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Abstract

The tumor microenvironment is an integral player in cancer
initiation, tumor progression, response and resistance to anti-
cancer therapy. Understanding the complex interactions of tumor
immune architecture (referred to as ‘immune contexture’) has
therefore become increasingly desirable to guide our approach to
patient selection, clinical trial design, combination therapies, and
patient management. Quantitative image analysis based on
multiplexed fluorescence immunohistochemistry and deep learning
technologies are rapidly developing to enable researchers to
interrogate complex information from the tumor
microenvironment and find predictive insights into treatment
response. Herein, we discuss current developments in multiplexed
fluorescence immunohistochemistry for immune contexture
analysis, and their application in immuno-oncology, and discuss
challenges to effectively use this technology in clinical settings. We
also present a multiplexed image analysis workflow to analyse
fluorescence multiplexed stained tumor sections using the Vectra
Automated Digital Pathology System together with FCS express
flow cytometry software. The benefit of this strategy is that the
spectral unmixing accurately generates and analyses complex
arrays of multiple biomarkers, which can be helpful for diagnosis,
risk stratification, and guiding clinical management of oncology
patients.

Keywords: FCS express image cytometry, immune profiling,
multiplexed fluorescent immunohistochemistry, quantitative digital
pathology, tumor microenvironment, vectra

INTRODUCTION

Progression of all solid cancers is directly
influenced by complex interactions between
immune and non-immune cells within the tumor
microenvironment (TME).1,2 Understanding the

immune architecture of a tumor is becoming
increasingly important for evaluating disease and
therapeutic responses, particularly in
immunotherapy. Recent investigations have
shown a strong link between intra-tumor
infiltration of lymphoid cells with improved
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clinical outcome and anti-tumor response.3,4

Further investigations of the TME have suggested
that the number, type, location and functional
profile, also known as ‘immune contexture’ of
tumor-infiltrating lymphocytes in primary tumors,
are associated with prognostic benefit.1,5–7

Therefore, a systems biology approach of
integrating immune contexture with clinical
outcome may help identify prognostic and
predictive biomarkers that will be useful in
improving clinical management of patients. One
such marker that has received FDA approval for its
use as a companion and complementary
diagnostic for the therapeutic checkpoint
inhibitors pembrolizumab and nivolumab is
‘Programmed cell death ligand-1 (PD-L1)’, a
transmembrane protein that suppresses the
adaptive arm of the immune system.8,9 With
further developments in the field of cancer
therapy, additional biomarkers will be required to
predict clinical benefit and improve therapy
success.

EVOLVING TECHNOLOGY FOR IMMUNE
CONTEXTURE ANALYSIS

Biomarker analysis on a single-cell basis can be
performed by using multi-parameter detection
methods such as genomics/proteomics and flow
cytometry on dissociated tissue. However, the
spatial information about the location of cells
within the tumor core or margin is lost using
these technologies.10–13 Until recently, tissue
histopathological examination of formalin-fixed
paraffin-embedded (FFPE) tissue sections using
haematoxylin and eosin (H&E) staining has been
used to evaluate the morphological changes
associated with disease diagnosis and response to
therapy.14,15 Pathological detection is most
commonly performed by evaluating the
expression of one or two proteins at a time on
serial sections using antigen-specific antibodies.
However, such an approach may be restrictive if
the size of the pathogenic area in the resected
tissue is small with few detectable tumor cells,
and the number of biomarkers to be evaluated is
high, because the number of serial sections that
can be cut may be insufficient to evaluate all of
the required biomarkers. Recent developments in
multiplexed immunohistochemistry (mIHC) on
FFPE specimen have allowed for simultaneous
identification of multiple markers in one tissue
section as opposed to a single biomarker on

multiple slides. Brightfield multiplexing requires
FFPE tissues to be probed with various enzyme/
chromogen pairs that results in chromogenic
depositions that can be visualised using standard
light microscopy (Figure 1a–d).16 Although
brightfield analyses may be useful to differentiate
different cell types, this method is cumbersome
when the target proteins are co-localised within
the cells. Additionally, the possibility of primary
antibody species cross-reactivity and chromogenic
overlap is also undeniable during multiplexing.
Thus, despite the benefit of chromogenic
multiplexing in pathological advancement,
chromogenic analyses may be practically restricted
to measuring less than three proteins on a single
slice of tissue.

Multiplex fluorescence IHC (mfIHC) uses
fluorescent dyes that offer a greater degree of
spectral separation than chromogenic dyes and
are commonly used for complex phenotyping of
immune cells by flow cytometry. Traditional
methodologies for labelling tissue with
fluorescent probes involve detecting the protein
of interest with an antigen-specific primary
antibody followed by a secondary antibody
coupled to an organic fluorescent dye. In some
cases, it is also possible to use primary antibodies
directly conjugated to fluorescence dyes. These
techniques are generally effective for labelling
abundant proteins such as CD3 or CD8 but may
not be effective for detecting low-abundance
proteins as the signal may not be easily detected
above background. Dyes such as nanocrystal
quantum dots are reported to be brighter and
more stable than organic dyes making it easier to
detect low-abundance proteins.17 Regardless of
the brightness of the stain, the number of
proteins that can be stained and imaged on one
tissue is restricted by the position and spread of
the different fluorophores along the
electromagnetic spectrum. Recent development of
new dyes such as Opal dyes with more options for
excitation and sharper emission spectra has
reduced the potential contribution of spectral
overlap in protein detection and image analysis.18

Opal dyes use tyramide signal amplification (TSA),
a method that enhances the signal of low-
abundance proteins by conjugating several dye
molecules to the tyrosine residues of the protein.
Further, TSA uses horseradish peroxidase-
conjugated secondary antibodies that are
traditionally used for chromogenic IHC making it
possible to use TSA to detect proteins that are
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commonly used in the clinical-pathological
laboratories with little or no changes to tissue
handling or processing. The primary and
secondary antibodies can also be removed by
microwaving the tissue without removing the
dyes from the sample, thereby allowing staining
of subsequent proteins with different dyes on the
same slide, without the risk of nonspecific
staining as a result of antibody cross-reactivity.
TSA can therefore be used to accurately label a
wider variety of proteins on a single slide than is
currently possible with chromogenic or traditional
immunofluorescence-IHC. It is now possible to
stain immune cell populations for various markers
(e.g. CD3, CD4, CD8, CD20, CD25, CD68, CD69,
FOXP3, PD-1, Tim-3 and Ki-67, or any other
combination) on a single tissue slice with a
multiplex antibody panel to enumerate and
evaluate complex phenotypes in the TME
(Figure 1e).18 To date, several different
fluorescence-based multiplexed IHC techniques
have been developed such as tyramide signal
amplification, nanocrystal quantum dots, tissue-
based cyclic IF, and MultiOmyxTM,17–21 that allow
labelling of multiple proteins on the same
histological sections. These multi-labelled
fluorescent proteins have been commonly used in
cell biology to visualise proteins and organelles,
using multi-parameter fluorescence imaging such
as confocal microscopy. The sensitivity and
reliability of immunofluorescence are
compromised by the presence of native (auto)-

fluorescence that is commonly present in
formalin-fixed tissues (FFPE).22 Furthermore,
fluorescence imaging requires fluorophores to be
excited with different wavelengths of light, which
requires placement of different filters in sequence
during imaging. Thus, one solution to multi-
marker analysis on the same tissue and on the
same slide is to employ spectral unmixing, a
technique that uses specific characteristics of the
dyes to accurately separate out the different
staining patterns for each protein.18 This
technology uses cameras that capture different
wavelengths of light in different images allowing
the true signal of the dye to be extracted using
simple mathematics. Multispectral imaging system
(MSI) can be used with sequentially stained single
colour chromogenic staining as well as with
fluorescence-labelled samples.18,23 The use of MSI
with multiplexed fluorescent IHC is particularly
more useful for resolving multiple overlapping
fluorochromes.

Traditional fluorescence microscopes, even
those equipped with multispectral capabilities,
have limited scope for movement in the X and Y
planes without moving out of focus, or acquiring
large stacks of images in the z plane. However,
tumors often exhibit a significant degree of
cellular and spatial heterogeneity (e.g. stroma,
tumor–stroma interface, intra-tumor).
Consequently, there is a growing need for high-
resolution multiplexed analysis across whole tissue
sections. As such, the development of microscopes

(b) (e)(a)

(c) (d)

Figure 1. Schematic for chromogenic immunohistochemistry and multiplexed immunofluorescence staining for tumor-infiltrating lymphocytes.

Chromogenic single (a, b) staining, double staining (c) with negative control (d). Nuclei of all cells are round and stained with CD8 and CD20

expressed on the cell surface (around the nuclei). (e) Representative image of nasopharyngeal carcinoma tissue stained with CD8, PD-1, T-bet,

Tim-3 and Pan-cytokeratin using Opal fluorescence multiplexed immunohistochemistry.
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that incorporate MSI and whole slide scanning, or
an image stitching feature, can enable researchers
to reliably image the whole tumor tissue and
quantify multiple proteins, even in the presence
of spatial and spectral overlap.18 Currently, there
are two microscopy companies, Akoya Biosciences
(was PerkinElmer) and TissueGnostics, that
manufacture and sell fluorescence scanning
microscopes with multispectral capabilities
(Table 1). The Akoya Biosciences Vectra�

automated quantitative pathology imaging system
is currently one of the most widely used
quantitative digital pathology imaging systems
that uses whole slide scanning and multispectral
unmixing to resolve overlapping fluorescent
signals.24,25 Whole slide tissue scanning of
multispectral images from multiplexed samples
requires longer time to acquire images compared
to conventional whole-slide fluorescence or
chromogenic scanners. To overcome this
limitation, the Vectra imaging platform utilises
lower resolution to scan the whole tissue
followed by subsequent MSI of marked fields of
view/regions of interest at higher resolution.
Nevertheless, such an approach does not fully
support high-resolution whole-slide analytics.

Another promising technology for mIHC,
namely MultiOmyxTM21 and tissue-based cyclic
immunofluorescence (t-CyCIF),26 relies on dye
cycling, in which repetitive cycles of labelling,
image scanning, then fluorochrome bleaching
and/or antibody stripping is performed. The level
of multiplexing that can be obtained using such
assays is much higher than of spectrally resolved
assays, even with some technologies reporting
acquisition of up to 60 markers per FFPE section.26

The advantages of using cyclic
immunofluorescence are that it eliminates the
need for expensive multispectral instruments,
allowing multiplexed analyses across whole tissue
sections of tumors using simple three-colour
whole slide scanning microscopes. In addition,
such IHC methods can be performed using
chromogenic dyes as well as fluorescence staining.
However, this process can be very labour intensive
because of the need to stain and image each
biomarker sequentially,21,26 resulting in prolonged
turnaround time and potential changes of the
tissue morphology and antigenicity because of
repetitive exposure to the dye bleaching and/or
antibody stripping conditions.21 Emerging
antibody-based imaging techniques,27,28 such as
imaging mass cytometry (IMC),29 multiplexed ion
beam imaging (MIBI),30 Nanostring GeoMx�,31,32

CODEX�TM,33 InSituPlex�,34,35 and MACSimaTM36,37

can further produce omics-like data through
quantification of up to 40 markers. However,
these technologies require longer measurement
time, limiting the number of region of interests
and size of the tissue that can be imaged
(Table 5). Despite the challenges with limited
scalability and throughput of each technique,
multiplexed IHC methods enable simultaneous
detection and co-localisation analysis of multiple
markers in intact tissue sections,17–19,21,29,30,38–42

which has driven continued development in this
field because of its potential for identification of
clinically relevant biomarkers.

The utility of mfIHC relies on the ability to
profile several markers simultaneously. However,
the analysis of multiparametric information from
mfIHC can be laborious to perform manually.

Table 1. Fluorescence multiplexed slide scanning and image analysis platforms

Company

Image acquisition and

scanning instrument Scanner type Image selection

Supported fluorescence

image analysis packages

Akoya Biosciences Vectra�/Vectra� PolarisTM MSI (BF & FL) ROI, WSI InForm

TissueGnostics TissueFAXS PLUS/SPECTRA BF & FL/MSI (BF & FL) WSI StrataQuest

Leica Biosystems Aperio Versa BF & FL WSI ImageScope

Hamamatsu NanoZoomer S60 BF & FL WSI –

Zeiss AxioVision MosaiX BF & FL WSI –

Olympus America VS 110 BF & FL WSI –

Ventana/Roche iScan BF & FL WSI –

3DHistech Pannoramic 250FLASH III BF & FL WSI –

Huron Technologies TISSUEscope 4000 BF & FL WSI –

MetaSystems Metafer BF & FL WSI –

MikroScan Technologies MikroScan BF & FL WSI –

BF, brightfield; FL, fluorescence; MSI, multispectral imaging; ROI, region of interest; WSI, whole slide imaging.
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Recent application of machine learning, deep
learning and artificial intelligence in quantitative
image analysis-based multiplexing has enabled
detailed representation of tumor tissue by
generating quantifiable data that can precisely
profile multiple different cell types in the
TME.43,44 Automated algorithms have further
allowed researchers to segment cell nuclei and
morphology of the tissue, providing broader
information such as area or intensity of specific
stains, and to compare different cell types in
specific areas of interest in the tissue specimen
(e.g. diseased and normal). This evolution of
immune contexture of the tumor is also referred
to as Immunoscore, which uses chromogenic IHC
to measure the density of two lymphocyte
populations on serial sections, in particular CD3+

and CD8+ T cells, both in the tumor centre and at
the periphery of the tumor using digital
pathology.1,7 In an effort to promote the
utilisation of Immunoscore in routine clinical
settings, a worldwide Immunoscore consortium
was initiated, with the support of the World
Immunotherapy Council, of the Society for
Immunotherapy of Cancer and several other
societies.45 The consortium identified a strategy to
demonstrate the feasibility, reproducibility,
significance, robustness and prognostic power of
Immunoscore� assay in predicting stage II colon
cancer patients with high risk of recurrence.46

Today, Immunoscore� has already outperformed
the standard tumor–node–metastasis (TNM)
staging as a prognostic test for colorectal
cancer.3,47 Furthermore, to enhance the clinical
utility and standardisation of this assay, an
in vitro diagnostic (IVD) Immunoscore� assay for
clinical use has also been developed by the
HalioDx immuno-oncology company.48

Immunoscore� is the first IVD immune scoring
diagnostic test of the HalioDx pipeline, that is
used by pathology laboratories leveraging
advanced image analysis. Immunoscore� is now
validated for prognostic and predictive diagnosis
of colon cancer. The presence of CD8+ T-cell
infiltrates has also been shown to have prognostic
benefit in other cancer types, including
melanoma, NSCC, RCC and bladder cancer.49–52

There are also indications that other biomarkers
may be clinically useful in enhancing
Immunoscore�. For example, PD-L1 is one such
clinically relevant prognostic and predictive
marker that has received FDA approval for its use
with checkpoint inhibitors pembrolizumab and

nivolumab.8,9 However, not every patient with
low levels of T-cell infiltrates in their tumor
rapidly progress, nor does every tumor with high
PD-L1 respond to anti-PD-L1 therapy. It is
therefore important to explore Immunoscore�

with additional prognostic immune parameters on
multiple cancer types.1,3,45,53 Recent evidence has
also shown that the presence of PD-1 and Tim-3
on CD8+ infiltrating T cells correlates with poor
clinical outcome in renal cell carcinoma, indicating
a possible exhausted phenotype.52,54 Thus, the
utilisation of multiparametric analysis to study the
interactions and spatial relations between tumor
and various immune cell phenotypes could further
extend the prognostic and predictive implication
of Immunoscore�, compared to CD8 and/or CD3
staining alone.

Integration of MSI and advanced digital image
analysis technologies in multiplexed IHC samples
has the potential to reveal co-expression of
immune molecules, pathway configurations and
the spatial relationships between different
immune and malignant cells within a particular
tissue compartment.18,55 Such quantitative spatial
profiling of key immune- and tumor-related
pathways could improve the stratification of
cancer patients for immunotherapy.56 It is
therefore not surprising that there is a growing
interest in combining IHC-based multiplexed
image analysis with artificial intelligence or
machine learning to ensure reproducibility and
robustness in interpreting tissue-based
information. Currently, there are several IHC-
based multiplexed image analysis software
packages including Inform,25 Halo57 and Qupath58

that use machine learning to identify and
characterise the multi-parameter fluorescent and/
or chromogenic profile of individual cells from
digitised pathological slides. Such a combined
multiplexing approach with advanced image
analysis can offer flexibility and greater insight
into disease pathogenesis by facilitating a systems
biology approach.

FUTURE CLINICAL APPLICATIONS OF
MFIHC

While advances in therapeutic strategies for
cancer treatments have significantly improved
survival in some patients, questions still remain as
to why some patients do not respond. Since
tumors are highly heterogeneous among
individuals, further development of predictive
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markers may help maximise the clinical benefit
and minimise the incidence of adverse events. In
particular, the emerging success in immuno-
oncology requires delineation of complex
crosstalk between immune- and tumor-related
pathways. Current efforts on novel biomarker
candidates rely on identification and
quantification of different immune cell
populations, their spatial relationship, tumor
mutation burden and immune gene signature.59,60

As such recent technological advances combined
with an explicit need to use multiple stains to
characterise immune cells in different tissue
compartments has seen an increased need for
mfIHC in preclinical and clinical settings (Table 2).
mfIHC has demonstrated that clinical correlation
of high-dimensional integrative analysis of the
immune contexture – before and after therapy –
is useful in identification of prognostic and
predictive biomarkers in cancer patients.56 For
example, expression of high PD-1/PD-L1 in
patients with metastatic melanoma was associated
with significantly improved progression-free
survival and overall survival, and these were also
more likely to respond to anti-PD-1 monotherapy.
Similarly, the densities of PD-1 and PD-L1
expressing cells in the TME of patients with
Merkel cell carcinoma positively correlated with
response to anti-PD-1 monotherapy.61 Tumor-
infiltrating lymphocytes have also been identified
as a prognostic and predictive biomarker in breast
cancer.62

The immune contexture is defined as the
density, localisation and organisation of immune
cell within solid tumors. Immune contexture
analysis using mfIHC revealed high density of T
lymphocytes concentrated in the stromal
compartment but not in the epithelial
compartment in NSCLC.63 Infiltration of intra-
tumoral CD3+ and CD8+ T cells in NSCLC was
associated with better survival outcome, and the
prognostic impact of CD8+ T-cell infiltration was
independent from age, tumor size, histology, and
stage in multivariate analyses.50 Similarly,
increased engagement of tumor epithelial cells
with cytotoxic T lymphocytes (CD3+CD8+) in
metastatic colon cancer was associated with
improved overall survival. The abundance of
infiltrating PD-L1 expression on antigen-
presenting cells (APCs) in the TME indicates an
immunosuppressive environment in these
patients.64 By analysing tissue microarrays, an

increased infiltration of CD8+ cytotoxic T cells was
associated with improved patient outcome, and
increased infiltration of regulatory T cells into
core regions was identified as an independent
marker of poor patient outcome in NSCLC.65

Studies have now reported that not just one
cell type, but the relationship between different
immune cells in different tumor compartments
have prognostic benefit that can impact on
patient survival. For example, after neoadjuvant
chemotherapy, higher levels of epithelial
lymphocytes (CD3+CD4+) and epithelial and
stromal tumor-associated macrophages (CD68+)
were associated with better outcome in patients
with NSCLC.66 A higher effector CD8+ T-cell/
regulatory T-cell ratio in the tumor compartment,
and a higher intra-tumoral/stromal ratio of CD8+

effector cell infiltration correlated with better
overall survival in patients with NSCLC.67

Furthermore, the ratio of cytotoxic T cells to
regulatory T cells (CD8+:Foxp3+), and cytotoxic T
cells to PD-L1 (CD8+:PD-L1+) were also found to be
suppressed in the microenvironment of gastric
cancer tissues compared to those of normal
adjacent gastric tissues.68 In metastatic melanoma,
PD-L1+ expression on both melanoma cells and
macrophages was shown to correlate with high
levels of intra-tumoral CD8+ cells but not with
intra-tumoral CD4+ Tregs.69 Similarly, the
intercellular interactions between tumor cells and
regulatory T cells in non-small-cell lung cancer
were associated with poor survival, while the
interactions between CD8+ T cells and regulatory
T cells correlated with improved survival.65

The application of mfIHC in immune contexture
analysis has become increasingly useful for the
performance of spatial distribution analysis of
immune and tumor cells in various cancers,
including colorectal cancer, pancreatic cancer and
breast cancer.19,70,71 While the relative
distribution of immune cells in different
compartments of tumors is known to influence
disease progression and response to
immunotherapy, the spatial interactions between
immune and tumor cells can greatly impact the
overall tumor ecosystem and have significant
influence on tumor progression and therapy
responses.7,72 Several studies have now
demonstrated the association between spatial
distribution of immune cells and prognosis in
various cancers.65,70 In patients with liver
metastasis from colorectal cancer, the distribution
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of T cells in close proximity (≤ 10 µm) to the
tumor periphery has been associated with
improved overall survival.70 In gastric cancer, the
clinical outcome was associated with high
number of tumor-associated macrophages
(CD68+CD163+) and their proximity to tumor
cells.73 Similarly, the spatial distribution of
cytotoxic T cells in proximity to pancreatic cancer
cells correlated with increased overall survival.19

The intercellular spatial distribution of immune
cells within 20 µm of melanoma cells in pre-
treatment metastatic melanoma specimens was
significantly associated with response to anti-PD-1
monotherapy and progression-free survival.74

Furthermore, the proximity of PD-1-expressing
cells and PD-L1 in pre-treatment metastatic
melanoma specimen correlated with a positive
response to pembrolizumab.75 The prognostic
potential of multiplexed IHC technology is not
just limited to immunotherapy but is also
applicable to conventional therapies such as
chemotherapy. For example, several studies
have shown that neoadjuvant chemotherapy,
whatever the regimen, can alter the TME,
thereby possibly making it more favorable for
immunotherapy.62,66,76–82 Thus, the quantitative
spatial profiling of immune markers via
multiplexed immunofluorescence may be a
useful tool for treatment selection and
biomarker identification for single or combination
therapy.

Multiplex fluorescence IHC has proved to be
useful to delineate the immune-tumor pathways
and their spatial relations in stratification of
patients for immunotherapy. For example, we
recently used quantitative fluorescence
multiplexing imaging techniques to demonstrate
that the cellular makeup in pre-treatment tissue
from recurring GBM patients can predict the long-
term response following autologous CMV-specific
T-cell therapy. While the long-term survivors had
significantly reduced number of CD3+ T cells in
comparison with short-term survivors, a
proportion of short-term survivors displayed
higher PD-L1 expression. These data suggest that
combining T-cell therapy with PD-1/PD-L1
blockade may improve overall survival of GBM
patients.83 Therefore, quantitative fluorescence
multiplexed IHC technology as a platform for
diagnostic and prognostic biomarker
identification is poised to revolutionise traditional
pathological interpretation.

CHALLENGES IN ADVANCING THE
UTILITY OF MFIHC IN IMMUNO-
ONCOLOGY

As the field of immune oncology continues to
grow, the need for standardised multiplexed IHC
for relevant tissue biomarkers, together with an
accurate and reproducible image analysis pipeline,
is likely to provide increased support for future
clinical decisions. Advances in mfIHC technology,
digitisation and automated image analysis have
the potential to provide robust and reproducible
multiplexed IHC data for personalised treatment
of patients with immunotherapy. Despite these
technological advancements, there are several
factors that impede the implementation of mfIHC-
based quantitative digital pathology in clinical
settings. Overcoming current limitations and
providing a unified workflow will be essential for
developing full, widespread, clinical benefit of
this technology. These limitations can be roughly
categorised as follows: tissue handling and
processing, tissue staining, image acquisition and
digital pathology, quantitative image analysis and
centralised workflow.

Tissue handling and processing

The reproducibility of IHC data can be greatly
affected by sample handling, which begins with
tissue collection (at autopsy or biopsy) until a
section is ready to be stained.84,85 Prior to
fixation, the ischaemic time of resected tissue is
crucial to prevent tissue from degradation and
autolysis.86,87 The volume of fixative and types
and length of fixation can also affect the epitopes
which can result in differences in staining
patterns. Generally, 10% neutral buffered
formalin is used as a standard fixative in most
hospitals; however, the choice of fixative is
dependent on the downstream technique that
will be applied to the tissue.85,88 The optimal time
for fixation is 24 h which can vary depending on
the thickness of the tissue and epitope to be
evaluated.89 Multiple additional factors that occur
through processing to sectioning of the tissue can
incur additional variation. For example, the
duration of storage, temperature of storage,
sample orientation, thickness of the section,
environmental exposure, oxidation and the type
of antigen being investigated can all influence
the immunoreactivity and antigenicity.85,90,91
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Consistent tissue thickness using a validated
sample preparation protocol is critical to maintain
morphology and ensure reproducible IHC data.
Thicker sections give darker staining with lower
resolution while thin sections offer lighter
staining with enhanced resolution. A thickness of
3–4 µm tissue sections is considered ideal for
downstream single or multiplexed IHC.88,92 For
IHC that requires simultaneous staining of
multiple markers, the sections must be transferred
to positively charged slides and allowed to dry
overnight before staining. The unstained sections
are subject to oxidation and environmental
temperature, which inversely affects antigenicity
(antigen instability).93–95 In contrast, paraffin
blocks are resistant to antigen degradation and
can be stored for several decades.96,97 Thus, for
short term, the unstained sections may be stored
at 4°C although staining the sections immediately
after sectioning is generally recommended.98,99

Tissue staining

Staining of FFPE tissue sections can introduce
variability during scoring.85,88,100 For example, the
method of staining (direct versus indirect), target
protein being evaluated, the time and
temperature of staining, antibody type
(monoclonal versus polyclonal), dilution, origin of
species and vendors, dilution and type of
detection reagents, method of antigen retrieval
and epitope retrieval buffer, blocking solution
and the type of counterstain used can all affect
the score data.101 The increasing use of
fluorescence-based multiplexed IHC staining in the
study of immune contexture introduces additional
variables, such as type of staining techniques
(sequential versus simultaneous), the localisation
of the marker under evaluation, antibody cross-
reactivity, antigen retrieval method, spectral
overlap between multiple labels, photo bleaching,
tissue autofluorescence and signal quenching can
all affect the fluorescence readout.20,102,103

Several different approaches to fluorescence-
based multiplex IHC have been developed, which
can be categorised as sequential or simultaneous
depending on the choice of staining.104

Sequential fluorescence mIHC involves labelling
the tissue with one or two antibodies at a time,
where the antibodies or antibody complex is
stripped or the fluorophores are quenched
between each cycle of staining.21,104 Sequential
staining using antibody stripping offers

simultaneous detection of multiple markers.104 In
dye cycling-based approaches, images of the slide
are acquired between each cycle of staining, and
then, the images from each cycle are co-registered
to generate the multiplex image.20,21,26 Such
sequential staining methods can cause issues such
as cross-reactivity between different antibodies,
signal cross-reactivity because of incomplete
elution of antibodies or quenching of
fluorescence signal, and may also lead to
disruption of epitopes or tissue integrity because
of repeated cycle of heating or treatment with
harsh chemical bleaching to sequentially label
multiple antigens. The images generated from
each cycle of staining must also be registered
accurately to ensure the integrity of the data.21,26

Simultaneous fluorescence mIHC involves using
multiple antibodies (conjugated or unconjugated)
to label different antigens on the same slide at
the same time. This type of staining is more time
efficient, is not influenced by sequential rounds of
imaging, and causes less tissue damage, but is
limited to the number of fluorophores that can
be resolved from each other during image
acquisition. This method may incur artefacts
because of spectral overlap of the dyes, also
known as fluorescence bleed through, which can
create difficulties in separating discrete
fluorescence signals and complicate the
evaluation of co-localisation experiments.18,105

The degree of spectral overlap in a particular
experiment is dependent the choice of
fluorochromes and the antibodies used.106 Some
dyes have wide emission spectra which can
contribute strongly to spectral overlap, while
others emit over a narrow range of wavelengths
and usually have less spectral overlap depending
on the brightness of the fluorophore and the
fluorophore combination used.105 Thus, the
brightest fluorophores should generally be used
to label antigens with the least abundant
expression and dimmer fluorophores should be
used to label the most abundant proteins.
Suboptimal design of the multiplexed panel in
fluorescence mIHC can therefore negatively affect
the quality of data because the signal is too dim
and cannot be imaged effectively or too bright
causing excessive bleed through. The sequence of
antibody staining in the panel should be validated
and not changed because the microwave/heat-
induced epitope retrieval step that is performed
between each antibody, and the duration of
heating can affect the stability and quality of

2020 | Vol. 9 | e1183

Page 10

ª 2020 The Authors. Clinical & Translational Immunology published by John Wiley & Sons Australia, Ltd on behalf of

Australian and New Zealand Society for Immunology, Inc.

Multiplex fluorescence IHC in immuno-oncology Shakya et al.



staining for all antibodies in a multiplex panel. It
is therefore not feasible to simply merge a
validated single-plex fluorescence IHC protocol
into a multiplexed methodology. A single change
in the antibody, reagent, tissue type or the
antibody order in multiplexed panel can require
extensive rearrangement of fluorochrome–
antibody combinations and optimisation of the
protocol for optimum or acceptable performance.
To preserve the quality of data and minimise the
panel development time, it is generally advisable
to develop a standardised panel with a fixed set
of markers that meets a particular purpose.

One of the biggest challenges in quantification
of fluorescence signal in FFPE tissue is tissue
autofluorescence.103,107–109 Each cell has its own
intrinsic level of fluorescence which generally
emits over a broad spectrum and can impact
almost every fluorescent stain.109 Thus, a
fluorescent staining protocol designed for one
type of tissue may not be suitable for a different
tissue. It is therefore advisable that an antibody
panel for staining is optimised using the same
tissue type and even from the same tissue block if
possible. The signal from each antibody staining
should be validated in a single-plex IHC before
combining the makers in a multiplexed panel. It is
also essential to include appropriate positive and
negative controls to validate the sensitivity,
specificity and reproducibility of the IHC protocol
for a given antibody.110–112 This is particularly
important when the markers are being
quantitatively assessed for staining intensity.
Positive controls are tissues or samples containing
the marker(s) that have areas which gives
different levels of staining when visualised by a
stain. The use of a negative control is essential to
check for nonspecific staining or artefacts (false-
positive result) resulting from the primary
antibody. Appropriate negative control slides
include an isotype control or a cell line or tissue
that does not express the protein of interest. A
secondary alone control is also required to ensure
that the secondary antibody does not exhibit
nonspecific binding. However, it does not provide
information regarding specificity of staining with
the primary antibody. Importantly, the quality of
the staining pattern as per localisation of markers
such as extracellular, intracellular or subcellular
distribution (nucleus, cytoplasm and membrane)
must be validated with the assistance of trained
pathologist to prevent quantification error. Each
step in staining process can potentially be a

source of variation in score data. This also
includes the type of staining method used –
manual versus automated staining. For instance,
manual staining tends to have more opportunities
for errors and variations compared to automated
systems. Staining of a large volume of slides
generally requires multiple runs (‘batches’), and
each batch of a run has the potential to produce
differences in the quality of staining. Thus,
randomisation of the slides can prevent biasing
the data and use of an appropriate control slide
can help ensure the sensitivity of staining as well
as the reproducibility of data.

Image acquisition and digital pathology

Histopathological evaluation of tumor tissue has
been traditionally performed by pathologists
using a standard microscope and a semi-
quantitative scoring system.84,113 Recent advances
in technology have allowed researchers and
clinicians to take whole slide image of IHC slides
which may improve the safety, quality and
efficiency in diagnostic workflow.114 Whole slide
imaging (WSI) refers to digitisation of entire
specimen into a single digital slide that allows for
interpretation and management of specimen in
an image-based environment.115,116 These digital
images can be accessed remotely to facilitate
telepathology (the practice of pathology from a
distance), outsourcing and consultation for
routine cases in areas that requires pathologist’s
expertise, including developing countries.117,118 In
addition, WSI enables the generation of whole
slide digital tissue banking which can be archived
for research, molecular testing, medico-legal and
forensic purposes.119–121

Whole slide imaging can be categorised into
three types, brightfield, fluorescent and MSI,
depending on the type of scanner used.114,122

Brightfield scanners digitise chromogen-based IHC
and are most commonly used in clinical practice.
Fluorescence scanners capture fluorescently
labelled slides using a monochrome camera
attached to a microscope that is equipped with
specific filters and mirrors to separate the multiple
fluorescent signals. MSI captures images at a
discrete spectral intervals and can be used for
both brightfield and fluorescent imaging.122

Capturing MSI of WSI takes longer and generates
larger files than non-MSI slide scanners but there
has been continued development in this area
because of its potential in clinical application, and
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%

Figure 2. Work flow and general framework for multiplexed image analysis using Vectra quantitative digital pathology system and FCS express

(flow and imaging). Typical steps involved in the fluorescence image analysis: Opal multiplexed fluorescence IHC, Vectra image scanning, Inform

(Unmixing, Tissue Segmentation, Cell Segmentation, score), FCS export and image cytometry [Top: Unmixed image (left), Picture plot (middle)

showing mask overlays on PD-1-positive cells (magenta), stromal cells (green) and tumor cells (cyan), Picture plot highlighting PD-1-positive cells

(right); Bottom: Histogram showing tissue category region gated for cells in tumor and stroma (left), Histogram overlays (middle) of PD-1

expression on tumor and stroma quantified from merged image data (12 fields of view from same slide), tSNE map showing PD-1 expression

highlighted in magenta (right)].
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MSI technologies have proven to be useful in
both preclinical research and clinical pathology.123

WSI scanners that allow for high-speed
digitisation of fluorescence IHC glass slides are
available from many different vendors.124 Some
well-known fluorescent WSI scanners include
Aperio FL, Vectra�, Vectra� PolarisTM and
Hamamatsu NanoZoomer. Different scanner
models vary in terms of their features and
functionality,125 and the selection of WSI scanner
depends on its intended use such as the type of
specimen being scanned (FFPE, frozen sections),
type of stain (chromogenic or fluorescent),
number of markers being evaluated (single-plex
or multiplex), usage in a clinical or non-clinical
laboratory, type of glass slide being scanned, the
downstream companion software and laboratory
information system (LIS) required to manage and
support the clinical workflow as well as the cost
associated with the purchase and maintenance of
the WSI scanners.126–128

Most WSI scanners for fluorescence IHC
comprise a software-driven, robotically controlled
microscope with high-quality objective lenses,
high-quality monochrome cameras, and multiple
filter cubes for single-plex or multiplex
imaging.119,129 It is therefore important to
consider the light source (brightfield versus
fluorescence), scan magnification, scan time, slide
holder capacity, hardware robustness, stitching
algorithms, scan failure rate, z-stacking for 3-D
reconstruction, image resolution, image quality,
file compression methods, formats and file size
when selecting a slide scanner for digitisation of
FFPE slides.128,130 Histopathology specimens are
relatively easy and quick to scan compared to
cytology specimens because they have smooth
topology and small depth variations.131,132

Scanning of cytology slides may require a multi-
planar scanner with z-stack capabilities,133 which
is not described in depth here. Ideally, a routine
surgical pathology specimen can be scanned at a
low magnification (e.g. 209); however, small
objects such as microorganisms can only be
identified with high magnification (e.g. 409 or
greater) which offers better resolution.134 The
scan time of FFPE slides can increase with higher
magnification, larger tissue size, number of field
of views or tiles, number of channels used in
multiplexed stains, tissue section density, low
signal strength and low signal-to-noise ratio.

Multispectral fluorescent WSI requires capturing
and storing images at various wavelengths that

are later processed to account for bleed through
of the individual dyes and autofluorescence. The
number of wavelengths captured increases the
overall scan time and file size. Technical
limitations in scanning can lead to imaging
artefacts, such as lower image resolution,
heterogeneous staining intensities and patterns,
poorly focussed scans, improper stitching of lines
or tiles, or overlapping signals from multiplexed
spectra, all of which directly affect data accuracy
and reproducibility.130,135 While the optical
resolution depends on the magnification and
numerical aperture of the objective lens, it is also
important to note that the digital resolution of
the image may vary based on the detector/camera
in the scanner, and the quality of the viewed
image will depend on the monitor where the
images are displayed.136 Establishment of a sound
digital pathology workflow in a clinical or non-
clinical laboratory therefore requires additional
considerations above the traditional histology
workflow.127 These include the need for adequate
staffing, proper training of personnel and
pathologists, setting up pathologists’
workstations, additional quality control steps,
availability and timely maintenance of equipment
(e.g. scanner), adequate information technology
infrastructure (e.g. server and computer),
integration with LIS, standard operating
procedures and guidelines for managed
workflow.125,135

Digital pathology has been successfully
implemented around the world for education,
clinical pathology conferences and research
purposes.75,119,137–139 WSI systems such as the
OmnyxTM Integrated Digital Pathology IDP by GE
healthcare have been approved by Health Canada
for all purposes in routine pathology such as
creating, managing, storing, annotating,
measuring, viewing digital whole-slide images,
and primary diagnosis.140,141 The US Food and
Drug Administration has also approved the Philips
IntelliSite Pathology Solutions for primary
diagnosis using surgical pathology slides, which
has led to further interest in development and
clinical adoption of digital pathology for
diagnostic purposes.142 The widespread clinical
implementation of Immunoscore� requires an
optimal biomarker study to be hypothesis driven,
reproducible, with prognostic and/or predictive
power and cost-effective.143 Digital tools have the
potential to facilitate pathology workflows for
assessment of established immune biomarkers and
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enable deeper characterisation of TME. While
some clinical centres utilise slide scanning to
digitise histopathology samples,144 there are only
a few centres that utilise complete digital
pathology for routine histopathology.145,146

Digital pathology systems that support
multiplexing have not yet been adopted in clinical
pathology laboratories; however, they are widely
used in early discovery and clinical studies.
Although the widespread adoption of mfIHC in
the clinic may still be futuristic, contract research
organisations (CROs) are currently offering high-
quality image acquisition and analysis based on
mfIHC to clinic and research which may be helpful
in patient management (Table 3). Because of the
potential of mfIHC for use in the clinic, many
pharmaceutical and biotechnology companies
have made major investments in digital
pathology, which includes automation in
histology techniques (sample storage, tissue
sectioning, staining), slide scanners and image
analysis software. Thus, as a platform for
diagnostic and prognostic biomarker
identification, digital pathology is poised to
revolutionise traditional pathologic interpretation,
and implementing the regulatory guidelines that
governs its use will need to be revisited.147

Quantitative digital image analysis and
deep learning

Multiplexed IHC allows simultaneous detection
and co-localisation analysis of multiple markers
in situ in the intact spatial context of tissues.17–
19,21,62,89 The emergence of digital pathology, and
its application in translational science, has allowed
researchers to see cancer differently. Whole slide
digital images of tissue sections contain
information that includes colour, tissue
morphology, cell morphology and complex cell
phenotypes. Through technology such as MSI-
based multiplexing, it is now possible to explore
complex phenotypes and their interaction in the
TME.148 Quantitating the number of cells that
display a particular phenotype in a specific
context of tumor tissue is important to explore
immune evasion and predict and track response to
therapy.138 Image analysis in pathology was
primarily done through visual assessment of
marker of IHC or IF samples. However, the
standard pathological assessment of tissue
includes several inter- and intra-observer
variation, longer duration for assessment, as well

as difficulty in distinguishing co-localisation
markers when several fluorophores are being used
simultaneously in one sample.107,149,150 Thus, to
overcome many of these challenges, number of
image analysis methods are being developed
which can provide quantitative, per-cell
measurements from multi-labelled IHC or IF
samples.151 The basic principle of automated
histopathologic image analysis generally involves
three key steps: unmixing of fluorochromes to
separate markers, automated identification of
morphologic region (regions) in the tissue section,
and cellular segmentation to enable
quantification of intensity of one or more markers
in a cell or subcellular compartment (e.g. nucleus,
cytoplasm, membrane). These automated image
analysis workflows are being increasingly used in
diagnostic and investigative pathology.114,152,153

There are already a growing number of image
acquisition platforms in the market that combine
image analysis with automated slide scanning to
support fluorescence multiplexed staining. These
include the Akoya Biosciences Vectra� and
Vectra� PolarisTM,24 TissueGnostics/TissueFAXS,154

and Leica Biosystems/Aperio FL,155 all of which can
scan slides affixed to whole tissue or tissue
microarray slices and provide some level of image
analysis. Higher level of multiplexing for
multivariate biomarker analysis requires spectral
unmixing to separate spectral overlap.
Fortunately, some of the integrated scanning and
analysis instruments use multispectral cameras
that support unmixing for multiplexing
modalities. Several stand-alone, open or
commercial fluorescence image analysis software
packages are also available to evaluate digitised
fluorescence multiplexed slides from various
instruments. These include Halo,57 iGen, Cell
Profiler, AQUA Analysis, QuPath,58 Icy, ImageJ and
MATLAB (Table 4). These software packages
perhaps integrate machine learning and deep
learning algorithms that have contributed
immensely towards advancing the potential of
digital pathology. Software packages that
integrate such algorithms are often developed for
specific purposes such as in situ hybridisation
(chromogenic or fluorescent), nuclear/cytoplasm/
membrane biomarker identification, co-
localisation studies and spatial distribution
analysis. There are now an increasing number of
laboratories that are incorporating IHC image
analysis software into their workflow for single-
cell-based quantitative pathology. Each software
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package varies in terms of their flexibility,
complexity, application and its ability to work on
whole slides versus tiled (static) images,
brightfield versus fluorescent images and different
file formats.84,156 Furthermore, image analysis of
multiplexed IHC assays that incorporate greater
than six markers could require assessment of each
marker set in sequential process. Such staining
techniques will require an image registration
feature that allows integration of images after
each round of staining,104 unlike other
methodologies where the image is acquired at the
end of the staining process. Although such
techniques require longer time to stain, the multi-
stacked tissue generated from such staining
methods is useful to perform multivariate
biomarker analysis. Collectively, the image analysis
workflow should include an automated tissue and

cell segmentation feature, and integrate spatial
co-localisation of cell and distribution analysis
such as co-localisation of cells, distance between
different cell populations or distance from the
tumor region.

Based on the level of training required, image
analysis software can be classified into two
groups: ‘Unsupervised’ and ‘Supervised’.85,157

Unsupervised software packages enable
researchers to score image data without the need
for computational skills. These packages require
minimal user training but offer less flexibility to
perform higher order analyses for complex
investigative studies. In contrast, supervised
software packages allow users to perform
complex analysis but require upfront training and
more user input, which can be tedious to use in
diagnostic settings.85 Supervised and unsupervised

Table 5. Key advantages and disadvantages of emerging high-plex (> 10) IHC platform

Multiplexed solutions Key advantages Key disadvantages

GeoMx� DSP (DNA barcode

technology)

• 40-plex staining

• Clinical relevance

• +700 mRNA in situ detection

• No autofluorescence and spectral overlap

• Bundled image acquisition and analytical software

• Limited ROIs

• Resolution (10–20 µm)

• No image construction

CODEX� (DNA barcode

technology)

• 40-plex staining

• No spectral overlap

• Single-cell data

• High resolution

• Low cost add-on to existing imaging platforms

• Bundled image acquisition and analytical software

• Low publication record

InSituPlex� (DNA barcode

technology)

• >16-plex

• Retains tissue integrity

• Reagent only platform

• No spectral overlap

• Requires manual or existing automated staining

platforms

• Requires existing or third-party imaging and analysis

platform

• Comparatively low plex

Hyperion (Imaging mass

cytometry)

• >40 markers simultaneously

• No autofluorescence and spectral overlap

• Single-cell data

• ~0.5 µm resolution

• Number of simultaneous markers is limited to

existing heavy metals

• Low throughput

• Requires existing or third-party analysis software

MACSimaTM (Imaging cyclic

staining technology)

• Multiplexing of 100+ antibodies

• Fully automated all-in-one workflow

• > 1500 validated antibodies

• Single-cell data

• Bundled image acquisition and analytical software

• High costs associated with instrument, reagents and

antibodies

• Low publication record

MIBIscopeTM (Multiplexed Ion

Beam Imaging technology)

• >40 markers simultaneously

• No autofluorescence and spectral overlap

• Single-cell data

• ~0.5 µm resolution

• Whole slide scanning

• Bundled image acquisition and analytical software

• Number of simultaneous markers is limited to

existing heavy metals

• Low throughput
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analyses of cell populations are common place in
immunology and clinical diagnosis. For example,
standard gating of cell populations during flow
cytometry requires user input to accurately
quantitate cell populations identified using multi-
parameter staining. Unsupervised learning such as
tSNE is also commonly used by flow cytometry
analysts to identify potential biomarkers.

In collaboration with De Novo Software, we have
integrated the ability to use FCS Express 6 Image
Cytometry software to open and analyse
fluorescence multiplexed images that were
acquired using the Vectra� automated quantitative
digital pathology imaging platform. This
integration allows for efficient exploration and
quantification of large, multi-parameter single-cell
image datasets while allowing access to the
original images for visualisation. This method is
useful to analyse cellular phenotypes and their
relationships within spatial context of the TME in
intact FFPE tissue sections. A typical data analysis
pipeline for immune contexture analysis that
utilises image cytometry software like FCS Express 6
for multiplexed digital images from the Vectra
automated quantitative digital pathology platform
is presented in Figure 2. This new approach allows
us to explore multiplexed fluorescence IHC data to
find biomarkers in an unsupervised manner. Since
flow cytometry is commonly used in research and
clinical settings, this type of analysis can provide
image data in a manner that is readily transferable
between research and diagnostic laboratories. The
data can also be further inspected at the level of
the nucleus, cytoplasm, membrane or total
fluorescence, which provides an additional benefit
over flow cytometry data which generally measures
total cellular fluorescence and requires further
staining protocols to obtain data on subcellular
location (Figure 2). The education on the
integration and analysis of mfIHC using Vectra and
FCS express can be obtained through an online
webinar portal in De Novo Software.158 FCS express
also includes several other data visualisation tools
(histogram, dot plots, density plots), reporting
tools (bar chart, pie chart, line graphs), statistics (P-
values) and high-dimensional data reduction tools
such as tSNE, SPADE and K-means, which can be
applicable for high-throughput analysis of
multispectral data generated from multiplexed IHC
platform.

In the setting of pathology, deep learning
methods have been widely used in H&E- or IHC-
stained whole slide images for detection of

metastatic loci, tumor classification and prediction
of gene mutations.159,160 IHC algorithms
associated with different imaging platforms have
received US FDA clearance as diagnostic tools.161

So far, five predictive IHC-based biomarkers for
immune contexture have been approved by the
FDA as companion diagnostics including PD-L1 for
non-small-cell lung cancer, gastric or
gastroesophageal junction, ALK for non-small-cell
lung cancer, EGFR for colorectal cancer, CD117 for
gastrointestinal stromal tumor and Her-2 for
breast cancer and gastric cancer. Roche has
developed a companion algorithm image analysis
software for Her2, which is the only IHC-based
marker that has received clearance from FDA for
semi-quantitative measurement of Her2 (4B5) in
breast cancer patients.

Several commercial image analysis software
packages that integrate the workflow exist for
non-clinical settings. The workflow of such
commercial systems still carries limitations and
challenges before its routine implementation in
clinical decision-making. Thereby, in addition to
the issues explained above, the challenges in
image analysis workflow also need optimisation
and standardisation for its effective integration
and translation into clinic.

Some of the most common image analysis
artefacts includes cell segmentation errors (e.g.
over segmentation or under segmentation of
nuclei) and tissue classification errors (e.g.
classifying tumor as stroma and vice versa).
Therefore, an appropriate quality control measure
must be included to assess potential artefacts
throughout the IHC and image analysis workflow.
It is important that pathologists are involved in
reviewing the quality control step of the image
analysis workflow that will otherwise influence
the results.

In the area of image data analysis, there has been
much advancement in tissue and cell segmentation;
however, the current software packages still have
limitations in phenotyping cells of different sizes
and morphologies, distinguishing cells in close
proximity, and processing spatial distribution
analysis. Different software packages use tools such
as deep learning or threshold-based methods (like
pixel intensity) to identify and label objects. These
tools are effective for identification of single-cell
type; however, it is challenging to perform co-
expression and multivariate biomarker analysis.

One of the biggest challenges in translating
tissue-based diagnostic biomarkers in clinical
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decision is to determine a clear threshold for
patient stratification based on expression of single
or multiple markers. Since the staining results of all
parameters are provided in a continuous variable,
appropriate cut-off values for each marker should
be designated depending on the distribution of
staining intensity, absolute number or both. The
‘optimal’ cut-off point is defined as that threshold
value of the continuous covariate distribution,
which best separates low- and high-risk patients
with response to outcome.162,163 Pathologists often
use packages such as SPSS (IBM SPSS Inc.),
GraphPad Prism (GraphPad Software Inc.) or
Winstat (R.Fitch Software) in order to correlate
biomarkers with outcome or survival data. The cut-
off values are often chosen using simple
approaches like mean, median, quantile
distribution of the biomarkers or adjusted
manually. However, because of the fact that many
factors can affect the quality of multiplexed
staining and their subsequent IHC score, it is
necessary to use methods that support
distribution-based cut-off optimisation or cut-off
optimisation in context of a survival variable.
Determining the best cut-off point is often a
compromise because of the staining intensities
differences between center versus edge/periphery
of the tissue and tumor versus stromal region.
There are algorithms such as OptimalCutpoint164

and maxstat165 that predicts the cut point in a
continuous variable; however, those programs are
not user friendly and require programming
knowledge. Other stand-alone programs such as
Cutoff Finder,166 X-tile167 and Evaluate Cutpoint168

are also being used for cut-off point determination
of a continuous variable, but each has its own
limitation in terms of selection of statistical
algorithms. Therefore, a consensus will be required
to set thresholds for stratification at a per tissue
level in order to improve the quality of biomarker
studies. With the growth in cancer
immunotherapy, the clinical importance of
quantitative and spatial characterisation of TME
for diagnostic/prognostic biomarker studies is
likely to increase. While deep learning methods
have had marked impact in digital pathology,
further improvement is required to expand its
application in automated image analysis workflow.

Centralised workflow

Automated image analysis software generates
large volumes of high-quality labelled data with

raw information about the individual fluorescence
profile in each cellular compartment. These data
become more complicated to analyse when
multiple samples are batch processed and
compared simultaneously. Thus, downstream
analytics software such as Excel, Spotfire, R studio,
GraphPad Prism, or FCS express is required to
inspect, analyse or graphically represent these
data and also to perform standard set of statistics
which can be associated with the clinical-
pathological parameters. Quantitative imaging
informatics also requires tools that can allow
simultaneous image visualisation while analysing
and reporting on complex image data sets.
However, most analytical software can import
image data but does not support viewing and
exploring of digital images. Different laboratories
are incorporating different downstream software
into their workflow to analyse and represent their
image data. However, a centralised image analysis
pipeline that integrates image acquisition, image
processing, image analysis algorithms and data
visualisation is critical to help improve scientific
reproducibility.

One of the important hurdles in clinical
adoption of digital pathology or image analysis is
the integration and interoperability of digital
pathology. Clinical adoption of digital pathology
or image analysis has become increasingly
expensive and is labour intensive and time
consuming to install and adjust with regard to
standards and practices. With this rapid evolution
in technology, it is vital that these new hardware
and software platforms can be easily implemented
and integrated within existing LISs in pathology
workflows, and as such that they do not become
outdated very quickly. In addition to integration
and implementation, there are issues concerning
interoperability between the different vendors.
Commercial software that comes bundled with a
microscope is often convenient to use. Closed
hardware and software systems offer less
flexibility for third-party integration. Opening up
a hardware and software technology with
universal standard for data movement and
management may facilitate more rapid biomarker
identification, although more closed systems may
be required for integration of these workflows in
digital pathology. This in turn will play a larger
role in enhancing the pathology workflow and
most importantly improving patient outcome.

Several new solutions that perform
simultaneous high-throughput fluorescence
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multiplexing have been developed, each with its
own limitations in terms of time, cost,
throughput, flexibility and scalability (Table 5).
Some of these platforms also provide fully
integrated image acquisition and multiplexed
data analytics that may overcome current
obstacles of integration and interoperability. For
example, Nanostring’s GeoMx� Digital Spatial
Profiling (DSP),31,32 Akoya Biosciences CODEX�,33

Miltenybiotec’s MACSimaTM,36,37 and IONpath’s
MIBIscopeTM30 are some of the emerging platforms
that offer end-to-end solutions from highly
multiplexed staining and image acquisition to a
fully integrated high-plex data analytics. Advances
in fully integrated multiplexed methodologies and
tissue-based image analysis solutions that can
integrate with clinical digital pathology workflow
are critical for delivering better diagnostic and
treatment decision to cancer patients.

CONCLUSIONS

There is a huge clinical need to understand
immune contexture, particularly in cases where
patients are refractory to current immunotherapy,
or relapse. Characterising immune cells requires
complex phenotyping of various markers that is
currently beyond the capabilities of chromogenic
IHC which is widely used in the clinic for diagnosis
of disease. Advances in fluorescence IHC have
made it possible to view multi-parameter data on
the same slide, and advances in analysis have
made it possible to provide clinically relevant data
from these images. It is also possible to present
these data in a format that is currently palatable
to clinicians and immunologists, and to use
complex phenotypes to identify new potential
biomarkers for treatment and tracking of disease
progression. With current advances in technology
driven by research laboratories and CROs, there is
little hampering in the translation of such
technologies to meaningful patient outcomes. A
new era will see production of better dyes, faster
technology, more biomarkers, better
segmentation and a faster more reproducible
overall workflow.
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