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NADPH homeostasis in cancer: functions, mechanisms
and therapeutic implications
Huai-Qiang Ju 1,2, Jin-Fei Lin1, Tian Tian1, Dan Xie 1 and Rui-Hua Xu 1,2

Nicotinamide adenine dinucleotide phosphate (NADPH) is an essential electron donor in all organisms, and provides the reducing
power for anabolic reactions and redox balance. NADPH homeostasis is regulated by varied signaling pathways and several
metabolic enzymes that undergo adaptive alteration in cancer cells. The metabolic reprogramming of NADPH renders cancer cells
both highly dependent on this metabolic network for antioxidant capacity and more susceptible to oxidative stress. Modulating the
unique NADPH homeostasis of cancer cells might be an effective strategy to eliminate these cells. In this review, we summarize the
current existing literatures on NADPH homeostasis, including its biological functions, regulatory mechanisms and the
corresponding therapeutic interventions in human cancers, providing insights into therapeutic implications of targeting NADPH
metabolism and the associated mechanism for cancer therapy.
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BACKGROUND
In cancer cells, the appropriate levels of intracellular reactive
oxygen species (ROS) are essential for signal transduction and
cellular processes.1,2 However, the overproduction of ROS can
induce cytotoxicity and lead to DNA damage and cell apoptosis.3

To prevent excessive oxidative stress and maintain favorable
redox homeostasis, tumor cells have evolved a complex antiox-
idant defense system that strategically adjusts multiple antiox-
idant enzymes such as catalase, glutathione reductase, and
antioxidant molecules. The latter are dependent on the generation
of nicotinamide adenine dinucleotide phosphate (NADPH), which
is used to maintain reduced glutathione (GSH) and thioredoxin
(TRX).4–6 NADPH is also well known as an essential electron donor
and an indispensable cofactor that is used for transferring and
reserving reduction potential for numerous anabolic reactions.7

NADP(H) is predominantly bound to intracellular proteins with
different affinities.8 The intracellular content of NADP(H) differs
markedly among tissues and cell types. For instance, the total
NADP(H) is about 420 nmol/g wet weight in rat liver and 59% of
total NADP(H) is found in mitochondria, and 30 nmol/g wet weight
in skeletal muscle,5,8 and the NADPH concentration in the cytosol
is 3.1 ± 0.3 and 37 ± 2 µM in the mitochondrial matrix in HeLa
cells.9 In addition, the redox potentials of the mitochondrial and
cytosolic NADP(H) systems are the same around—400 mV in the
liver.8

A growing body of evidence has shown that regeneration and
maintenance of the cellular NADP(H) content is strongly
implicated in a variety of pathological conditions, such as
diabetes, cardiovascular disease, neurodegenerative diseases,
aging,4,5 especially in tumorigenesis and cancer progression.10

Compared with non-tumor cells, tumor cells usually maintain high
levels of NADPH, not only to power redox defense but also to use

for biosynthetic reactions to sustain their rapid growth.5,11 This
realization has prompted molecular studies of NADPH metabolism
and its exploitation for the development of anticancer agents.
Recent advances have revealed that therapeutic modulation
based on NADPH metabolism has been widely viewed as a novel
and effective anticancer strategy.
In this review, we summarize the current existing literatures on

NADPH metabolism, including its biological functions, regulatory
mechanisms, and the corresponding therapeutic interventions
directly or indirectly targeting NADPH metabolism in cancer.

NADPH-DEPENDENT BIOLOGICAL FUNCTIONS IN CANCER
Both NAD(H) and NADP(H) are cofactors that are used for
transferring and reserving reduction potential.7,9 Although the
structures are closely related, NAD(H) and NADP(H) are recognized
by unique compartmentalized enzymes and exert different
functions. NAD(H) is mainly involved in catabolic reactions,5,12,13

whereas NADP(H) is primarily involved in cellular antioxidative
effects and anabolic reactions as shown in Fig. 1.

Antioxidative effects
In cancer cells, overcoming oxidative stress is a critical step for
tumor progression. NADPH plays a key role in cellular antioxida-
tion systems by providing reducing equivalents to generate
reduced forms of antioxidant molecules, which are highly
corrected with cancer cell biological behaviors.14 On the one
hand, GSH reductase converts GSSG to GSH using NADPH as an
important cofactor, then GSH acts as a cosubstrate for GSH
peroxidase (GPX) that reduces hydrogen peroxide (H2O2) and
other peroxides to H2O or alcohol to deactivate ROS.15,16 On the
other hand, TRX reductase (TRXR) utilizes NADPH as an electron
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donor to maintain the reduced form of TRX, which contributes to
scavenge H2O2 and reduce ribonucleotide reductase (RNR) for
DNA synthesis.17,18 In addition, in some cell types, NADPH binds to
the important H2O2-disposing enzyme: catalase, and reactivates it
when it has been inactivated by H2O2.

19

Reductive synthesis
NADPH is also a crucial electron source for several reductive
synthesis reactions, including fatty acids, amino acids, nucleotides,
and steroids synthesis to sustain rapid tumor cell growth.20

Primarily, NADPH provides reducing equivalents for fatty acid
synthase (FASN), the main rate-limiting enzyme, to synthesize fatty
acids with acetyl-CoA serving as a primer and malonyl-CoA as a
two-carbon donor,21,22 and provides the needed electrons for
iron–sulfur (Fe/S) protein assembly that participate in non-
essential amino acid biosynthesis and lipoic acid synthesis, tRNA
modification, DNA replication and repair, and telomere main-
tenance.23 NADPH is also needed for dihydrofolate reductase
(DHFR) enzyme to catalyze the reduction of dihydrofolate to
tetrahydrofolate (THF) in folate metabolism, which is required for
de novo biosynthesis of thymidylate, purines, methionine, and
some amino acids.24 Besides, NADPH acts as the reducing reagent
for 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGCR),
the rate-limiting enzyme of the mevalonate pathway, which leads
to the synthesis of cholesterol and nonsterol isoprenoids.25

NADPH also acts as a cosubstrate for dihydropyrimidine dehy-
drogenase (DPYD), which catalyzes the reduction of uracil and
thymine to 5,6-dihydrouracil and 5,6-dihydrothymine, respec-
tively.26 In addition, the activity of the cytochrome P450 reductase
(POR) also requires NADPH, which has a major role in the
metabolism of drugs, xenobiotics, and steroid hormones.27

Free radical generation
In addition, NADPH is also responsible for the generation of free
radicals by NADPH oxidases (NOX) as a substrate. NOXs (NOX1–5
and dual oxidases (DUOX) 1 and 2) catalyze the superoxide anions
or H2O2 from NADPH and oxygen.28–30 NOX-mediated ROS
broadly and specifically regulate various redox-sensitive signaling
pathways involved in cancer progression via stimulating

oncogenes, such as Src and Ras, and inactivating tumor
suppressor proteins, such as TP53 and PTEN.31

MOLECULAR MECHANISMS OF NADPH HOMEOSTASIS IN
CANCER
Understanding NADPH production and consumption routes is
essential to a global understanding of cancer metabolism. As
shown in Fig. 2, the NADPH homeostasis is mainly regulated by
several metabolic pathways and enzymes including NAD kinase
(NADK), the pentose phosphate pathway (PPP), the folate-
mediated one-carbon metabolism, malic enzymes (ME), the
nicotinamide nucleotide transhydrogenase (NNT), cytosolic or
mitochondrial NADP-dependent isocitrate dehydrogenase (IDH1
and IDH2), the glutamine metabolism, and the fatty acid oxidation
(FAO). However, for the general NADPH generation in cells, the
relative contribution of these pathways and enzymes to NADPH
production remains elusive. Recent study show that cellular
NADPH could be largely generated by PPP, the folate-mediated
one-carbon metabolism and ME in cancer and proliferation
cells.32,33 Also, mounting evidence suggests that these different
processes and enzymes have functional connections for NADPH
homeostasis in cancer. For instance, FAO accelerates the TCA cycle
to produce citrate, which is exported to the cytosol to engage in
NADPH production through ME1 and IDH1.34 Here we review
current knowledge of the underlying mechanisms of NADPH
homeostasis following its de novo synthesis, relative contribution
of related enzymes and pathways in cancer.

NAD kinase
NADPH de novo synthesis is catalyzed by NADKs, which catalyze
the phosphorylation of NAD+ to form NADP+. Subsequently, the
dehydrogenases/reductases in various metabolic pathways con-
vert NADP+ into NADPH.10,12 NADKs are found in almost all
human organs except skeletal muscle, and localized in both
cytosol and mitochondria. Compared to cytosolic NADK (cNADK),
mitochondrial NADK (mNADK) has a distinctive feature that it can
directly phosphorylate nicotinamide adenine dinucleotide (NADH)
to generate NADPH to alleviate oxidative stress in mitochondria.35

Fig. 1 NADPH-dependent biological functions in cancer. There are three principal ways in which NADPH is used. First, NADPH is an essential
cofactor of glutathione reductase (GR) and TRXR in GSH and TRX-peroxiredoxin (PRX) system, respectively, and reactivates catalase (CAT) to
deactivate ROS for antioxidation; Second, NADPH is a crucial electron source for DHFR, Fe/S, POR, FANS, HMGCR, DPYD contributing to several
reductive synthesis reactions, such as FAS, non-essential amino acids, nucleotides, and steroids synthesis; Third, NADPH is a substrate for NOXs
to generate ROS
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The Cancer Genome Atlas (TCGA) database indicates both
cNADK overexpression and the presence of several cNADK
mutants in multiple tumor types.10 Notably, a novel cNADK
mutant, NADK-I90F, is found in pancreatic ductal adenocarcinoma
cancer (PDAC) patients. CNADK-I90F has a lower Km and higher
Vmax for NAD+ compared to wild-type cNADK, which indicates
increased enzyme activity. Consistently, compared with cNADK
wild-type cells, cells expressing cNADK-I90F have elevated NADPH
levels and reduced ROS levels.36,37 In addition, in diffuse large B-
cell lymphoma (DLBCL) and colon cancer, silencing cNADK with
shRNA impairs the pool of NADPH and suppresses cancer cell
growth.38 In terms of NADKs activities, cNADK phosphorylated at
S44, S46, and S48, which may be mediated by the phosphoinosi-
tide 3-kinase (PI3K)–Akt signaling, has enhanced activity in breast
cancer and lung cancer cells, thereby increasing NADPH produc-
tion.39 Based on its recent discovery, the relevant role of mNADK
in human cancers still need to be clarified, but the wild-type and
mutant cNADK are potential clinical targets for cancer therapy.

Pentose phosphate pathway
The PPP diverges at the first step of glycolysis, which serves as the
largest contributor of cytosolic NADPH and NADPH generation
undergoes three irreversible reactions in the PPP oxidative
branch.40–42 Studies have proved that NADPH production is
dramatically increased by enhancing the flux of glucose into the
PPP oxidative branch in various cancers.43,44 Glucose-6-phosphate
dehydrogenase (G6PD) that exists as either an active dimer or an

inactive monomer dehydrogenates G6P to yield 6-
phosphogluconolactone (6-PGL) and NADPH in the first reaction.
Then, 6-phosphogluconate dehydrogenase (PGD) that often
functions as a homodimer catalyzes the oxidative decarboxylation
of 6-phosphogluconate (6-PG) to synthesize ribulose-5-phosphate
(Ru5P) and a second NADPH in the third reaction.45,46

Increasingly, more studies have shown that G6PD activity is
increased in several types of cancers, including bladder, breast,
prostate, gastric cancers compared with normal tissues, and the
high expression of G6PD predicts poor clinical outcome in various
cancer patients and plays critical roles in tumorigenesis and
chemoresistance.47,48 PGD is also hyperactive and plays a
fundamental role in tumor growth.49,50 G6PD or PGD depletion
significantly decrease NADPH levels and enhance chemothera-
peutic drugs-induced cell apoptosis by redox modulation.51,52 For
what concerns activity regulation, NADP+ is required for G6PD
enzymatic activity, whereas NADPH negatively regulates its
activity. Hence, tumor cells with higher NADPH consumption
exhibit higher levels of active G6PD.45 Interestingly, a study also
shows that NADPH level is not changed by silencing PGD
expression, which is possible that a temporally increased
NADP+/NADPH ratio compensatory increased G6PD activity, thus
generating NADPH.45

The NADPH homeostasis is also regulated by the rate-limiting
enzyme activity affected by the posttranslational modification.
Studies indicate that the glycosylation, SIRT5-mediated deglutar-
ylation and SIRT2-mediated deacetylation all enhance G6PD

Fig. 2 Molecular mechanisms of NADPH homeostasis in cancer. The principal generation of NADPH (blue) with dysregulated pathways and
enzymes (red) in cancer: (i) NADKs catalyze the phosphorylation of NAD(H) to form NADP(H) via the de novo synthesis (cNADK in the cytosol
and mNADK in mitochondria). (ii) the pentose phosphate pathway (PPP) utilizes G6PD and PGD to maintain the cytosolic NADPH. (iii) the
folate-mediated one-carbon metabolism reduces NADP+ to NADPH by MTHFD1/ALDH1L1 in the cytosol, MTHFD2/MTHFD2L/ALDH1L2 in
mitochondria and DHFR in the nucleus. (iv) IDH1 located in the cytosol and IDH2 located in mitochondria generate NADPH, but mutant IDHs
consume NADPH. (v) ME1 located in the cytosol and ME2/3 located in mitochondria convert NADP+ into NADPH; (vi) the glutamine
metabolism generates NADPH by GDH1/2 directly in mitochondria and generates aspartate that is transported into the cytosol for NADPH
production depending on ME1. (vii) NNT catalyzes the transfer of hydride ions from NADH to NADP+ and produces NADPH to maintain the
mitochondrial NADPH and the reverse-mode NNT that consumes NADPH may exist in cancer cells. (viii) The CPT1/2-mediated FAO generates
acetyl CoA that enters the TCA cycle and contributes to NADPH production depending on IDHs and MEs. MPC mitochondirial pyruvate carrier,
CTP citrate transport protein, OGC α-ketoglutarate-malate carrier, AGC aspartate–glutamate carrier
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activity and maintain cellular NADPH homeostasis.53–55 Both the
phosphorylation of PGD at Y481 upon EGFR activation and
acetylation of PGD at K76 and K294 by acetyltransferases enhance
its activation for producing NADPH in cancer cells.56,57 Conversely,
protein kinase A (PKA) inhibits G6PD activity by directly
phosphorylating it on serine and threonine residues.58 Addition-
ally, G6PD activity can be regulated by several signaling pathways
in tumors, such as the PI3K/AKT, Ras, Src, Nrf2, mTORC1, PETEN,
ATM, and TP53 pathways, in a direct or indirect manner (reviewed
in refs. 45,47). For instance, the PTEN protein and cytosolic TP53
bind to G6PD to prevent the assembly of G6PD monomers into
active dimers and thus decease the PPP flux.59,60

Folate-mediated one-carbon metabolism
Folate-mediated one-carbon metabolism has been long recog-
nized and attributed to its function of producing one-carbon units
for nucleic acid and methionine synthesis, another crucial function
of this pathway is generating reducing power NADPH.61,62 Serine
and glycine are the major carbon sources of this pathway. The
activation of serine biosynthesis pathway enhances NADPH
generation in cancer cells.63 Conversely, eliminating serine from
the medium decreases the NADPH/NADP+ ratio and impairs
cancer cell growth.64 Methylene tetrahydrofolate dehydrogenases
(MTHFD1 in cytosol and MTHFD2 or MTHFD2L in mitochondria)
catalyze the oxidation of 5,10-methylene-THF (CH2-THF) to form
10-formyl-THF, and 10-formyl-THF dehydrogenases (ALDH1L1 in
cytosol and ALDH1L2 in mitochondria) catalyze the oxidization of
10-formyl-THF to generate CO2 with concomitant NADPH
production. In the nucleus, the THF carrier is oxidized to DHF in
an NADPH-generating reaction with electrons used to reduce one-
carbon units to the methyl level.65–67

MTHFD2 is postulated to be the “main switch” that produces
additional one-carbon units in mitochondria to enable rapid
growth.63 The expression of MTHFD2 is closely related to the
response of the folate antagonist methotrexate (MTX) and the
thymidylate synthase inhibitor pemetrexed.68,69 Both MTHFD2 and
MTHFD1 are markedly elevated and correlated with poor survival
across human cancers.70–72 Moreover, study indicates that
combining serum AFP with MTHFD1 enhances the prognostic
prediction accuracy in hepatocellular carcinoma (HCC).73 Quanti-
tative flux analysis reveals depletion of either MTHFD2 or MTHFD1
results in decreased cellular NADPH/NADP+ and GSH/GSSG ratios
and increased cell sensitivity to oxidative stress.32 Suppression of
MTHFD2 disturbs redox homeostasis, accelerates cell death in
both colorectal cancer (CRC),74,75 and acute myeloid leukemia
(AML).64 MTHFD2 is also critical for cancer stem-like properties and
chemoresistance, suggesting that disturbing NAPDH homeostasis
may prevent recurrence and eradicate tumors.76 And, MTHFD1
depletion reduces both the frequencies of circulating melanoma
cells in the blood and metastatic disease burden in mice bearing
melanoma,77 suggesting that NAPDH homeostasis represents
therapeutic targets to impede distant metastasis. However, the
association between MTHFD2L, which can use either NAD+ or
NADP+ for dehydrogenase activity, and tumors remains to be
investigated.
Cytosolic ALDH1L1 mainly regulates reduced folate pools and

purine biosynthesis, while mitochondrial ALDH1L2 produces
NADPH in response to oxidative stress.78 Although ALDH1L1 is
overexpressed in NSCLC and GC cancer,79,80 ALDH1L1 is reported
profoundly downregulated or silenced in cancers, rendering it a
candidate tumor suppressor.81,82 Nevertheless, ALDH1L2 is highly
expressed and presents as an independent prognostic factor for
overall survival in melanoma, PDAC, and CRC.77,78,83 Depletion of
ALDH1L2 markedly decreases the NADPH/NADP+ and GSH/GSSG
ratios, reduces the circulating tumor cells in blood and alleviates
the metastatic burden.77,83,84 In addition, the expression of
ALDH1L2 is upregulated by some certain drugs, such as
thapsigargin and tunicamycin, endoplasmic reticulum stress

inducers in immortalized human B cells,85 mitotane, an adjuvant
monotherapy used for treating adrenocortical carcinoma,86 and
the indomethacin, an anti-inflammatory agent in breast cancer
cells.87 Thus, further exploration of the association between the
effects of these drugs on the ALDH1L2 expression and the cellular
response to redox stress is needed.

Malic enzymes
ME participate in reactions that link the components of catabolic
metabolism in glycolysis and the Krebs cycle via the oxidative
decarboxylation of malate to pyruvate, thereby inducing the
anabolic metabolism with concomitant NADPH production.32,88 A
quantitative flux analysis showed that the direct contribution of
ME to NADPH generation was estimated to equal the contribution
of the PPP.89 ME family consists of three isoforms: ME1 is located
in the cytosol and ME2, ME3 are located in mitochondria. ME1 and
ME3 require NADP+ and ME2 utilizes either NAD+ or NADP+ for
their catalytic activities, thus NADPH can be produced by ME both
directly and indirectly through the activity of the NNT that
catalyzes the transfer of hydride ions from NADH to NADP+ and
produces NADPH in mitochondria.90 However, ME1 and ME2 seem
to be the main isoforms because ME3 is hardly negligibly detected
in many assessed mammalian cells.91

The overexpression of ME1 is significantly associated with a
poor prognosis for people with cancer, including those with
gastric cancer, oral squamous cell carcinoma, breast cancer, lung
cancer, etc.92–95 Silencing ME1 markedly reduces NADPH and
increases ROS levels, ultimately induces cell apoptosis under
oxidative stress, such as glucose starvation or anoikis.96,97 More-
over, the ME1 protein is hypophosphorylated at S336 and
hyperacetylated at K337 by PGAM family member 5 and acetyl-
CoA acetyltransferase, respectively, resulting in ME1 translocation
from mitochondria to the cytosol, dimerization and activation,
thus strongly promoting NADPH generation and tumorigenesis.98

ME1 expression is also regulated by well-known tumor suppres-
sors or oncogenes such as TP53 or KRAS.91,99 Intriguingly, there is
a direct crosstalk between ME1 and PPP components, and ME1
increases the ability of PGD to bind to 6-PG, enhancing NADPH
generation.100

ME2 is also overexpressed in several cancers according to
recent investigations, and is closely associated with cancer
growth, metastasis, and poor outcomes.101,102 ME2 depletion,
accompanied by an increased NADP+/NADPH ratio and ROS
levels, impacts PI3K/AKT signaling and enhances the sensitivity of
erythroleukemia and NSCLC cells to cisplatin.103,104 Besides, ME2
ablation results in elevated cellular ROS levels, which activates the
AMPK pathway and then stimulates TP53 to attenuate melanoma
cell proliferation.105,106 ME2 is frequently hemizygously codeleted
along with tumor suppressor SMAD4 in human solid tumors
including gastric cancer and PDAC.107,108 In ME2-unexpressed
gastric cancer cells, its isoenzyme ME1 is upregulated to replenish
intracellular NADPH and promotes cell survival under glucose
starvation and anoikis.107 ME3 is in lower enzymatic activity than
do ME2 in mitochondria. However, in ME2 homozygously deleted
PDAC cell lines, its isoenzyme ME3 plays the compensatory roles
for intracellular NADPH homeostasis.108,109 These findings provide
a prime ‘collateral lethality’ therapeutic strategy for the treatment
of a substantial fraction of GC or PDAC patients.

Nicotinamide nucleotide transhydrogenase
NNT is an integral mitochondrial inner membrane protein in
eukaryotes that catalyzes the transfer of hydride ions from NADH
to NADP+ and produces NADPH utilizing the proton motive force
generated by the electron transport chain (ETC).110 The process is
essential for maintaining the mitochondrial NADPH and NADH
pools. NNT activity contributes to 45% of the total NADPH in
mitochondrial pool, indicating a significant role of NNT for NADPH
pool maintenance,111 and NADPH obtained by NNT is also used
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for the reductive carboxylation of α-KG to isocitrate mediated by
IDH2.112 In contrast to this prevailing view, a fascinating work
illustrates that the NNT reverses the direction upon NADPH
consumption to support NADH and ATP productions under a
pathological workload, at the cost of NADPH-linked antioxidative
capacity. The models unexpectedly show that lacking a functional
NNT presents with less oxidative damage to the heart compared
to mice with active NNT.113 This finding provides potentially fresh
insights into pathology and metabolic regulation, but more study
about the NNT reversal process in cancer is urgently needed.
In cancer cells, NNT activity is stimulated by hyperpolarized

mitochondria. Further, the NADH from increased glycolysis in the
cytosol can be transferred to mitochondria to drive NADH-
dependent NNT.89 Additionally, NNT is overexpressed in gastric
cancer cell, which is associated with lower overall survival and
disease-free survival. NNT knockdown shows limited ability to
maintain NADPH levels and reduces tumorigenicity under
oxidative stress conditions, such as that induced by anoikis,
glucose deprivation in vitro, or impairs peritoneal dissemination
and lung metastasis in vivo.114 Similar effects are observed in liver
cancer,115 pheochromocytoma116 and NSCLC,111 and NNT is likely
to be activated by NADPH consumption, such as in IDH-mutant
cells.117 Additionally, considered as a key antioxidative enzyme,
NNT is critical for inducing macrophage inflammatory
responses118 and preventing ROS-induced cytotoxicity in T cells
exposed to asbestos that can cause a reduction in antitumor
immunity.119 To date, NNT appears to play a key role in
tumorigenesis and modification of NNT may regulate immune
effects of anti-tumor. Unfortunately, pharmacological inhibitors
specific for NNT have not been reported and need to be
developed.

Isocitrate dehydrogenases (IDH)
IDH also facilitates the generation of NADPH from NADP+ by
catalyzing the oxidative decarboxylation of isocitrate to α-
ketoglutarate (α-KG) for TCA cycle.120 There are three subtypes
of IDH: IDH1 is located within the cytosol and peroxisomes, and
IDH2/3 are primarily found in mitochondria. IDH1/2 use NADP+ as
a cofactor and conduct a reversible reaction, while IDH3 uses
NAD+ as a cofactor and conducts irreversible conversion.121,122

Multiple lines of evidences have revealed that IDH1 is
overexpressed in numerous cancers and is closely correlated with
poor prognoses of patients with non-small cell lung carcinoma
(NSCLC),123 PDAC,124 or one of several hematological malignan-
cies.125 Notably, ELISA demonstrate that IDH1 level is also
significantly elevated in the plasma of NSCLC patients, suggesting
that it can be used as a potential plasma biomarker.126 The
upregulation of IDH1 may represent a common metabolic
adaptation for diminishing oxidative stress and supporting
macromolecular synthesis, consequently promoting tumor growth
and therapy resistance.125 Furthermore, IDH1 silencing results in
decreased NADPH and α-KG levels, with the increased ROS levels,
leading to cancer cell apoptosis in NSCLC.123 Besides, oxidative
stress conditions also increase the innately high IDH1 expression,
and IDH1 silencing significantly enhances cell sensitivity to cancer
chemotherapy, radiotherapy, and photodynamic therapy by
reducing NADPH.124,127,128 In addition, IDH1 is hyperacetylated
in CRC cells and is significantly correlated with distant metastasis
and poor survival. SIRT2-dependent IDH1 deacetylation at K224
impairs its enzymatic activity and represses its malignant
behaviors in CRC.129 Specially, studies also found that IDH1 is
significantly downregulated in clear cell renal cell carcinoma
(ccRCC) compared with normal kidney cells, suggesting that IDH1
may function as a candidate tumor suppressor for ccRCC.130,131

Most studies indicate that IDH2 is also significantly upregulated
in ESCC,132 ovarian cancer,133 lung cancer and other types of
cancer,134 playing a pro-oncogenic role. Overexpression of IDH2
decreases ROS levels and increases cancer cell growth.121 IDH2

depletion decreases the expression of HIF1α and leads to the
attenuation of tumor growth in lung cancer.134 However, because
of heterogeneity among cancer cells, other studies have shown
that IDH2 expression is decreased in metastatic HCC and gastric
cancer tissues compared with paired normal tissues.135,136 The
underlying mechanism is that these cells lacking IDH2 show
enhanced invasive behavior due to the increase in matrix
metalloproteases, which depend on the NF-κB pathway. In
addition, NAD+ production by the NNT enhance SIRT3-mediated
deacetylation and loss of NAD+-dependent deacetylase SIRT3
increases the acetylation of IDH2 at K413 and decreases its
enzymatic activity by reducing dimerization, thus regulates
mitochondrial redox status and promotes cell tumorigenesis in
luminal B breast cancer,137 and B cell malignancies.138 SIRT5-
mediated IDH2 desuccinylation also regulates cellular NADPH
homeostasis and redox potential.54

The contribution of IDH to NADPH generation in cancer remains
controversial. IDH1 and IDH2 also catalyze the reductive
carboxylation and support tumor cells growth with defective
mitochondria. Studies show that IDH1/2 syntheses isocitrate/
citrate from α-KG with NADPH consumption, then the isocitrate/
citrate import into the mitochondria and contribute to suppress
mitochondrial ROS.139,140 In addition, recently, IDH1 and IDH2
gene mutations have been prevalent in several diverse malig-
nancies, including glioma, AML, angioimmunoblastic lymphomas,
chondrosarcoma, and melanomas.141,142 Recurrent somatic muta-
tion of residues are mainly located at enzymatic active sites that
bind to isocitrate, typically at R132 including R132H, R132L, R132S,
R132C, and R132G in IDH1, and R140Q or R172K in IDH2.143,144 The
mutated IDH1 and IDH2 proteins are endowed with a novel ability
to catalyze the reduction of α-KG to generate a rare metabolite, 2-
hydroxyglutarate (2-HG), while consuming NADPH.145 Further, the
relevance of these mutations and their roles in carcinogenesis and
possible therapeutic implications have been extensively reviewed
elsewhere.141,146,147

Glutamine metabolism
Glutamine metabolism is a major cellular carbon source for the
TCA cycle, a nitrogen donor for nucleotide, amino acid, and lipid
biosynthesis, it is also critical for maintaining NADPH levels.148,149

Proliferating cancer cells exhibit aerobic glycolysis, leading to a
shift in glucose carbon away from the TCA cycle, which results in
the increased use of glutamine to fuel anabolic processes to
support rapid cell growth with increased NADPH and ammonia
generation. Glutaminolysis is the mitochondrial pathway by which
glutamine is first deaminated to glutamate by glutaminases
(GLS1/2). Then, either NADPH-dependent glutamate dehydro-
genases (GDH) or other transaminases, including glutamate
oxaloacetate transaminase 2 (GOT2) and glutamate pyruvate
transaminase 2 (GPT2), convert glutamate into a-KG to meet the
need for corresponding amino acids.89

Conventionally, GDH (coded by the GLUD gene) is the more
predominant enzymes vital for the reactions needed to replenish
the TCA cycle and yield NADPH than GOT2 and GPT2, which
consists of ubiquitously expressed GDH1 and GDH2 mainly
existing in neuronal and testicular tissue and having lower activity
than GDH1.150 GDH1 is highly expressed in most tumor samples
and correlated with tumor progression stage, including breast
cancer and lung cancer cells.151,152 GDH1 depletion results in
imbalanced redox homeostasis and cell cytotoxicity and attenu-
ates cancer cell proliferation, which as well as the results in
erythroleukemia cells, while it negligibly affects normal cell
proliferation.151 Additionally, enhanced GDH1 activity has also
been reported to be a possible prognostic marker and an indicator
of metastasis in patients with CRC or gastric cancer.153,154 Under
conditions of insufficient glycolysis caused by glucose deprivation,
2-deoxyglucose treatment or Akt signaling inhibition, glutamine-
addicted cells are more sensitive to GDH1 deficiency.155
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Furthermore, GDH-derived NADPH is consumed to support the
reductive carboxylation of α-KG by IDH2, and the compensatory
increase in the expression of GDH1 or GDH2 promote the growth
of IDH-mutant glioma cells.156 Besides, with the consumption of
extracellular glutamine, GDH can also catalyze ammonia derived
from glutaminolysis and α-KG to support the synthesis of
glutamate and downstream metabolites by reductive amination
in a NADPH consumption manner to meet the cancer cells
growth.148,157,158

Specifically, some cancer cells, such as PDAC and CRC cells,
depend on a noncanonical glutamine metabolism pathway in the
cytosol under the regulation of oncogenic KRAS activation.
Glutamine-derived aspartate induced by GOT2 is transported into
the cytosol and converted by GOT1 to oxaloacetate, then
converted by malate dehydrogenase (MDH1) into malate and
subsequently oxidized into pyruvate by ME1 to create
NADPH.159,160 GHD1 shRNA has no effect on PDAC cells growth,
while knocking down GOT2 elevates ROS levels and leads to cell
senescence.161 Further, cytosolic GOT1 inhibition decreases
oxaloacetate levels and reduces the cellular NADPH/NADP+ and
GSH/GSSG ratios.159 Consistent with these findings, the addition of
exogenous malate protects cells from excessive ROS accumulation
in MDH1-knockdown cells.162 Consequently, targeting the gluta-
mine metabolism pathway, which is essential for cancer cells but
dispensable for normal cells, may lead to novel therapeutic
approaches to treat refractory tumors.

Fatty acid oxidation
In addition, FAO pathway is also key for providing NADPH
indirectly, which is indispensable in many cancers especially under
metabolic stress. FAO generates NADH, FADH2, and acetyl
coenzyme A (CoA) in each round,163 and NADH and FADH2 enter
the ETC while the acetyl CoA enters the TCA cycle to produce
citrate, which is exported to the cytosol to engage in NADPH
production through ME1 and IDH1.34 FAO and FAS are both
essential for tumor progression and support each other. Acetyl
CoA and NADPH accumulated from FAO metabolism in the
cytosol are needed to initiate FAS.164 The carnitine palmitoyl
transferases (CPT), the rate-limiting enzymes in the FAO pathway,

transport long-chain acyl-CoA from the cytosol to mitochon-
dria.165 CPT-mediated FAO activation is reported to play key roles
in maintaining NADPH homeostasis and promoting cell metastasis
and chemoresistance in gastrointestinal cancer166,167 and mela-
noma.168 Recent studies also show that knocking down PPAR
coactivator 1α (PGC1α), an important transcriptional coactivator
regulating CPT1A and CPT1B, obviously decreases the ratio of
NADPH/NADP+ and ATP levels, impairing radiation resistance in
nasopharyngeal carcinoma (NPC) cells.169 What’s more, AMP-
activated protein kinase (AMPK) also regulates the function of FAO
in maintaining NADPH homeostasis and promotes tumor cell
survival under oxidative stress or metabolic stress.170–173

THERAPEUTIC IMPLICATIONS FOR TARGETING NADPH
METABOLISM
Compared with their normal counterparts, many types of cancer
cell have increased oxidative stress and the upregulation of
antioxidant capacity. With the metabolic reprogramming of
NADPH, cancer cells increase the demand of NADPH for
antioxidative effects and anabolic reactions. The specific vulner-
ability of tumor cells leveraging the aberrant NADPH-synthesis
pathways can be exploited to induce cell death under various
cellular stresses. Manipulating ROS levels by redox modulation is a
way to selectively kill cancer cells without causing significant
toxicity to normal cells. This strategy is the basis for many
anticancer therapeutics, including chemotherapeutics, radiothera-
pies, and most small-molecule inhibitor-based therapies, which
impair tumor metabolism and induce excessive ROS accumulation,
inducing cell toxicity and death.11,174 As illustrated in Fig. 3, the
inhibitors targeting NADPH-synthesis enzymes are being exten-
sively developed. The specific target, anti-tumor effect, and clinical
progress of these inhibitors targeting NADPH metabolism are also
summarized in Tables 1 and 2.
For de novo NADPH synthesis pathway, correlation studies have

revealed that thionicotinamide adenine dinucleotide (NADS) and
thionicotinamide adenine dinucleotide phosphate (NADPS), con-
verted from the pro-drug thionicotinamide (TN), act as inhibitors
of NADKs through targeting the NAD-binding site of NADKs and

Fig. 3 Therapeutic implications for targeting NADPH metabolism. Many inhibitors targeting NADPH-synthesis enzymes have been discovered
to impair NADPH pool, thus attenuate tumorigenesis and tumor progression. Such as NADS, NADPS of NADKs. 6-AN, DHEA, gallate-catechins,
polydatin, aspirin, RRx-001 of G6PD. Physcion, S3 of PGD. DS18561882, LY345899 of MTHFD1/2. Inorganic phosphate of MTHFD2L. GSK864 of
IDH1 and AGI-6780 of IDH2. Lanthanide of ME1 and EA, NPD389 of ME2. ST1326, Etomoxir of CPT1, and perhexiline of CPT2. Ebselen, EGCG,
propylselen of GDH1/2 and purpurin, R162 of GDH1
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decreasing the levels of NADPH.37 Combining TN with several
chemotherapeutic drugs induces synergistic cell killing, indicating
its efficacious antitumor effect in DLBCL and colon cancer.38

Further, reduced NADPH levels induced by NADPS results in
accelerated degradation of DHFR and impairment of the folate
cycle, which delays cancer cell growth.175

For the PPP enzymes, recent studies have discovered some
inhibitors targeting on G6PD, such as NADP+ analogs, the
competitive inhibitor 6-aminonicotinamide (6-AN), noncompeti-
tive inhibitors epiandrosterone and dehydroepiandrosterone
(DHEA) which reduces the availability of NADPH and inhibits the
cell growth.176 The combination of cisplatin and 6-AN optimizes
the clinical dose and minimized the side effects.177–179 The new
small molecule inhibitors are gradually being discovered, such as,
gallated catechins (EGCG, GCG, ECG, CG), as the competitive
inhibitors of NADP+, repress the activity of G6PD and suppress
NADPH production.180 The natural molecule polydatin increases
the NADP+/NADPH ratio and decreases the invasion of breast
cancer cells by inhibiting G6PD activity.181 Further, the activity of
G6PD is also repressed by aspirin casing acetylation of G6PD to
decrease the activity of G6PD and the generation of NADPH, and
by RRx-001, a novel clinical-stage chemosensitizer and radio-
sensitizer, which exerts antiproliferative effects in human tumor
cells.182,183 Moreover, physcion and its derivative S3, novel small-
molecule PGD inhibitors which fits in a pocket of PGD near the
binding site of 6-PG to inhibit PGD enzyme activity and then
decrease the NADPH level, exhibit excellent anticancer effects and
sensitize leukemia cells to antimalarial agent dihydroartemisinin
(DHA).184 For the folate metabolism pathway, the
NADP+-dependent dehydrogenase activity of MTHFD2 and
MTHFD2L can be inhibited by inorganic phosphate.185 Besides,
other MTHFD2 inhibitors have been reported, including DS18561882
and LY345899 in a substrate-based manner, and treatments based
on them decrease cellular NADPH/NADP+ ratio, increase cellular ROS
levels, and impair tumorigenesis and metastasis.74,186 For the
glutamine metabolism pathway, ebselen, epigallocatechin-3-
Gallate (EGCG), and propylselen are reported to bind to GDH-

active sites to abolish NADP+ binding and impair in cancer cell
functions.187 A study also shows that purpurin and its analog, R162,
acting as mixed model inhibitors of GDH1, inhibit GDH1 activity,
elevate ROS levels and thus attenuate cancer cell proliferation.151

For the NADPH-synthesis enzymes involved in anapleurotic
reactions, including IDH1/2, ME1/2/3, and CPT1/2, the targeting
inhibitors are also being extensively developed. Study shows that
treatment with GSK864 as IDH1 inhibitor binding an allosteric site
on IDH1 reduces the NADPH/NADP+ ratio and prolongs the
survival of glioblastoma multiforme (GBM) PDXs model.125 AGI-
6780 treatment, binding with IDH2 or mutant IDH2 in an allosteric
manner at the dimer interface, reduce the IDH2 activity and lead
to the repression of cell growth in lung cancer.134 Mutant IDH-
targeted therapy and a number of important recent pre-clinical
and clinical studies in IDH-mutant solid tumors have been
extensively reviewed elsewhere,147 and listed in Table 2.
Furthermore, NPD389 binding to ME2 in fast-binding mode
impairs its activity,188 and embonic acid (EA) induces the cellular
senescence of H1299 cancer cells through its noncompetitive
inhibitory activity against ME2.189 Further, ME1 treated with the
inhibitor (piperazine-1-pyrrolidine-2,5-dione) has little effect on
normal rat intestinal epithelial cells but strongly suppresses
human CRC cell growth by targeting ME1 NADP+-binding site
and reducing the NADPH level.90 Lanthanide treatment represses
cell proliferation and the epithelial–mesenchymal transition (EMT)
by inhibiting ME1 in oral squamous cell carcinoma cells.93 In
addition, CPTs are also considered to be targeted. Glioma cells
with FAO inhibited by etomoxir, a CPT1 inhibitor, exhibits a
profound decrease in NADPH levels, reduced GSH content and
elevation of intracellular ROS levels. Besides, CPT1A-suppression or
etomoxir treatment fails to maintain redox homeostasis in
detached CRC cells and induces sensitivity to glucose deprivation
in PDAC cells.166,190 Further, in gastrointestinal cancer cells,
genetic inhibition or pharmacological treatment of CPT2 with
perhexiline disrupts NADPH and promotes cell apoptosis after
oxaliplatin treatment. Combining perhexiline with oxaliplatin leads
to a significant suppression of cancer progression.167 Other

Table 2. The clinical trials with inhibitors targeting NADPH metabolism in cancer

Target Inhibitor Tumor type Phase Clinical trial ID Recruitment status

G6PD RRx-001 Malignant solid tumor lymphoma Phase 1 NCT02518958 Completed

RRx-001 Lymphomas Phase 1 NCT01359982 Completed

RRx-001 Small cell cancer Phase 3 NCT03699956 Active, not recruiting

RRx-001 Colorectal neoplasms Phase 2 NCT02096354 Active, not recruiting

G6PD DHEA Breast cancer Phase 3 NCT01376349 Completed

DHEA Breast cancer Phase 3 NCT01376349 Completed

DHEA Multiple myeloma and plasma cell neoplasm Phase 3 NCT00006219 Completed

G6PD, 6PGD,
IDH, GDH

EGCG Colon cancer Early
Phase 1

NCT02891538 Recruiting

EGCG Breast neoplasms Phase 2 NCT02580279 Enrolling by invitation

EGCG Lung neoplasms Phase 2 NCT02577393 Enrolling by invitation

GDH Ebselen Hearing loss/cancer Phase 1 NCT01452607 Completed

Ebselen Lung cancer head and neck cancer Phase 2 NCT01451853 Unknown

IDHs AG-881 Glioma with an IDH1 or IDH2 mutation Phase 3 NCT04164901 Recruiting

BAY1436032 Leukemia, myeloid, acute with IDH1 mutations Phase 1 NCT03127735 Completed

IDH1 AG-120 (Tibsovo) Advanced hematologic malignancies with an IDH1
mutation

Phase 1 NCT02074839 Approved

IDH305 Advanced malignancies with IDH1 mutations Phase 1 NCT02381886 Active, not recruiting

FT-2102 Tumors with IDH1 mutations including: glioma
chondrosarcoma, hepatobiliary tumors

Phase 1/2 NCT03684811 Active, not recruiting

IDH2 AG-221
(Enasidenib)

Hematologic neoplasms with an IDH2 mutations Phase 1/2 NCT01915498 Approved
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inhibitors of CPTs are also discovered, such as Ro25-0187, ST1326
which are expected to be used for cancer treatment.191

CONCLUSIONS
In summary, the essential role of NADPH homeostasis has been
increasingly recognized in cancer development and progression
through cellular antioxidative effects and anabolic reactions.
Pharmacological restriction of cellular NADPH availability by
targeting its synthesis pathways to impair NADPH homeostasis
is currently recognized as a crucial and potential strategy for
cancer treatment.
However, there is an interdependent relationship in which the

NADPH pool is simultaneously supported and used by various
pathways in cells. For example, pyruvate kinase muscle isoform 2
(PKM2) inactivation can both attenuate the glucose flux to PPP
and enhance folate metabolism to mediate NADPH genera-
tion.32,43 Moreover, because of the heterogeneous nature of
tumors, there are considerable variations in NADPH-related
processes in different tumors, for example, the main pathways
of glutamine metabolism in the context of PDAC are different
from the previous prevailing view as informed by studies of other
cancers,159,192 indicating the need for careful analyses of individual
characteristics among cancers for establishing individualized
precision therapy. Moreover, the special functions of these
metabolic enzymes are not fully understood in cancer. For
instance, the reverse-mode NNT that consumes NADPH to support
NADH and ATP productions in contrast to the conventional view
has not been reported with respect to cancer.113 Besides, because
of the high plasticity of the metabolic network and metabolite
exchange among cancer and stromal cells, a compensatory
response can be readily induced to produce limiting metabo-
lites.193 In addition, the relative contribution of these pathways and
enzymes to NADPH production can be variable in different cell
types and under different conditions. Hence, additional studies are
needed to evaluate the entire NADPH metabolome, identify the
important interrelationships and determine the main pathway to
select more suitable targets. Also, the effects of NADPH
metabolism on immune cells in the tumor microenvironment are
needed to explore for exploiting novel anticancer opportunities.
As the NADPH metabolism are shared in normal and cancer

cells, selectively targeting NADPH synthesis under special
circumstances without affecting normal cells is difficult. Therefore,
one of the greatest challenges to target cancer metabolism is the
induction of toxic effects on noncancerous cells. Further, many
reported small-molecule inhibitors target several metabolic
enzymes with similar structures, for example, EGCG targets both
NADPH-dependent FASN and NADP+-dependent GDH.21,187 The
functions can be also markedly different among the isoforms of
these enzymes. For instance, cytosolic ALDH1L1 mainly regulates
reduced synthesis, while mitochondrial ALDH1L2 produces
NADPH to attenuate oxidative stress.78 IDH1/2 use NADP+ as a
cofactor while IDH3 needs NAD+121. The development of highly
selective or isoform-specific inhibitors will reduce side effects and
is an important goal for the near future. Most compounds
specifically targeting cancer NADPH metabolism are in preclinical
studies, thus there are still challenges to address before these
compounds enter the clinic. Collectively, to better understand the
therapeutic potential of NADPH metabolism, more preclinical and
clinical studies should be implemented to address these
difficulties, and combined approaches with immunotherapy and/
or chemotherapeutics should be pursued as the best strategies
because of their synergistic effects.
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