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Abstract

The disease tuberculosis is fatal if untreated. It is caused by the
acid-fast bacilli Mycobacterium tuberculosis. Mycobacterium
resides and replicates within the alveolar macrophages, causing
inflammation and granuloma, wherein macrophage-T cell
interactions enhance the inflammation-causing pulmonary caseous
lesions. The first interactions between Mycobacterium and the
receptors on macrophages decide the fate of Mycobacterium
because of phagolysosomal impairments and the expression of
several miRNAs, which may regulate CD40 expression on
macrophages. While the altered phagolysosomal functions impede
antigen presentation to the T cell-expressed antigen receptor, the
interactions between the macrophage-expressed CD40 and the T
cell-expressed CD40-ligand (CD40L or CD154) provide signals to T
cells and Mycobacterium-infected macrophages. These two
functions significantly influence the resolution or persistence of
Mycobacterium infection. CD40 controls T-cell polarisation and
host-protective immunity by eliciting interleukin-12p40, nitric
oxide, reactive oxygen species and IFN-c production. Indeed, CD40-
deficient mice succumb to low-dose aerosol infection with
Mycobacterium because of deficient interleukin (IL)-12 production
leading to impaired IFN-c-secreting T-cell response. In contrast,
despite generating fewer granulomas, the CD40L-deficient mice
developed anti-mycobacterial T-cell responses to the levels
observed in the wild-type mice. These host-protective responses
are significantly subdued by the Mycobacterium-infected
macrophage produced TGF-b and IL-10, which promote pro-
mycobacterial T-cell responses. The CD40-CD40L-induced
counteractive immune responses against Mycobacterium thus
present a conundrum that we explain here with a reconciliatory
hypothesis. Experimental validation of the hypothesis will provide
a rationale for designing anti-tubercular immunotherapy.
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INTRODUCTION

Mycobacterium tuberculosis (Mtb) is an acid-fast
bacillus that resides and replicates within
monocytes and macrophages, in particular,
alveolar macrophages (AMs), which play key roles
in developing robust innate and adaptive immune
responses against the bacterium.1,2 While the
bacterium is eliminated or pushed to dormancy in
a resistant host, the pathogen inflicts the disease
tuberculosis in a susceptible host. Thus,
M. tuberculosis infection presents two paradoxes:
one, functional duality of the macrophages as a
supporting host or as an eliminator, and two,
alternate fates of the pathogen in resistant versus
susceptible hosts. In principle, the macrophages
from the resistant and the susceptible hosts have
intrinsic or genetic differences that result in either
elimination or growth of Mycobacteria.3,4

Complementary to the intrinsic ability or inability
of the host cells to control the infection, the
pathogen can suppress the anti-mycobacterial
killing mechanisms in the susceptible
macrophages. It fails in the resistant macrophages,
linking the alternate outcomes of the infection to
the virulence of the pathogen.5 The macrophages
are well known to also act as the antigen-
presenting cells to the antigen-specific T cells.6

This innate control of Mycobacterium may be
linked to the T-cell responses that may further
accentuate the initial control of the pathogen.
Intracellular signalling regulates three major
integrated processes: (1) macrophage–
Mycobacterium interaction, (2) macrophage–T cell
interaction and (3) T-cell regulation of
macrophage functions. Here, we analyse these
dualities of macrophage functions and alternate
outcomes of infection with special reference to
CD40-CD40L interaction.

MACROPHAGE–MYCOBACTERIUM
INTERACTION

Once internalised following multiple ligand–
receptor interactions, Mycobacterium lives within
phagosomal vesicles, which are formed during the
phagocytosis of the pathogen. The phagosomes
fuse with the lysosomes, which are rich in
hydrolytic enzymes, proteases and lipases. The
phagosome–lysosome fusion eventuates in the
death of the intra-phagolysosomal Mycobacteria.
The internally degraded antigens are complexed
with MHC class I or with MHC class II, and these

two classes of antigens are presented to CD8+ or
CD4+ T cells, respectively. Once these T cells are
activated, the cytotoxic activities of the CD8+ T
cells may directly destroy the mycobacterial
antigen-expressing macrophages,7,8 or the
cytokines from the activated CD4+ T cells may
activate the macrophages to kill the intracellular
Mycobacteria through reactive nitric oxide.9–11

Conventionally, it was believed that cytotoxic
activities of CD8+ T cells and cytokine secretion by
CD4+ T cells are suppressed in susceptible host
exemplifying a scenario, which may be more
complex in reality. In many diseases/infections, it
has been found that the polyfunctionality and
antigenic responses against pathogens are
controlled by the metabolic pathways operating
in immune cells.12 T-cell metabolic machinery is
regulated in anergy and exhaustion.13,14 Such
mechanisms may be the underlying causes of the
lack of optimal anti-bacterial responses as
observed in a susceptible host. A resistant host
may mount a strong TH1/TH17 response because
of the relatively active intracellular metabolic
process including glycolysis and upregulation of
amino acid transporters SLC1A/EEAT2/GLT-1.
Furthermore, the upregulation of CD98 and
transferrin receptor can facilitate the cellular
energetics positively via activation of the Akt-
mTOR axis and control of protein translation of
crucial anti-bacterial cytokines and molecules.15

Indeed, Mtb-specific-CD4+ TH1 response
moderates protective immunity by producing
cytokines such as IFN-c or TNF-a.16 CD40L
depression strongly correlates with IFN-c levels in
TB patients. In fact, a soluble agonist of CD40L
was enough to restore IFN-c production from
PBMCs isolated from TB patients, but not from
healthy tuberculin reactor controls, which in turn
conjures that defects in CD40L expression in TB
patients contribute to diminished levels of IFN-c.17

Both interleukin (IL)-12 and IFN-c productions
from human peripheral blood T cells are
regulated by mTOR and STAT3.18 Moreover, the
IFN-c-driven control of M. tuberculosis inside
infected macrophages requires both iNOS and
HIF-1a. Nitric oxide may regulate aerobic glycolysis
along with HIF-1a to control intracellular Mtb
replication.19 Similarly, in chronic Mtb infection,
circulating T cells may exhibit an exhausted
phenotype characterised by gradual loss of
secretion of IL-2 and effectors IFN-c and TNF-a.20

The blockade of markers of T-cell exhaustion TIM-
3 and PD-1 may restore the functions of TB-
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specific CD4+CXCR5+ T cells.21 One study describes
the presence of such exhausted T cells
overexpressing checkpoint marker PD-1 on TH1
cytokine-producing Mtb-specific CD4+ T cells in
peripheral blood of TB patients. These cells are
associated with poor prognosis, and blockade of
PD1/PD-L1 checkpoint (using anti-PD-L1
antibodies) can augment the IFN-c secretion but
not the proliferation of CD4+ T cells.22 By contrast,
these processes are suppressed in a susceptible
host that results in full-blown disease tuberculosis.
The strategies for survival are therefore lined up
as soon as Mycobacteria attach to the
macrophages. One of these strategies is to
intercept CD40 expression and function that
influences Mtb survival or elimination.

Mycobacterium attachment and
internalisation

Mycobacterium infection starts with its
attachment to the receptors on the macrophage
surface and its subsequent internalisation by
phagocytosis or receptor-mediated endocytosis
aided by opsonisation with serum complements23

or natural antibodies.24 Besides, the AM-expressed
mannose receptor and surfactant protein A (Sp-A)
receptor facilitate endocytosis through
recognition of lipoarabinomannan (LAM) and Sp-
A on Mycobacterium, respectively.25,26 The
scavenger receptors bind the mycobacterial cell
wall lipoteichoic acid to enhance the phagocytosis
of the bacteria.27 Besides these receptors, Toll-like
receptors (TLRs) are also implicated in the
internalisation of Mycobacteria. The mycobacterial
surface lipoglycoprotein MPT83 and LAM are
recognised by TLR2 and TLR4, respectively, to
enhance Mtb internalisation.28,29 Dectin-1 ligands
that are expressed by Mtb await their purification
and structural characterisation, as Mycobacteria
do not express b-1,3-glucans, the known Dectin-1
ligands. Different receptors on macrophages or
dendritic cells thus enhance Mtb internalisation
(Table 1; Figure 1) but exactly how and to what
extent these receptors modulate its subsequent
intracellular survival remains elusive.

Mycobacterial alteration of host microRNA

Although the mechanism of early Mycobacterium–
macrophage interaction influencing the
subsequent macrophage response is not worked
out, the pathogen internalisation is followed by

alterations in a huge number of microRNAs
(Table 2). In Mtb-infected macrophages, miR-23a,
miR-125a, miR-146a, miR-579, miR-708, miR-27a,
miR-30a, miR-129, miR-1178 and miR-1958
expressions were enhanced, whereas miR-20b and
miR-26a expressions were downregulated.30–52

miR23a modulates TLR2/MyD88/NF-jB signalling
to result in enhanced intracellular Mtb survival
and prevention of macrophage autophagy, as
miR-23a inhibitors attenuated Mtb survival but
enhanced autophagy.30 Mycobacterial surface
sulfoglycolipids act as competitive antagonists of
TLR2 and inhibit NF-jB activation to impair
cytokine production or costimulatory molecule
expression.31 Similarly, Mtb lipoproteins LprG, the
glycolipid phosphatidylinositol mannoside-6, and
the lipoglycan lipomannan bind TLR2 to induce
ERK-1/2-dependent TNF-a production in
macrophages.32 In Mtb-infected macrophages,
TLR4-enhanced miR-125a directly targets TRAF6
negatively regulating NF-jB to suppress cytokines,
attenuate immune response, and promote
mycobacterial survival.33,34 Apparently, miR-708
supported Mycobacterium survival and
inflammatory response.35 miR-579 downregulated
its mRNA targets – SIRT1 and PDK1 – to enhance
macrophage apoptosis and death36 in human
macrophages. miR-1178 overexpression enhanced
the intracellular growth of Mycobacteria but
attenuated the accumulation of IFN-c, IL-6, IL-1b
and TNF-a, while miR-1178 knockdown suppressed
the Mycobacteria survival and enhanced the
expression of these pro-inflammatory cytokines in
human macrophages.42 The TLR2/MyD88/NF-jB
signalling-induced miR-27b expression suppressed
the NF-jB-mediated induction of pro-
inflammatory factors but increased p53-
dependent production of reactive oxygen species
and bactericidal functions of macrophages.43 miR-
26b negatively regulated the NF-jB pathway by
directly targeting TGF-b-activated kinase-1 (TAK1),
resulting in inhibition of immune response, and
promotion of Mtb replication and gene
expression.44 miR-106b targeted the 30-UTR of
Cathepsin S resulting in its silencing and impaired
antigen processing by the Mtb-infected
macrophages.45 Similar regulations were observed
with miR-20b in tuberculosis patients and
M. tuberculosis-infected mice.46 During Mtb
infection, miR-26a facilitated arginase activity but
reduced iNOS activity,47 and iNOS expression was
also reduced by miR-146a by the inhibition of
TRAF6, p38MAPK and NF-jB.48 miR-26a directly
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targeted the transcription factor KLF4 to prevent
lysosomal trafficking of Mtb and to regulate Mtb
survival in macrophages.47 Enhanced miR-155
expression in Mtb-infected macrophages
suppressed the lipidation and autophagosome
formation in dendritic cells enhancing
mycobacterial survival.49 While studying a
network of 77 putative miRNAs in early Mtb-

infected macrophages, miR-155 was found to
exhibit dual roles in the survival of the Mtb-
infected macrophages and the Mtb-specific T cells
through SHIP-1/protein kinase B (Akt) pathway.50

On the one hand, miR-155 generated a favorable
niche for the pathogen, and on the other hand, it
enabled an effective adaptive immune
response.49–51 Similarly, Mtb-induced miR-33 is

Table 1. Receptors mediating the internalisation of Mycobacterium tuberculosis

No.

Receptors expressed

by host cells Ligand binding mechanism Implication

1. CD14 receptors The entry of nonopsonised tubercle bacilli into brain

microglia

Promoting TNF-a production

2. CR1 (CR1, CD35) Binding to complement fragments C3b/C4b deposited

on mycobacteria

Licensing entry inside macrophages

3. CR3 (CD11b, CD18) Opsonised Mycobacterium tuberculosis binds CR3 at its

iC3b binding domain; Nonopsonised Mycobacterium

tuberculosis uses its endogenous capsular

polysaccharides to interact with the b-glucan binding

site near the C terminus of CD11b

Uptake of complement opsonised bacterium and

activating the alternative complement pathway

4. CR4 (CD11c, CD18) Mycobacterium tuberculosis macrophage binding in

the absence of serum

Tyrosine phosphorylation of a major 60-kDa protein

in host cells (p60src)

5. DC-SIGN Binding with LAM Potentiate TLR-4-mediated IL-10 secretion by LPS-

stimulated MoDCs

6. Dectin-1 Binding with an unknown ligand on Mtb Promoting mycobacterial-induced IL-12p40

production by DC

7. Fcc receptors Immunoglobulin G (IgG)-mediated opsonisation of Mtb

bacilli

Redirecting intracellular trafficking of Mtb

containing vesicles with ferritin-loaded lysosomes

8. Fibronectin (Fn) The interaction may occur through the binding of

bacterial fibronectin-binding proteins (FnBPs) with

fibronectin

Dispensable for Mtb attachment and internalisation

9. Mannose Receptor

(CD206)

LAM mediated binding to MR1ManLAM inhibits

phagosome maturation

Synthesis of IL-10, IL-1R; inhibiting IL-12

production; blocking of phagosome maturation

10. Mincle Recognition of Mtb ligand glycolate trehalose

dimycolate

Mincle-mediated secretion of inflammatory

cytokines/chemokines and promotion of

granuloma

11. Scavenger receptor

class A (MARCO)

Interaction with bacterial cell wall components and LDL Mtb ‘tether’ cell wall glycolipid, trehalose 6,60-
dimycolate TDM/Cord factor to the macrophage

and to activate the TLR2 signalling pathway

12. Scavenger receptor

class B (SR-B1/

CD36)

ManLAM and LM; diglycerides lipoteichoic acid (LTA) Facilitating the availability of lipoproteins to TLR2

heterodimers

13. SIGNR3 LM and ManLAM; lipoprotein LpqH SIGNR3 can ‘collaborate’ with TLR2 for inducing

pro-inflammatory cytokine secretion

14. Surfactant protein A

(Sp-A)

Mtb binding to SP-A is dependent on calcium and

glycosylation of Sp-A

It enhances binding and phagocytosis of Mtb

15. Surfactant protein D

(Sp-D)

SP-D through its carbohydrate recognition domain

binds to the terminal mannose caps of LAM

Agglutination; Reducing phagocytic uptake;

increasing PL fusion

16. TLR2 Reported Mtb ligands for TLR2: LAM, LM, PIM, and

lipoglycan binding; lipoproteins LpqH and LprG;

Rv0577 and hsp70; PE_PGRS33

ERK1/2 phosphorylation and TNFa production;

macrophage apoptosis, consequently promoting

containment of Mtb

17. TLR4 Mtb 50S ribosomal protein Rv0652; H37Rv Inducing IRF3 to encourage IFN-b secretion

18. TLR9 (Intracellular) Undermethylated CG motifs (CpG) within bacterial

DNA

Inducing IL-12p40 and TNF-a production
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reported to modulate an array of responses in the
host ranging from autophagy, lysosomal function
and fatty acid oxidation to support Mtb
replication.52 These observations suggest that
during the early interaction with TLRs and other
receptors on host macrophages, Mtb triggers
intricate intracellular signalling pathways that
selectively regulate the miRNAs that
counteractively control Mtb fates in macrophage

(Figure 2). The miRNA manipulated
phagolysosomal compartment affects antigen
processing and presentation influencing the T-cell
responses. It remains to be investigated whether
the miRNAs show kinetic regulation of their
expression to match the requirements of the
immune system to mount a host-protective
immune response. Dissection of the miRNAs
specificity for intracellular signalling, accompanied

Figure 1. Receptors implicated in the internalisation of Mycobacterium sp. and intracellular sensors. (1) Pulmonary Mycobacterium infection

begins with the bacilli entering into the airway where airway epithelial cells (AEC) respond by synthesising antimicrobial peptides (AMPs) and

proteins, for example, Collectins Surfactant protein A (SP-A) and SP-D proteins. (2) These proteins opsonise the bacteria and facilitate phagocytic

uptake by alveolar macrophages through SP-A receptors. (3) Mycolic acid and lipoteichoic acid in the Mtb cell membrane play distinct roles in

receptor-mediated internalisation. Lipoteichoic acid binds to the MARCO (Class-A scavenger receptor) and affects cytokine production in a TLR2-

dependent manner. (4) The entry of Mycobacterium is also supported by an array of pattern recognition receptors (PRRs) including, Toll-Like

receptors (TLRs) TLR4-CD14, TLR2, Mannose receptors, immunoglobulin G (IgG)-coated Mycobacteria via FccRs and Scavenger receptors that bind

lipopolysaccharides of gram-negative bacteria and lipoteichoic acid of gram-positive bacteria. (5) The abundance of C3 and C3bi proteins in

broncho-alveolar lavage fluid marks the Mycobacterium for complement-mediated lysis through the alternative pathway. This binding also

enhances its phagocytic uptake via complement receptors expressed by alveolar APCs. (6) Serum-derived ligands facilitate pathogen uptake via

receptors CR1, CR3 and CR4 and translocated to membrane-bound phagosomes. CR3 through its interaction with Mannosyl-phosphatidyl-Myo-

inositol-based glycolipids (PIM) can also facilitate Mycobacterium uptake. (7) A battery of major virulence proteins from mycobacterial species are

reported. Lipoarabinomannan (LAM) and mannosylated LAM (ManLAM) are two major representatives. Others include HSP60/65, 38kDa protein/

Ag38, Mtb resuscitation-promoting factor (RpfB), ESAT-6, CFP-10, MPT83, PE-PGRS33, and these factors have different mechanisms of binding to

the host cells. (8) The C-type lectin and DC-Sign receptors (CD209) mediate Mtb entry via binding to PIM similarly. Other CLRs are Mincle and

Dectin-1 that may also mediate the internalisation process through unknown mechanisms. Intracellular Sensors: (9) During Mtb infection, the

lysosomal release of cathepsin B (CTS-B) plays an important role in NLRP3-inflammasome activation and subsequent rise in IL-1b production. This

pathway may also control pyroptosis. (10) TLR3 and TLR8 are activated by mycobacterial RNA while undermethylated CpG motifs from the Mtb

genome may activate TLR9 to elicit the cytokine biosynthesis. (11) Many other intracellular sensors of mycobacterial moieties have been reported.

These include RIG-1, MDA-5 and PKR that may contribute to the upregulation of Type-I IFNs. NOD2 activation may occur through GMDP which is

a metabolite of the Mtb cell wall. (12) Cytosolic DNA sensor AIM-2 mediates IL-1b and IL-18 production in response to Mtb. IFI16 is an innate

immune sensor for intracellular DNA that may lead to the activation of the cytosolic surveillance pathway (CSP).
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by kinetic regulation of each of those miRNAs,
will lead to the scientific rationale for a plausible
miRNA based anti-mycobacterial therapy.

miRNA regulation of CD40 expression in
M. tuberculosis-infected macrophages and
dendritic cells

An effective anti-mycobacterial therapy would
require appropriate T-cell response, which is
dependent on CD40-CD40L interactions. While
CD40 signals through many signalling pathways in
macrophages,53 signalling through CD40L
potentiates the T-cell antigen-specific receptor-
activated T-cell functions.54 It is reported that
several microRNAs regulate CD40 expression in
various cell types. For example, miR-145 down-
regulates CD40 expression specifically in vascular
smooth muscle cells55 and in human monocyte-
derived macrophages.56 TNF-a increases CD40
expression in a model of atherosclerosis but
reduce miR-145 expression.57 miR-146a targets
TRAF6 and IRAK1 to repress CD40 expression in
PBMCs obtained from patients with myasthenia
gravis58 and perhaps also in other cell types.

IFN-c and TNF-a – the cytokines that activate
macrophages to kill Mtb – are shown to enhance
CD40 expression. In Mtb-infected macrophages,
IFN-c that inhibits miR-21 enhances CD40
expression and anti-mycobacterial functions.59,60

Opposing IFN-c and TNF-a, transforming growth
factor-b (TGF-b) deactivates macrophages to
impair anti-mycobacterial functions and reduces
CD40 expression in macrophages.60 miR-21 thus
inhibits TNF-a-induced CD40 expression via the
SIRT1-NF-jB signalling pathway.61 IFN-c activates
STAT-1 homodimerisation to execute its effects.
Mtb upregulates expression of miR146a that
targets STAT1 to reduce CD40 expression.62 miR-
29a augments CD40 expression in bone marrow-
derived DCs.63 While miR-29a targeted IFN-c
mRNA reduces its expression, IFN-c reciprocally
inhibited miR-29a expression in T cells.64 In TB
patients, miR-16 is significantly elevated but miR-
155 is reduced.65 While TLR4 stimulation reduces
the level of miR-16 that negatively regulates the
CD40 expression,66 Helicobacter pylori infection
enhances the expression of miR-155 that
promotes CD40 and TNF-a expression.67 Thus,
Mtb infection modulates the expression of miR-
16, miR-21, miR-29a, miR-145, miR-146a and miR-
155, which in turn regulate CD40 expression
(Figure 3).T
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Transcription factors regulate CD40
expression

Besides microRNAs, other factors regulate CD40
expression in macrophages. NF-jB may function as
a central regulator of CD40 expression,68,69 perhaps
through TLR4-CD40 and TLR9-CD40 feed-forward

motifs as shown in the case of another intra-
macrophage pathogen, Leishmania major.70 The
mitogen-activated protein kinases (MAPKs) – JNK
and p38MAPK but not ERK – may activate NF-jB to
augment CD40 expression in both mouse and
human macrophages.71 LPS/TLR4-induced CD40
expression involves the endogenous production of

Figure 2. Regulatory miRNAs network that modulates the process of autophagy and promotes intracellular survival of Mycobacterium sp. (1) The

process of autophagy in Mtb-infected macrophages/APCs is shown. Mycobacterium modulates the miRNAs by either up- or downregulating the

expression of certain miRNAs that have an impact on autophagy and hence its intracellular survival. Many of these miRNAs do influence CD40

expression, CD40 signalling, and subsequent survival or elimination of Mycobacterium. However, the use of miRNAs as pathogenic biomarkers for

tuberculosis requires consideration of the Mycobacterium species and host cell type and genetics of the host. miRNA targeting using antagomiRs–

oligonucleotides for devising an anti-mycobacterial strategy seems feasible.
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the cytokine IFN-b. IFN-b induces not only STAT-1a-
dependent CD40 expression but also SOCS-1 that
inhibits cytokine signalling affecting CD40
expression in macrophages and microglia. IFN-b-
induced CD40 gene expression is thus self-limited
by IFN-b-induced SOCS-1 expression.72 Besides NF-
jB, IRF8 is another key transcription factor that
regulates CpG-promoted CD40 expression. TRAF6
and IRAK1 may also be targeted by miRNA-146a to
reduce CD40 expression in DCs.73 It is known that
the virulent Mtb strain H37Rv invades macrophages
quicker than the avirulent H37Ra but the avirulent
strain induces significantly higher nitric oxide and

hydrogen peroxide, IL-12, TNF-a and IFN-c
productions from the infected macrophages. It
remains to be investigated whether CD40-CD40L
interaction is a key factor in Mtb virulence74,75 and
vice versa.

CD40 expression in various circulating and
alveolar cells of TB patients

Most of the studies mentioning the roles of miRNAs
concerning the modulation of CD40 levels are
either performed in vitro or using mouse models.
Through an exhaustive analysis, Fu et al.76 has

Figure 3. Mtb infection modulates the expression of miR-16, miR-21, miR-29a, miR-145, miR-146a and miR-155 which in turn regulate CD40

expression.
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found a huge number of microRNAs in the serum
of active pulmonary tuberculosis patients, but it is
yet to be determined whether these circulating
miRNAs have targets that are involved in CD40
pathways that may produce specific changes in the
effector/memory T cells or APCs. However, this
proposition also requires experimental validation.
We have summarised the roles of such miRNAs
(Table 2) in the modulation of CD40-signalling
during Mtb infection. In general, AMs rely less on
glycolysis but more on OXPHOS for meeting their
energy requirements under steady-state
conditions.77 AMs exhibit low-efficiency antigen
presentation and very low-level expression of
costimulatory molecules78 including CD40.
However, infection or other stimulation could
enhance the CD40 level among this lung residential
APC population.79 Patients suffering from hyper-
IgM syndrome, caused by the mutations in CD40L
and thereby defects in CD40 signalling, may have
increased susceptibility to intracellular pathogens80

including Mycobacterium.81

Although the AMs were traditionally believed
to be the only host cell for Mtb proliferation,
recent findings support that the pathogen could
thrive in many different phagocytes within the
lung microenvironment. Kinetic studies further
defend the concept that the initial distribution of
the pathogen remains associated with AMs, but
during the chronic phase of infection, the
disseminating bacilli and plausibly latent bacteria
may spread among other phagocytes including
interstitial macrophages perpetuating the
infection. This observation supports that diverse
macrophage populations in the lungs rather serve
as the Mtb growth permissive environment in a
temporal manner.82

Macrophage CD40 expression can be enhanced
by IFN-c through activation of the transcription
factors STAT-1 and NF-jB via an autocrine positive
feedback loop including IFN-c-induced TNF-a. IFN-
c-induced CD40 expression is suppressed by
antilipidaemic agent simvastatin that inhibits 3-
hydroxy-3-methylglutaryl (HMG)-CoA reductase –
an enzyme required for the synthesis of
isoprenoids and STAT-1 expression. The inhibition
of the prenylation of Rho family proteins a family
of small GTPases inhibits CD40 and STAT-1
expression. As a consequence, STAT-1a and RNA
Polymerase II recruitment to the CD40 promoter
are diminished and H3 and H4 histone acetylation
is reduced.83 Functional analysis of CD40 promoter
in microglial cells indicates that STAT-1 binds

to two IFN-c-activated sequence elements. The
transcription factors PU.1 and/or Spi-B bind to the
Ets elements.84,85 IL-4-activated transcription
factor STAT6 binds to these two proximal and
distal IFN-c-activated sequences and represses
CD40 expression.86 Thus, several transcription
factors act in tandem to regulate CD40 gene
expression in cells of the macrophage lineage
(Figure 4).

The induction of CD40-CD40L expression in B
cells, DCs and endothelial cells can also be of
therapeutic importance. As CD40 engagement on
the DCs membrane directly augments the cytokine
production, cross-antigen presentation and
maturation, CD40 regulates DCs activation and
differentiation. Similarly, in the case of B cells,
CD40 signalling promotes cell survival, germinal
centre formation, Ig class switching and somatic
hypermutation of the Ig to enhance Ag affinity
and formation of memory and plasma B cells.87

The involvement of the CD40-CD40L pathway in
Mtb infection is paradoxical, although targeting
this pathway provides long-term clinical benefits
in many diseases including organ transplantation88

and autoimmunity.89 Similar beneficial effects of
CD40-CD40L expression/signalling may constitute a
futuristic anti-TB therapy.

Altered antigen processing in Mtb-infected
macrophages or dendritic cells

Mtb antigen processing is preceded by its uptake
into the phagosomal vesicles. One way to survive
within the host cells is to stall further maturation
of the phagosomes and thereby antigen
processing, too.90 Phagosomal maturation involves
fusion with lysosomes (the vesicular organelle rich
in hydrolases, proteases, lipases and other
enzymes that are required for degradation of the
pathogen and the pathogen-derived antigens) so
that the resulting peptides can be complexed with
MHC class-I or MHC class-II molecules for
presentation to T cells as the phagolysosomal
vesicles are acidified. Mtb inhibits this
phagosomal maturation to ensure persistence in
the immature phagosomes (Figure 5).

Mtb-secreted EspB [Early Secretory Antigenic
Target 6 (ESAT-6) system 1 (ESX-1) secretion-
associated protein B)] and EspA suppress antigen-
processing functions of the Mtb-infected
macrophages91 reduce IFN-cRI expression and
inhibit IFN-c-activated STAT1 phosphorylation.92,93

Avirulent Mtb is perhaps deficient in this system
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and may, therefore, be unable to survive in
macrophages. Molecular analyses show that
LRRK2 (leucine-rich repeat kinase 2) negatively
regulates phagosome maturation via the
recruitment of phosphatidylinositol-3 kinase (PI3K)
complex and Rubicon to the phagosome in
macrophages,94 as LRRK2 inhibition and LRRK2-
deficiency enhance phagosome maturation and
significantly reduce Mtb burden in macrophages94

but lysophosphatidylcholine promotes phagosome
maturation via cAMP-induced activation of the
PKA-PI3K-p38MAPK pathway and controls Mtb
infection through Ca2+ and ROS-dependent
pathways.95 As CD40 also induces the host-
protective pathway of PI3K and p38MAPK in
macrophages, CD40 stimulation in Mtb-infected
macrophages would also reduce bacterial burden.
CD40 appears to be a likely target of the bacteria,

Figure 4. Several transcription factors act in tandem to regulate CD40 gene expression in cells of the macrophage lineage.
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Figure 5. Pathway of phagosome biogenesis, maturation, and phagolysosome fusion for efficient clearance of Mtb. Ploys of immunoevasion via

Mtb virulence factors are also shown. (1) Mycobacterium deploys several factors that subvert the phagosome biogenesis, maturation and

acidification steps that follow its internalisation. Pathogenic Mycobacteria reside within compartments devoid of lysosomal contents because of

blocking of Ca2+ fluxes and receive nutrients through modulation of Rab-dependent vesicular trafficking. LAM and PIM drive these processes. (2)

Mycobacterial phagosomes (Bottom) through various proteins counter the independent stress factors such as reactive oxygen species (ROS) and

reactive nitrogen species (RNS); however, immunological activation with TNFa or IFN-c results in the maturation of phagosomes by the

maturation marker expression and lysosomal fusion (Their distinct markers and associated proteins are represented with Grey Font). (3) LAM

inhibits Ca2+ influx and PI3P-dependent delivery of lysosomal components (V-ATPase and Cathepsin) from the Trans-Golgi network (TGN) to the

phagosome. (4) Mycobacterium, perhaps through secretory acid phosphatase (SapM), targets small GTPases – Rabs, Rhos or ARFs – to affect

Coronin-1/TACO-dependent actin cytoskeleton rearrangements and phagosome maturation. (5) The mycobacterial protein tyrosine phosphatase

(PtpA) inhibits V-ATPase and phagosomal acidification. (6) The nucleotide diphosphate kinase (NDK-1) of mycobacterium may inactivate small

GTPase Rac-1 and attenuate NADPH oxidase-mediated host protection. (7) Lprl, a mycobacterial Lipoprotein, inactivates the lysozyme. (8) The

Type-I NADH dehydrogenase and Eis protein inhibit the NADPH oxidase activity limiting the ROS availability. (9) Mycobacterium effectively

attenuates NO production by interfering with EBP50 and iNOS recruitment. (10) The mammalian cell entry protein-Mce4 scavenges cholesterol

from host membranes and potentiates lipid body accumulation and mycobacterial survival. (11) Early secretory antigenic target-6 (ESAT-6), a

major virulence factor that controls NF-jB and interferon-regulatory factors, and CFP-10 engineer vacuolar escape and intracellular survival of

Mycobacterium. (12) Mtb hitchhikes intracellular Fe2+ stores a major siderophore mediating this process is Carboxymycobactin. (13) ESX-3

secretion system (composed of EsxG and EsxH) leads to impairment of ESCRT-mediated endomembrane repair. (14) ESX-1 mediates the process

of phagosomal to cytosolic translocation. (15) A potent phagosomal maturation and intracellular degradation of Mtb by the acquisition of

indicated markers (Grey fonts). Results in potentiation of APC-T-cell antigenic presentation pathway and confers T cell-based protection against

the bacterium. (16) In contrast, the association between Mtb virulence factors (Factors that are associated with Mtb are shown in pink colour)

and potent immunosuppression, steps of phagosomal, maturation, acidification, neutralisation/detoxification of redox stress and inhibition of

autophagic processes together induce permissive niches for Mtb replication and dissemination.
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as CD40 expression is reduced in Mtb-infected
macrophages.

Virulent Mtb causes marked disorganisation of
actin filaments and F-actin fragmentation in the
cytoplasm of infected macrophages, which
contributes to delayed phagolysosomal fusion.96

Mycobacterial polyunsaturated lipids bind ATP and
its receptor P2X7 regulating actin
polymerisation.97 cAMP-dependent inhibition
of actin polymerisation in phagosomes containing
virulent Mtb prevents phagolysosomal fusion
supporting bacterial growth98 (Figure 5). Hence,
the ability of the lipid/ATP/P2X7 axis to
destabilise actin polymerisation and consequently
delay phagosome maturation deserves further
investigation.

The intravesicular pH in the Mtb-inhabited
phagosomes is between 6.3 and 6.0, whereas the
lysosomal lytic enzymes require a pH lower than
3.0 (Figure 5). Even if these LAMP-1-positive
phagosomes fuse with lysosomes, the vacuolar-
ATPase that is required for pumping protons into
the vesicular lumen is extruded.99 The impaired
acidification associated with vacuolar-ATPase
exclusion has negative effects on antigen
processing and presentation, as vacuolar-ATPase-
dependent phagosomal acidification is necessary
for generating processed Mtb antigens.100 The
initial Mtb–macrophage interaction dictates the
state of phagosomal maturation, as TLR2 blockade,
but not CR3 blockade, promotes phagosomal
acidification and bacterial death101 (Figure 5).

CD40 AT THE INTERFACE OF
MACROPHAGE AND T CELLS

The characteristic caseous lesions in the lung are
the sequel of a strong granulomatous response
mediated by activated T cells (Figure 6). The T cells
are activated by at least two signals: (1) T-cell
receptor signal triggered by the recognition of Mtb
antigens presented by the AMs or dendritic cells in
the context of MHC-II or MHC-I molecules and (2)
the costimulatory signal from CD28 that interacts
with the CD80 and CD86 expressed on the antigen-
presenting AMs or dendritic cells. During the
macrophage–T cell interaction, the T cell-expressed
CD40-ligand (CD40L) binds to the macrophage-
expressed CD40 and triggers CD40 signals in the
macrophage. CD40 is known to signal through a
cascade of kinases to induce NF-jB-dependent IL-12
expression that leads to TH1 cell differentiation
and host protection. Additionally, the same CD40

can also signal through a different pathway to
generate IL-10 and TGF-b that aggravate the
disease by deactivation of macrophages and
differentiation of T-reg cells (Figure 6). The
antigen-presenting cell-secreted IL-12 works on the
T cells through IL-12R to trigger the STAT4-
dependent induction of IFN-c. IFN-c activates the
Mycobacterium-infected macrophages to elicit
STAT-1-dependent iNOS-catalysed nitric oxide-
mediated mycobactericidal functions of
macrophages. IL-4, IL-10 and TGF-b antagonise
these host-protective functions. Therefore, it is
possible that these two counteractive effector
functions of CD40-CD40L interaction determine the
outcome of Mtb infection.

Vaccine-based protection to Mtb heavily relies
on the induction of IFN-c-producing CD4+ T cells.
IL-17A and IFN-c are two important cornerstones
for vaccine-induced protection against
experimental tuberculosis. Through the adoptive
transfer of exogenously primed activated DCs into
the lungs of vaccinated mice at the time of Mtb
infection may overcome the lag required for the
generation of vaccine-induced memory CD4+ T
cells. This effect can be accelerated by the
induction of endogenous CD103+ DC and
activation of the CD40 pathway through the TLR
ligand amph-CpG, coupled with CD40 agonist
FGK4.5.102 Additionally, out of numerous
receptor–ligand interactions occurring at the APC-
T cell synapses, the CD40-CD154 interaction is vital
for the optimal activation of CD4+ T cells. In the
case of Mtb-infected DCs, their interaction with T
cells is required for inducing protective IL-17
response. Blocking the CD40-CD40L interaction
with the anti-CD40L antibody MR1 attenuates the
IL-17 response to Mtb-infected DCs despite
stimulation with CD40LT.103 This effect is also
independent of the low Mtb-antigenic
concentration during the initial phase of infection
as observed by others.104 Therefore, CD40-
mediated costimulation may polarise TH17 cells
independent of the antigenic loads in airway
tissue, which may perhaps be a crucial event in
restricting early replication of Mtb.103 These
protective effects can also be augmented by
signals that are dependent on PRRs as another
study advocates that a latency associated protein
resuscitation-promoting factor (Rpf) E can induce
TLR4-dependent DC maturation and promotes
TH1/TH17 type immunity in vivo.105 Our group
showed that TLR4 and CD40 can modulate each
other’s expression in the experimental model of
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Figure 6. CD40 signals regulate the effector T-cell responses that in turn control the growth of Mtb, balancing granuloma pathogenesis and

subsequent dissemination of the bacilli in the airway. (1) The advent of the tuberculosis disease occurs via confrontation of Mtb bacilli and the

alveolar macrophages. The infection initiates with receptor-mediated internalisation and triggers a cascade of events that govern the subsequent

fates of the pathogen both intracellular and extracellular. (2) Infected macrophages may recruit other cell types such as CD4+ T cells, monocytes,

neutrophils, B cells and DCs. The granulomatous niche can occur as safe houses for reinitiating latent TB infection. (3) However, incapacitated

immune responses can lead to the formation of necrotic granulomas indicative of chronic or latent TB infection. These type of granuloma are

poorly vascularised and calcified to the core with the characteristic caseous centre. An abundance of foam cells with peripheral fibrotic cuffs

abstaining T and B cells can also be marked histologically. Altogether, caseous granulomas can harbour drug-tolerant Mtb. (4) Nonetheless, the

Mtb containment strategy of the host can turn on radically upon itself when necrotic granulomas are formed. A strong TH1 cell response may

circumvent this critical transition into which receptors like CD40 may have previously unexplored roles. (5) Within the draining/thoracic lymph

nodes, the T cells are primed slowly at about 12–20 Days post-Mtb infection, as indicated in animal models. (6) CD40-CD40L crosstalk between

T cells, B cells and DCs may promote signals to DCs to induce IL-12 secretion resulting in TH1 cell differentiation and IFN-c-mediated anti-

mycobacterial effects. (7) CD40 is known to signal through a cascade of kinases to generate NF-jB-dependent IL-12 expression that leads to host

protection by TH1 cells. (8) On the contrary, the same CD40 can also signal through a different pathway to generate IL-10 and TGF-b that

aggravate the disease by deactivation of macrophages and differentiation of T-reg cells. Therefore, more information is required to dissect the

underlying roles of CD40 in mediating the pathogenesis of Mtb granulomatous response.
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cutaneous leishmaniasis.70 Possibly, TLR4-CD40
cross-regulation may be controlling the protective
immunity against Mtb infection.

Presentation of the processed Mycobacterial
antigens to T cells

The antigen presentation to T cells involves
presenting an antigenic peptide in a complex with
either MHC class I or MHC class II for recognition
by the antigen-specific T-cell receptor (Figure 7).
Many of the mycobacterial ligands are elicitors of
the cytosolic surveillance pathway (CSP). These
pathways are activated by mycobacterial ESX-1
secretion system-mediated extrusion of DNA/RNA
allowing activation of host mobile intracellular
pathogen sensors including RIG-1, MDA-5, c-GAS/
STING/TBK-1, PKR, NLRP3, AIM-2 and others
(Figures 1 and 7). The activation of CSP-pathway
relates to robust Type-I IFN signatures in response
to this pathogen.106 Although Type-I IFNs may
defend against viruses, their induction by bacteria
is detrimental to the host.107

The number of antigen-loaded MHC molecules
and the accessibility of the T-cell receptor to the
presented peptide antigen decide the efficacy of
this antigen presentation. Mtb-infected
macrophages express significantly fewer MHC-I
and MHC-II molecules on the surface,108,109 the T-
cell receptors’ accessibility to the peptide–MHC
complex remains to be investigated. TLR2-Mtb
lipoprotein interaction inhibits IFN-c-induced
MHC-II expression and processing of soluble
antigens in a Class II transactivator (CIITA) IV-
dependent and MAPK-dependent manner.110

Repressed MHC-II expression and enhanced TLR2-
driven macrophage apoptosis decrease antigen
recognition by CD4+ T cells. IL-10 plays a
significant role in this process.111

Expression of costimulatory molecules on
Mycobacterium-infected macrophages

The Mtb-infected BALB/c-derived macrophages
have reduced CD80, but enhanced ICAM-1,
expression112 perhaps mediated by a 10kDa
antigen from Mtb.113 Consistent with the
enhanced IL-10 production by the Mtb-infected
macrophages, IL-10 is shown to downregulate the
expression of costimulatory molecules on
macrophages.114 As T-cell activation through T-cell
antigen receptor in the absence of the
costimulatory signal results in T-cell anergy, the

antigen presentation by significantly low CD80-
expressing Mtb-infected macrophages leads to T-
cell anergy115 that has been attributed to IL-10
from the antigen-presenting macrophages.116

Besides anergy, T-cell response is further reduced
by higher levels of PD-L1 expression on Mtb-
infected macrophages and PD-1 on T cells.117

CD80-mediated T-cell costimulation is thus
balanced by the negative effects of PD1-PD-L1
interaction. However, CD40-CD40L interaction can
significantly influence this balance in T-cell
response.

CD40-CD40L as a crucial costimulatory
receptor–ligand pair in tuberculosis

CD40 signalling, albeit uncharacterised in Mtb-
infected macrophages, appears to play important
roles in eliciting T-cell responses. CD40-CD40L
interaction is shown to enhance the IL-12- and IL-
18-dependent, CREB- and c-Jun-promoted IFN-c
production by Mtb-responsive CD8+ T cells that
also execute perforin- and granulysin-mediated
cytotoxicity on Mtb-infected macrophages.7 CD40-
deficient mice show aggravated Mtb infection
because of inadequate IL-12 and IFN-c responses
as compared to the wild-type control.118 An
agonistic anti-CD40 antibody elicited strong CD40
signalling in both uninfected and BCG-infected
DCs resulting in increased expression of MHC-II
and costimulatory molecules, mRNA production
related to pro-inflammatory cytokines and IL-
12.119 CD40-deficient Mtb-infected, but not the
uninfected, DCs failed to elicit antigen-specific
TH17 cells.120 CD40L treatment of human
monocytes resulted in anti-mycobacterial
activities.119 By contrast, compared with the wild-
type mice, CD40L-deficient mice remain resistant
to Mtb infection, although these mice had fewer
granulomas and fewer CD4+ T cells in
granulomas.121 While these observations indicate
that CD40 plays a significant role in anti-
tubercular T cell-mediated host protection, some
observations suggest otherwise leading to a
paradox.

The paradox stems from the following findings.
Firstly, the direct CD40 engagement on chronically
Mtb-infected macrophages failed to elicit
mycobactericidal activities120 possibly because of
complete subversion or switching to probacterial
CD40 signalling. In fact, such observations were
reported with L. major infection of BALB/c-derived
macrophages.122 Yet, whether similar possibilities
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Figure 7. Antigen presentation, T-cell responses and activation of the cytosolic surveillance pathway (CSP) in the case of Mycobacterial infection

of APCs. (1) Mycobacterial antigens can access both cytosolic and vacuolar antigen-processing pathways and are presented by the class-II MHC

pathway inducing a potent CD4 response. (2) Presentation in the context of MHC-I (whereby CD8+ T cell is activated) and CD1 (lipidic antigen) is

also reported. (3) Novel phospholigands like bromohydrin pyrophosphate (BrHPP), Mycobacterial antigens (Isopentenyl Pyrophosphate, IPP and

non-prenyl phosphoantigen 3-formyl-1-butyl-pyrophosphate) are potent elicitors of Vc9vd2+ T cells. (4) Mycobacterium activates cytosolic sensor

c-GAS, the STING/TBK1/IRF3 pathway through c-GAMP and induces Type I IFN-mediated innate immune responses. (5) Cyclic dinucleotides

binding on STING induces its migration from the endoplasmic reticulum (ER) to form perinuclear punctate structures. This intracellular trafficking

is mediated by iRhom2. (6) TBK-1 phosphorylates CTD-of STING and that results in IRF-3 recruitment and phosphorylation. (7) The IRF-3

homodimers translocate to the nucleus to activate the gene transcription of type-I IFNs. (8) TRIM30a, which is a negative-feedback regulator of

STING via K48-linked polyubiquitination, marks it for proteasomal degradation. (9) Additionally, Mycobacterium actively employs SecA2 and ESX-

1 secretion systems for releasing RNA into host cells and elicits IFN-b production through STING and IRF3 activation. Mycobacterial RNA activates

the RIG-1-MAVS-TBK1-IRF-7 pathway (not shown).
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exist in Mtb infection remains unexplored.
Secondly, CD40-deficient mice succumbed to
aerosolic low-dose Mtb infection because of
deficient IL-12 production leading to impaired
priming of IFN-c-secreting T-cell responses but the
CD40L-deficient mice remained resistant to the
same infection.121 These paradoxical results in
CD40-deficient and CD40L-deficient mice implied
the presence of an alternative ligand for CD40.
Indeed, mycobacterial Hsp70 has been proposed
to be an alternative ligand for CD40, as Hsp70
was coimmunoprecipitated with CD40 from Mtb-
infected monocytic cell lines.123 However, as
Hsp70 is conserved from bacteria through
humans, it remains to be seen whether mouse or
human mono-mac cells expressed Hsp70 evokes
intracellular signalling similar to that triggered by
CD40L and elicits protection against the Mtb
infection. Thirdly, CD40L-deficient mice developed
anti-mycobacterial T-cell responses to the levels
observed in the wild-type mice.

The data generated using the CD40-deficient or
CD40L-deficient mice, or the mono-mac cells
thereof, thus present a conundrum about the role of
CD40 in Mtb infection. Recent mass-spectrometry
based studies have identified nitric oxide-induced
alterations in the expression of 1713 proteins inMtb-
infected macrophage-like cell line.124 Nitric oxide
can be generated in situ by the inducible nitric oxide
synthetase, which can be induced by CD40
signalling.125 It has also been shown that in response
to such oxidative stresses, Mtb alters the
phosphorylation of serine, threonine and tyrosine
kinases.126 It is possible that CD40-induced IL-10
exerts pro-mycobacterial effects, as reported for
Leishmania infection in macrophages.125 This would
fit the conundrum, as CD40 was shown to induce IL-
12 and IL-12-induced IFN-c was shown to activate
macrophages to trigger anti-mycobacterial effects
such as by NO and reactive oxygen species
productions.127 Therefore, the same receptor CD40
signals in a contrasting manner when macrophages
are chronically infected, or not, withM. tuberculosis
and trigger counteractive effector functions.

CONCLUDING REMARKS

It is clear from the above account that
Mycobacterium redirects or suppresses the
immune response by intercepting the following
processes: (1) the processing of the mycobacterial
antigens by the antigen-presenting cells such as
macrophages and DCs, (2) presentation of the

processed Mycobacteria-derived antigens, (3)
responsiveness of the T cells to the antigen-
derived first signal and the ancillary signals from
the costimulatory molecules and cytokines and (4)
response of the Mycobacterium-infected
macrophages to different cytokines. The
conclusions from the analyses are expected to
reveal the regulation of macrophage functions by
CD40-CD40L interactions, negative regulators and
dynamicity in the infection process. Such
understanding will brace up novel aspects of
macrophage–Mycobacterium interactions
including the mechanisms of pathogenesis and
possible immunotherapeutic targets.
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