumor differentiation status and immune 

system activity remain to be elucidated; (ii) Do epigenetic changes couple tumor 
dedifferentiation to immune evasion? Epigenetic regulators have been demonstrated to drive 
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tumor cell plasticity and dedifferentiation (49). Given recent studies highlighting the 

important role of epigenetic factors in regulating antigen presentation on tumor cells (15), 

tumor cell identity may be directly coupled to immune escape through the action of 

epigenetic regulators; (iii) Do different tumor types use distinct mechanisms to evade 
immune surveillance? Studies to date have revealed divergent mechanisms of immune 

evasion in various tumor types, ranging from reduced antigen presentation by tumor cells to 

heightened immunosuppression in the tumor microenvironment. Further study is needed to 

determine whether tumors arising in different tissues-of-origin prefer certain immune-

evasive strategies or whether a variety of mechanisms are available for a given tumor 

regardless of lineage. Likewise, given the fact that features of the host tissue also contribute 

to tumor immunity (73), tactics for immune evasion in metastases may track with either the 

primary tumor’s lineage, or with the site of dissemination; (iv) Does cellular plasticity 
associated with tissue injury-regeneration confer immune protective effects to incipient 
cancers? Cellular plasticity is a feature of normal tissues subjected to injury or 

inflammation, as is commonly observed in premalignant states of metaplasia (49). Thus, the 

mechanisms underlying plasticity in these inflammatory states may provide incipient tumors 

with additional immuno-protective properties; (v) Does “redifferentiation” increase the 
susceptibility of a tumor to immune surveillance? The less differentiated a tumor is, the 

more aggressive its behavior. Hence, therapeutic approaches that promote tumor cell 

redifferentiation can provide clinical benefit (74). An additional benefit of such approaches 

might be an increased susceptibility of tumor cells to immune surveillance, thereby 

enhancing the efficacy of existing immunotherapies such as CAR-T cells and checkpoint 

blockade; and (vi) What are the implications for stem cell biology? A further understanding 

of immune-evasive mechanisms in cancer may inform strategies for preserving stem cell 

viability and longevity in normal tissues by protecting these self-renewing cells from aging-

dependent immune-mediated attrition.

Concluding remarks

In summary, there is mounting evidence to suggest that tumor cells hijack immune evasive 

mechanisms from normal somatic stem and progenitor cells. As cells become less 

differentiated during tumor progression, they employ both cell autonomous and non-cell 

autonomous mechanisms to change their susceptibility to immune recognition and 

destruction (Figure 1). However, there are many remaining questions that need to be 

explored. Recent development of transcriptional and epigenetic profiling techniques that 

could examine molecular features of tumor cells at single cell resolution will facilitate a 

detailed picture of interactions between dedifferentiated tumor cells and the immune 

microenvironment. In addition, establishment of improved in vitro organoid systems will be 

helpful, as they could allow high throughput unbiased screens to differentiation-promoting 

agents which could simultaneously slow tumor growth and improve immune recognition. In 

conclusion, elucidation of the mechanisms by which tumor cells evade immune destruction, 

and their links to evasive mechanisms utilized by normal somatic stem and progenitor cells, 

may provide novel therapeutic opportunities for enhancing the efficacy of existing 

immunotherapies. At the same time, such knowledge may broaden our understanding of 

interactions between immune cells and stem cells in other biological contexts.
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Figure 1. Dedifferentiation of tumor cells leads to immune evasion.
Diagram showing how dedifferentiation of tumor cells induces immune evasion through 

cell-autonomous mechanisms (e.g. loss of differentiation-associated antigens, decreased 

expression of antigen presentation molecules, and increased expression of immune 

suppressive molecules, such as PD-L1) and non-cell-autonomous mechanisms (e.g. 

expression of suppressive myeloid cells recruiting chemokines and growth factors).
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